JP3750199B2 - Method for manufacturing thin-film electroluminescence device - Google Patents

Method for manufacturing thin-film electroluminescence device Download PDF

Info

Publication number
JP3750199B2
JP3750199B2 JP17313896A JP17313896A JP3750199B2 JP 3750199 B2 JP3750199 B2 JP 3750199B2 JP 17313896 A JP17313896 A JP 17313896A JP 17313896 A JP17313896 A JP 17313896A JP 3750199 B2 JP3750199 B2 JP 3750199B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting layer
layer
insulating layer
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17313896A
Other languages
Japanese (ja)
Other versions
JPH0982474A (en
Inventor
久人 加藤
幸則 河村
崇 辻
豊 寺尾
伸一 仲俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP17313896A priority Critical patent/JP3750199B2/en
Publication of JPH0982474A publication Critical patent/JPH0982474A/en
Application granted granted Critical
Publication of JP3750199B2 publication Critical patent/JP3750199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は薄膜エレクトロルミネッセンス素子の製造方法に関する。
【0002】
【従来の技術】
フラットディスプレイ素子の1つとしての薄膜エレクトロルミネッセンス(以下、ELと記す)ディスプレイ素子は、鮮明でコントラストが高く、視野角依存性も小さいためコンピュータ端末の表示素子、車両への搭載用表示素子等として研究開発が進められている。
【0003】
図6は代表的な薄膜EL装置の断面図である。ガラス基板1の上に第1の電極層2、第1の絶縁層3、発光層4、第2の絶縁層5、第2の電極層6が順次積層され薄膜EL素子が作製される。薄膜EL素子には封止板7および側壁8が被せられシリコーンオイル9が内部に注入された後、気密封止される。両電極層に駆動電源Vを接続し、両極性のパルス電圧を印加してEL発光させる。
【0004】
第1の電極層2は酸化インジウム酸化スズ(以下、ITOと記す)等の透明導電層であり、第1の絶縁層3および第2の絶縁層5は窒化ケイ素(以下、Si3N4と記す)膜および酸化ケイ素(以下、SiO2と記す)膜の積層であってSi3N4 膜が発光層4に隣接し、第2の電極層6は金属膜であることが多い。
発光層4として黄橙色発光のZnS:Mnからなる蛍光体を用いたモノクローム薄膜エレクトロルミネッセンスディスプレイは既に実用化されているが、ディスプレイ内容の多様化に伴いカラー化が不可欠となっている。
【0005】
カラー薄膜ELディスプレイに用いられる発光層4の蛍光体としては、赤色用にはCaS:Eu、ZnS:Sm、SrS:Euなど、緑色用としてはZnS:Tb、CaS:Ceなど、青色用にはSrS:Ceなどが用いられているが、次に述べるような問題点があり、いずれも実用的なカラーELディスプレイは実現されていない。
【0006】
【発明が解決しようとする課題】
これらの発光層薄膜はいずれも、(1)発光輝度が低い、(2)寿命が短い、という問題点があった。特に、(2)の短寿命は実用化にとって大きな問題であった。
今回、我々は、寿命が短い原因が、発光層の内部または表面に含まれる二酸化炭素、酸素または水分などの不純物に起因しており、これを除くことにより長寿命が達成できることを発見した。
【0007】
本発明の目的は、長時間の発光後も、輝度の低下の少ない薄膜EL素子の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の参考例によれば、ガラス基板上に、第1の電極層、第1の絶縁層、少なくともアルカリ土類硫化物に希土類元素を添加した材料よりなる発光層、第2の絶縁層、第2の電極層が順次積層された薄膜エレクトロルミネッセンス素子において、前記発光層の内部または表面に含まれる二酸化炭素、酸素または水分が除去されていることとする。
【0009】
前記酸素の残留量は1×1016分子/cm2 以下であると良い。
前記二酸化炭素の残留量は1×1017分子/cm2 以下であると良い。
前記水分の残留量は3×1016分子/cm2 以下であると良い。
本発明によれば、ガラス基板上に、第1の電極層、第1の絶縁層、少なくともアルカリ土類硫化物に希土類元素を添加した材料よりなる発光層、第2の絶縁層、第2の電極層を順次積層する薄膜エレクトロルミネッセンス素子の製造方法において、前記第2の絶縁層の成膜前に、前記発光層の不純物分子を除去させる除去工程を行うこととする。
【0010】
ここで、前記除去工程は発光層の表面のスパッタであるものとする
前記スパッタに用いられるガスには水素ガスが含まれていると良い。
また、本発明の参考例によれば、前記除去工程は発光層の真空熱処理であると良い。
本発明の参考例によれば、前記熱処理は圧力1×10-1Pa以下の真空中で、発光層の温度を250〜600℃とすると良い。
【0011】
さらに、本発明の参考例によれば、ガラス基板上に、第1の電極層、第1の絶縁層、少なくともアルカリ土類硫化物に希土類元素を添加した材料よりなる発光層、第2の絶縁層、第2の電極層とを順次積層した薄膜エレクトロルミネッセンス素子の製造方法において、前記発光層の成膜後ひき続き真空中に保持し第2の絶縁層を成膜すると良い。
本発明、ならびに本発明の参考例によれば、発光層中の二酸化炭素または酸素、あるいは発光層表面の吸着水分を除去したため、駆動中に残留している二酸化炭素、酸素分子または水分子が発光層に拡散し、これらの酸素または酸素分子が発光中心に作用して輝度を低下させたとしてもその影響は小さいと推定される。
【0012】
プラズマを用いて発光層表面をスパッタすることにより、発光層表面の水分を取り除くこともできる。とくに、スパッタガスに水素が含まれいると、発光層内部の二酸化炭素および酸素分子を除去することができる。また、発光層を真空中で加熱することにより、発光層表面に吸着した水分や酸素などの吸着ガスを除去させることができる。水分の除去は250℃以上が必要であるが、温度を高くしすぎると発光層中の硫黄が蒸発しかえって発光輝度の低下を招くので、加熱温度としては250〜600℃、好ましくは350〜500℃が適当である。
【0013】
また、発光層の成膜後に、発光層成膜後、真空中に保持して第2絶縁層を成膜すれば、発光層には水分などは吸着されない。
【0014】
【発明の実施の形態】
本発明の参考例に係る薄膜EL素子は図6を用いて既に説明した構造である。第1の電極層2はITOなどの透明電極とし、第1の絶縁層3および第2の絶縁層5は窒化ケイ素(Si3N4)膜および酸化ケイ素(SiO2)膜の積層とし窒化ケイ素膜が発光層4に隣接し、第2の電極層6はアルミニウムとニッケルなど金属層の積層とした。
【0015】
発光層4として赤色用にはCaS:EuまたはSrS:Euのいずれか両者、これらとZnS:Smの積層、緑色用としてはCaS:CeとこれとZnS:Tbの積層、青色用にはSrS:Ceなどを用いることができる。
以下の実施例ならびに参考例では、絶縁層の形成にはスパッタ法、発光層の形成には蒸着法を用いたが、各々他の成膜法を用いても同様な効果が得られる。
実施例1
図5は本発明の実施例に用いた薄膜EL素子の絶縁層用のスパッタ装置の模式断面図である。
【0016】
このスパッタ装置においては、カソード12に接続されそこに設置されているターゲット13をスパッタするRF電源16aの他にガラス基板1が置かれるアノード14にはこちら側をスパッタできるように別のRF電源16b(13.56MHz)が接続されている。このRF電源16bを用いてガラス基板1をエッチングすることができる。このときアノード14は接地される。
【0017】
本実施例の薄膜EL素子は以下の手順で製作した。
(1)ガラス基板1の表面に透明電極層2としてITOをスパッタにより成膜し、湿式プロセスによりストライプ状にパターニングした。
(2)第1の絶縁層3として反応性スパッタにより、SiO 2とSi3N4 とを順次積層し、膜厚を200nmとした。
【0018】
(3)発光層4として、電子線蒸着によりCeを発光中心とする硫化ストロンチウム(SrS:Ce)膜を成膜した。成膜時の基板温度は500℃とし、発光層4の厚さは約1μmとした。
(4)発光層4までを積層したガラス基板1を常温常湿中に取り出してから第1の絶縁層3を成膜したスパッタ装置内に移し、絶縁層3を成膜する本スパッタ装置内で、発光層表面をArとH2との混合ガスでガス圧力0.1Pa、投入電力500Wの条件で、4min 間スパッタを行ない、不純物除去を行った。
【0019】
(5)発光層4の不純物除去後、同じスパッタ装置内で引き続き第1の絶縁層3と同じ条件で、第2の絶縁層5としてSi3N4 膜とSiO2膜とを順次積層した。発光層4はSi3N4 に挟まれている。
(6)第2の電極層6としてAlとNiの積層膜を電子線蒸着により積層し、透明電極層2のストライプと直角方向のストライプを湿式プロセスによりパターニングした。
【0020】
発光層からの脱ガス成分を調べるために発光層の昇温脱離ガス分析(以下、TDSと記す)を行った。図2は不純物除去を行っていない発光層の O2 分子(質量数32)の昇温脱離ガス分析のグラフである。縦軸は検出分子数に比例する任意単位であり、目盛りは以降のTDSのグラフ(図3、図4)と共通とする。図2から、 O2 分子は400℃付近から脱離を開始し、650℃付近で大部分が脱離し尽くしていることが判る。脱離した O2 分子の総量は約3×1016分子/cm2であった。また、図3は不純物除去を行っていない発光層のCO2 分子(質量数44)の昇温脱離ガス分析のグラフである。縦軸は検出分子数に比例する任意単位である。図3から、CO2 分子も400℃付近から脱離を開始し、800℃付近まで脱離していることが判る。脱離したCO2 分子の総量は約3×1017分子/cm2であった。
【0021】
本発明にかかる不純物除去工程終了後に、基板上の発光層を真空に保持したままTDS装置中に取り込みTDSを行うと、 O2 分子の脱離総量は約1×1016分子/cm2以下、CO2 分子の脱離総量は約1×1017分子/cm2以下であった。不純物除去工程により O2 分子、CO2 分子ともに約1/3に減少していることが判る。スパッタガスに水素ガスが含まれていないと、 O2 とCO2 の減少は少なく、水素ガスが重要であることが判る。
実施例2
本実施例の薄膜EL素子の製造方法は、不純物の除去工程(4)を変えた以外は実施例1と同じとした。スパッタ条件を、ガスをArのみ、基板温度を室温、スパッタ時間を2minとした。
【0022】
実施例1と同様にTDSを水に対して行った。図4は不純物除去を行っていない発光層の水分子(質量数18)の昇温脱離ガス分析のグラフである。縦軸は検出分子数に比例する任意単位である。図4から、水分子は150℃付近から脱離を開始し、550℃付近で大部分が脱離し尽くしたことが判る。脱離した水分子の総量は約1×1017分子/cm2であった。
【0023】
実施例1と同様に、本発明にかかる不純物除去工程終了後に、発光層を真空に保持したままTDS装置中に取り込みTDSを行うと、水分子の脱離総量は約3×1016分子/cm2以下であり、不純物除去工程を経ないときの約1/3以下となっていた。
上記のようにして得られた実施例1、2の薄膜EL素子の発光層側をガラスの封止板7と側壁8でなる箱で覆い、シリコーンオイル9を注入して封止し、薄膜EL装置(図6)を作製した。この薄膜EL装置の両電極層間に駆動電源Vを接続し、両極性のパルス電圧を印加して発光輝度の経時変化を評価した。図1は本発明の製造方法で製造された薄膜EL素子の発光輝度の経時変化のグラフである。図1には、不純物除去を行わない発光層のEL素子を用いた薄膜EL装置の経時変化(カーブc)も付記した。カーブaは実施例1で作製した素子、カーブbは実施例2で作製した素子を用いた薄膜EL装置に対応する。60Hz換算で5万時間駆動した後の薄膜EL素子の発光輝度は、実施例1のEL素子では初期輝度の約60%であり(カーブa)、実施例2のEL素子では初期輝度の約45%であった(カーブb)。一方、不純物除去を行わない発光層のEL素子(カーブc)では1万時間で50%にも低下しており、不純物除去の発光輝度の経時変化に対する効果は明らかである。
【0024】
以上の解析から、発光輝度の経時劣化には発光層内部または表面に存在していた二酸化炭素、酸素または水分が薄膜EL素子の寿命に大きく影響を及ぼしており、これらの不純物を除去された発光層を有する薄膜EL素子は長寿命であることが判った。
参考例1
参考例の薄膜EL素子の製造方法は、不純物の除去工程(4)が異なるのみで他は実施例1と同じとした。
【0025】
(4)発光層4までを積層したガラス基板1を常温常湿中に取り出してから、第1の絶縁層3を成膜したスパッタ装置内に移し、1.5×10-3Paの真空中で、基板温度を400℃に加熱し、発光層の吸着ガスの脱ガスを1h行った。
(4)発光層4までを積層したガラス基板を、TDS装置中で(4)と同じ温度プロフィルの脱ガスを行った後、TDSを行うと、水分子の総量は約3×1016分子/cm2以下であり、実施例2と同様に、水分の除去が確かめられた。
【0026】
なお、基板温度は、TDSから判るように水の脱離が始まる250℃以上、発光層から硫黄の脱離が始まる600℃以下とする必要がある。
また、この素子を用いた薄膜EL装置の発光輝度の経時変化は実施例2の場合と略同じであった。
参考例2
参考例では、発光層4の成膜後から第2の絶縁層5の成膜までの間、基板を真空中に保持して、発光層4へのガス吸着を防止した例である。
【0027】
薄膜EL素子は以下の手順で製作した。
(1)〜(2) 実施例1と同様である。
(3)発光層4としてSrS:Ce膜を電子線蒸着により成膜した。基板温度は500℃、発光層4の厚さは約1μmとした。
(4)同じ真空装置内で真空を保持したまま、別の成膜室に基板を移動した後、第2の絶縁層を第1の絶縁層と同じ条件でSi3N4 とSiO2との第2の絶縁層を順次積層した。
【0028】
(5)以下、実施例1と同様にして、薄膜EL素子を作製した。
また、この素子を用いた薄膜EL装置の発光輝度の経時変化は実施例2の場合と同じであった。
発光層が水蒸気に曝されることなく、すなわち、水分子を吸着することなく発光層は次工程以下の耐湿構造により被覆されたからである。
【0029】
【発明の効果】
本発明によれば、ガラス基板上に、第1の電極層、第1の絶縁層、少なくともアルカリ土類硫化物に希土類元素を添加した材料よりなる発光層、第2の絶縁層、第2の電極層とを順次積層する薄膜EL素子の製造方法において、前記第2の絶縁層の成膜前に、前記発光層の不純物分子を除去させる除去工程を行い、該除去工程は発光層の表面のスパッタであることとしたため、本発明の薄膜EL素子は駆動中に不純物に起因する酸素の発光中心への影響は少なくなり、輝度低下は小さく長寿命であり、これを用いて信頼性の高い薄膜EL装置を得ることができる。
【0030】
また、成膜装置に特別の改良は必要でなく、製造方法は煩雑化しない。従ってコストアップは殆どない。
【図面の簡単な説明】
【図1】 本発明の製造方法により製造された薄膜EL素子の発光輝度の経時変化のグラフ
【図2】 不純物除去を行っていない発光層の酸素(質量数32)の昇温脱離ガス分析のグラフ
【図3】 不純物除去を行っていない発光層の二酸化炭素(質量数44)の昇温脱離ガス分析のグラフ
【図4】 不純物除去を行っていない発光層の水分子(質量数18)の昇温脱離ガス分析のグラフ
【図5】 本発明の実施例で用いた薄膜EL素子の絶縁層用のスパッタ装置の模式断面図
【図6】 代表的な薄膜EL装置の断面図
【符号の説明】
1 ガラス基板
2 第2の電極層
3 第1の絶縁層
4 発光層
5 第1の絶縁層
6 第2の電極層
7 封止板
8 側壁
9 シリコーンオイル
V 駆動電源
10 真空容器
11 ガス導入口
12 カソード
13 ターゲット
14 アノード
15 シャッタ
16a RF電源
16b RF電源
17a マッチングボックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a thin film electroluminescence element.
[0002]
[Prior art]
A thin film electroluminescence (hereinafter referred to as EL) display element as one of flat display elements is a clear, high-contrast, low-viewing-angle dependency, and therefore, as a display element for a computer terminal, a display element for mounting in a vehicle, etc. Research and development is ongoing.
[0003]
FIG. 6 is a cross-sectional view of a typical thin film EL device. On the glass substrate 1, the 1st electrode layer 2, the 1st insulating layer 3, the light emitting layer 4, the 2nd insulating layer 5, and the 2nd electrode layer 6 are laminated | stacked in order, and a thin film EL element is produced. The thin film EL element is covered with a sealing plate 7 and a side wall 8, and after silicone oil 9 is injected therein, it is hermetically sealed. A drive power supply V is connected to both electrode layers, and a bipolar pulse voltage is applied to cause EL emission.
[0004]
The first electrode layer 2 is a transparent conductive layer such as indium tin oxide (hereinafter referred to as ITO), and the first insulating layer 3 and the second insulating layer 5 are composed of silicon nitride (hereinafter referred to as Si 3 N 4 ). referred) film and silicon oxide (hereinafter referred to as SiO 2) a laminated film the Si 3 N 4 film is adjacent to the luminescent layer 4, the second electrode layer 6 is often a metal film.
A monochrome thin film electroluminescent display using a phosphor of ZnS: Mn that emits yellow-orange light as the light emitting layer 4 has already been put into practical use, but colorization is indispensable with diversification of display contents.
[0005]
As the phosphor of the light emitting layer 4 used in the color thin film EL display, CaS: Eu, ZnS: Sm, SrS: Eu, etc. for red, ZnS: Tb, CaS: Ce, etc. for green, etc. SrS: Ce or the like is used, but there are problems as described below, and any practical color EL display has not been realized.
[0006]
[Problems to be solved by the invention]
All of these light emitting layer thin films have the problems of (1) low emission luminance and (2) short lifetime. In particular, the short life of (2) was a big problem for practical use.
This time, we have discovered that the reason why the lifetime is short is due to impurities such as carbon dioxide, oxygen or moisture contained in or on the surface of the light emitting layer.
[0007]
An object of the present invention, after a long emission also is to provide a method of manufacturing small thin-film EL element of decrease in brightness.
[0008]
[Means for Solving the Problems]
To achieve the above object , according to a reference example of the present invention, a light emission comprising a first electrode layer, a first insulating layer, and a material obtained by adding a rare earth element to at least an alkaline earth sulfide on a glass substrate. In the thin film electroluminescent element in which the layer, the second insulating layer, and the second electrode layer are sequentially stacked, carbon dioxide, oxygen, or moisture contained in or on the surface of the light emitting layer is removed.
[0009]
The residual amount of oxygen is preferably 1 × 10 16 molecules / cm 2 or less.
The residual amount of carbon dioxide is preferably 1 × 10 17 molecules / cm 2 or less.
The residual amount of moisture is preferably 3 × 10 16 molecules / cm 2 or less.
According to the present invention, a first electrode layer, a first insulating layer, a light emitting layer made of a material obtained by adding a rare earth element to at least an alkaline earth sulfide, a second insulating layer, a second insulating layer on a glass substrate. In the method for manufacturing a thin film electroluminescent element in which electrode layers are sequentially stacked, a removal step of removing impurity molecules in the light emitting layer is performed before forming the second insulating layer.
[0010]
Here, the removing step is assumed to be sputtering of the surface of the light emitting layer.
The gas used for the sputtering preferably contains hydrogen gas.
Further, according to the reference example of the present invention, the removal step may be vacuum heat treatment of the light emitting layer.
According to the reference example of the present invention, the heat treatment is preferably performed in a vacuum of 1 × 10 −1 Pa or less and the temperature of the light emitting layer is set to 250 to 600 ° C.
[0011]
Further, according to the reference example of the present invention, on the glass substrate, the first electrode layer, the first insulating layer, the light emitting layer made of a material obtained by adding a rare earth element to at least alkaline earth sulfide, the second insulating layer. In the method of manufacturing a thin film electroluminescent element in which a layer and a second electrode layer are sequentially stacked, it is preferable that the second insulating layer is formed by holding the light emitting layer after being formed in vacuum.
According to the present invention and the reference example of the present invention, carbon dioxide or oxygen in the light emitting layer or adsorbed moisture on the surface of the light emitting layer is removed, so that carbon dioxide, oxygen molecules or water molecules remaining during driving emit light. Even if they diffuse into the layer and these oxygen or oxygen molecules act on the emission center to reduce the luminance, it is estimated that the effect is small.
[0012]
By sputtering the surface of the light emitting layer using plasma, moisture on the surface of the light emitting layer can be removed. In particular, when hydrogen is contained in the sputtering gas, carbon dioxide and oxygen molecules inside the light emitting layer can be removed. Further, by heating the light emitting layer in a vacuum, it is possible to remove adsorbed gases such as moisture and oxygen adsorbed on the surface of the light emitting layer. The removal of moisture requires 250 ° C. or higher. However, if the temperature is too high, sulfur in the light emitting layer evaporates and the luminance of the light emission is lowered, so that the heating temperature is 250 to 600 ° C., preferably 350 to 500 ° C. ° C is suitable.
[0013]
Further, if the second insulating layer is formed after the light emitting layer is formed and then kept in vacuum after the light emitting layer is formed, moisture or the like is not adsorbed to the light emitting layer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The thin film EL element according to the reference example of the present invention has the structure already described with reference to FIG. The first electrode layer 2 is a transparent electrode such as ITO, and the first insulating layer 3 and the second insulating layer 5 are a silicon nitride (Si 3 N 4 ) film and a silicon oxide (SiO 2 ) film laminated, and silicon nitride. The film was adjacent to the light emitting layer 4, and the second electrode layer 6 was a laminate of metal layers such as aluminum and nickel.
[0015]
As the light emitting layer 4, either CaS: Eu or SrS: Eu is used for red, a stack of these and ZnS: Sm, a stack of CaS: Ce and this and ZnS: Tb for green, and SrS: for blue Ce or the like can be used.
In the following examples and reference examples , the sputtering method was used for forming the insulating layer and the vapor deposition method was used for forming the light emitting layer. However, similar effects can be obtained by using other film forming methods.
Example 1
FIG. 5 is a schematic cross-sectional view of a sputtering apparatus for an insulating layer of a thin film EL element used in an example of the present invention.
[0016]
In this sputtering apparatus, in addition to the RF power source 16a that sputters the target 13 connected to the cathode 12, the anode 14 on which the glass substrate 1 is placed has another RF power source 16b so that this side can be sputtered. (13.56 MHz) is connected. The glass substrate 1 can be etched using the RF power source 16b. At this time, the anode 14 is grounded.
[0017]
The thin film EL device of this example was manufactured by the following procedure.
(1) ITO was formed into a film as the transparent electrode layer 2 on the surface of the glass substrate 1 by sputtering, and patterned into a stripe shape by a wet process.
(2) SiO 2 and Si 3 N 4 were sequentially laminated as the first insulating layer 3 by reactive sputtering, and the film thickness was 200 nm.
[0018]
(3) As the light emitting layer 4, a strontium sulfide (SrS: Ce) film having Ce as an emission center was formed by electron beam evaporation. The substrate temperature during film formation was 500 ° C., and the thickness of the light emitting layer 4 was about 1 μm.
(4) The glass substrate 1 laminated up to the light emitting layer 4 is taken out into room temperature and humidity and then transferred to the sputtering apparatus in which the first insulating layer 3 is formed, and in this sputtering apparatus in which the insulating layer 3 is formed. Then, the surface of the light emitting layer was sputtered with a mixed gas of Ar and H 2 at a gas pressure of 0.1 Pa and an input power of 500 W for 4 minutes to remove impurities.
[0019]
(5) After removing the impurities from the light emitting layer 4, an Si 3 N 4 film and an SiO 2 film were sequentially laminated as the second insulating layer 5 under the same conditions as the first insulating layer 3 in the same sputtering apparatus. The light emitting layer 4 is sandwiched between Si 3 N 4 .
(6) A laminated film of Al and Ni was laminated as the second electrode layer 6 by electron beam evaporation, and the stripes in the direction perpendicular to the stripes of the transparent electrode layer 2 were patterned by a wet process.
[0020]
In order to investigate the degassing component from the light emitting layer, temperature-programmed desorption gas analysis (hereinafter referred to as TDS) of the light emitting layer was performed. FIG. 2 is a graph of temperature-programmed desorption gas analysis of O 2 molecules (mass number 32) of the light emitting layer from which impurities have not been removed. The vertical axis is an arbitrary unit proportional to the number of detected molecules, and the scale is common to the following TDS graphs (FIGS. 3 and 4). From FIG. 2, it can be seen that the O 2 molecules started to desorb at around 400 ° C., and most of them were desorbed at around 650 ° C. The total amount of desorbed O 2 molecules was about 3 × 10 16 molecules / cm 2 . FIG. 3 is a graph of thermal desorption gas analysis of CO 2 molecules (mass number 44) of the light emitting layer from which impurities have not been removed. The vertical axis is an arbitrary unit proportional to the number of detected molecules. From FIG. 3, it can be seen that CO 2 molecules also started desorption from around 400 ° C. and desorbed to around 800 ° C. The total amount of desorbed CO 2 molecules was about 3 × 10 17 molecules / cm 2 .
[0021]
After completion of the impurity removal step according to the present invention, when the TDS is taken into the TDS apparatus while the light emitting layer on the substrate is kept in vacuum, the total desorption amount of O 2 molecules is about 1 × 10 16 molecules / cm 2 or less, The total desorption amount of CO 2 molecules was about 1 × 10 17 molecules / cm 2 or less. It can be seen that both O 2 molecules and CO 2 molecules are reduced to about 1/3 by the impurity removal process. When hydrogen gas is not included in the sputtering gas, the decrease in O 2 and CO 2 is small, and it can be seen that hydrogen gas is important.
Example 2
The manufacturing method of the thin film EL element of this example was the same as that of Example 1 except that the impurity removal step (4) was changed. As sputtering conditions, the gas was Ar only, the substrate temperature was room temperature, and the sputtering time was 2 min.
[0022]
TDS was performed on water in the same manner as in Example 1. FIG. 4 is a graph of temperature-programmed desorption gas analysis of water molecules (mass number 18) in the light emitting layer from which impurities have not been removed. The vertical axis is an arbitrary unit proportional to the number of detected molecules. From FIG. 4, it can be seen that desorption of water molecules started from around 150 ° C., and most of the water molecules were completely desorbed at around 550 ° C. The total amount of desorbed water molecules was about 1 × 10 17 molecules / cm 2 .
[0023]
As in Example 1, after the impurity removal step according to the present invention is completed, when the TDS is performed while the light emitting layer is held in a vacuum, the total amount of desorbed water molecules is about 3 × 10 16 molecules / cm 3. It was 2 or less, and was about 1/3 or less when the impurity removal step was not performed.
The light emitting layer side of the thin film EL element of Examples 1 and 2 obtained as described above is covered with a box made of a glass sealing plate 7 and a side wall 8 and sealed by injecting silicone oil 9 to form a thin film EL. An apparatus (FIG. 6) was produced. A drive power supply V was connected between both electrode layers of this thin-film EL device, and a pulse voltage of both polarities was applied to evaluate a change in light emission luminance with time. FIG. 1 is a graph of the change over time of the light emission luminance of a thin film EL device manufactured by the manufacturing method of the present invention . FIG. 1 also shows a change with time (curve c) of a thin film EL device using an EL element of a light emitting layer that is not subjected to impurity removal. Curve a corresponds to the element manufactured in Example 1, and curve b corresponds to the thin film EL device using the element manufactured in Example 2. The light emission luminance of the thin film EL element after driving for 50,000 hours in terms of 60 Hz is about 60% of the initial luminance in the EL element of Example 1 (curve a), and about 45% of the initial luminance in the EL element of Example 2. % (Curve b). On the other hand, in the EL element (curve c) of the light emitting layer where impurities are not removed, it is reduced to 50% in 10,000 hours, and the effect of removing impurities on the light emission is clear.
[0024]
From the above analysis, carbon dioxide, oxygen, or moisture present inside or on the surface of the light emitting layer has a significant effect on the lifetime of the thin-film EL element in the deterioration of light emission luminance over time. It was found that a thin film EL element having a layer has a long lifetime.
Reference example 1
The manufacturing method of the thin film EL element of this reference example was the same as that of Example 1 except that the impurity removal step (4) was different.
[0025]
(4) The glass substrate 1 laminated up to the light emitting layer 4 is taken out into room temperature and humidity, and then transferred into the sputtering apparatus in which the first insulating layer 3 is formed, and in a vacuum of 1.5 × 10 −3 Pa. Then, the substrate temperature was heated to 400 ° C., and the adsorption gas of the light emitting layer was degassed for 1 hour.
(4) After degassing the glass substrate laminated up to the light emitting layer 4 with the same temperature profile as in (4) in the TDS apparatus, when TDS is performed, the total amount of water molecules is about 3 × 10 16 molecules / It was cm 2 or less, and the removal of moisture was confirmed in the same manner as in Example 2.
[0026]
The substrate temperature needs to be 250 ° C. or higher at which water desorption begins and 600 ° C. or lower at which sulfur desorption begins from the light-emitting layer, as can be seen from TDS.
Further, the change with time of the light emission luminance of the thin-film EL device using this element was substantially the same as in Example 2.
Reference example 2
In this reference example, the substrate is held in vacuum from the time when the light emitting layer 4 is formed to the time when the second insulating layer 5 is formed, thereby preventing gas adsorption to the light emitting layer 4.
[0027]
The thin film EL device was manufactured by the following procedure.
(1) to (2) Same as Example 1.
(3) An SrS: Ce film was formed as the light emitting layer 4 by electron beam evaporation. The substrate temperature was 500 ° C., and the thickness of the light emitting layer 4 was about 1 μm.
(4) After the substrate is moved to another film formation chamber while maintaining the vacuum in the same vacuum apparatus, the second insulating layer is made of Si 3 N 4 and SiO 2 under the same conditions as the first insulating layer. A second insulating layer was sequentially laminated.
[0028]
(5) A thin film EL element was produced in the same manner as in Example 1.
Further, the change with time of the light emission luminance of the thin film EL device using this element was the same as that in Example 2.
This is because the light emitting layer is covered with a moisture resistant structure in the following step or less without being exposed to water vapor, that is, without adsorbing water molecules.
[0029]
【The invention's effect】
According to the present invention, a first electrode layer, a first insulating layer, a light emitting layer made of a material obtained by adding a rare earth element to at least an alkaline earth sulfide, a second insulating layer, a second insulating layer on a glass substrate. In the method for manufacturing a thin film EL element in which electrode layers are sequentially stacked, a removal step of removing impurity molecules in the light emitting layer is performed before the formation of the second insulating layer, and the removal step is performed on the surface of the light emitting layer. Since the thin film EL element of the present invention is driven by sputtering, the influence of oxygen on the light emission center due to impurities is reduced during driving, the luminance is reduced, and the lifetime is long. An EL device can be obtained.
[0030]
Also, special modifications are not required for film forming apparatus, a manufacturing method is not complicated. Therefore, there is almost no cost increase.
[Brief description of the drawings]
FIG. 1 is a graph of the time-dependent change in emission luminance of a thin film EL device manufactured by the manufacturing method of the present invention. FIG. 2 is a temperature programmed desorption gas analysis of oxygen (mass number 32) in a light emitting layer from which impurities are not removed. [Fig. 3] Graph of temperature-programmed desorption gas analysis of carbon dioxide (mass number 44) in the light emitting layer without removing impurities [Fig. 4] Water molecule (mass number of 18 in the light emitting layer without removing impurities) ) Temperature desorption gas analysis graph of FIG. 5] FIG. 5 is a schematic cross-sectional view of a sputtering apparatus for an insulating layer of a thin-film EL element used in an embodiment of the present invention. Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 2nd electrode layer 3 1st insulating layer 4 Light emitting layer 5 1st insulating layer 6 2nd electrode layer 7 Sealing plate 8 Side wall 9 Silicone oil V Drive power supply 10 Vacuum vessel 11 Gas inlet 12 Cathode 13 Target 14 Anode 15 Shutter 16a RF power supply 16b RF power supply 17a Matching box

Claims (2)

ガラス基板上に、第1の電極層、第1の絶縁層、少なくともアルカリ土類硫化物に希土類元素を添加した材料よりなる発光層、第2の絶縁層、第2の電極層順次積層する薄膜エレクトロルミネッセンス素子の製造方法において、前記第2の絶縁層の成膜前に、前記発光層の不純物分子を除去させる除去工程を行い、該除去工程は発光層の表面のスパッタであることを特徴とする薄膜エレクトロルミネッセンス素子の製造方法On a glass substrate, a first electrode layer, a first insulating layer, light emitting layer made of a material doped with a rare earth element to at least an alkaline earth sulfide, a second insulating layer are sequentially stacked second electrode layers the method of manufacturing a thin-film electroluminescent device, before formation of the second insulating layer was subjected to removal step of removing impurities molecules of the luminescent layer, the removing step is a sputter der Rukoto the surface of the light-emitting layer A method for producing a thin-film electroluminescent device. 前記スパッタに用いられるガスには水素ガスが含まれていることを特徴とする請求項1に記載の薄膜エレクトロルミネッセンス素子の製造方法 Method of manufacturing a thin film electroluminescent device according to claim 1 to the gas used in the sputtering characterized that you have contain hydrogen gas.
JP17313896A 1995-07-07 1996-07-03 Method for manufacturing thin-film electroluminescence device Expired - Fee Related JP3750199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17313896A JP3750199B2 (en) 1995-07-07 1996-07-03 Method for manufacturing thin-film electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-171749 1995-07-07
JP17174995 1995-07-07
JP17313896A JP3750199B2 (en) 1995-07-07 1996-07-03 Method for manufacturing thin-film electroluminescence device

Publications (2)

Publication Number Publication Date
JPH0982474A JPH0982474A (en) 1997-03-28
JP3750199B2 true JP3750199B2 (en) 2006-03-01

Family

ID=26494362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17313896A Expired - Fee Related JP3750199B2 (en) 1995-07-07 1996-07-03 Method for manufacturing thin-film electroluminescence device

Country Status (1)

Country Link
JP (1) JP3750199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070093076A (en) * 2004-12-28 2007-09-17 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device

Also Published As

Publication number Publication date
JPH0982474A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP3428152B2 (en) Manufacturing method of organic EL element
JPH08287833A (en) Manufacture of plasma display panel
JPH07142168A (en) Manufacture of organic el element
JP3750199B2 (en) Method for manufacturing thin-film electroluminescence device
JPS6141112B2 (en)
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
JP3644131B2 (en) Manufacturing method of EL element
JPH11135023A (en) Plasma display panel and its manufacture
JP2000340367A (en) Organic electroluminescence element and its manufacture
JPH08225782A (en) Production of electroluminescent thin film
JP3976892B2 (en) Thin film EL device
JP2620550B2 (en) EL thin film forming method
JPH05226075A (en) Electric element having transparent oxide conductive film
JP3599356B2 (en) Electroluminescence element
JPH01107493A (en) Manufacture of thin film electro-luminescence element
JP2001297877A (en) Manufacturing method and apparatus of thin film electroluminescence element
JP3446542B2 (en) Thin film EL element
JPH10261367A (en) Phosphor film forming method
JPH0532877B2 (en)
JPH0817574A (en) Manufacture of thin film electroluminecent element
JPH01206596A (en) Film type electroluminescence element
JPH01246790A (en) Thin film el element and its manufacture
JPH11126690A (en) Manufacture of thin film electroluminescent element
JPH05326145A (en) Thin film el display element
JPH02162685A (en) Manufacture of thin film el element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees