JPH08225782A - Production of electroluminescent thin film - Google Patents

Production of electroluminescent thin film

Info

Publication number
JPH08225782A
JPH08225782A JP7284854A JP28485495A JPH08225782A JP H08225782 A JPH08225782 A JP H08225782A JP 7284854 A JP7284854 A JP 7284854A JP 28485495 A JP28485495 A JP 28485495A JP H08225782 A JPH08225782 A JP H08225782A
Authority
JP
Japan
Prior art keywords
pressure
gas
gas atmosphere
heat treatment
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7284854A
Other languages
Japanese (ja)
Inventor
Youji Yamada
羊治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7284854A priority Critical patent/JPH08225782A/en
Publication of JPH08225782A publication Critical patent/JPH08225782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: To obtain the subject film having a high emission luminance in a short time by forming the film containing a IIa-sulfur compound semiconductor as a matrix in sulfur gas atmosphere under a low pressure and then heat- treating the resultant film according to a specific method. CONSTITUTION: This method for forming an electroluminescent thin film comprises forming a thin film containing a IIa-sulfur compound semiconductor as a matrix in a gas atmosphere selected from sulfur, diethyl sulfide and dimethyl sulfide under a low pressure and subsequently heat-treating the resultant film in a gas atmosphere comprising an inert gas and any of the above gases under atmospheric pressure. In the case of the sulfur gas, the pressure in forming the film is preferably 8×10<-3> to 6.7×10<-2> Pa and the partial pressure for the inert gas in the heat treatment is preferably 2.7×10<4> to 8×10<4> Pa. In the case of the diethyl sulfide gas, the pressure in forming the film is 8×10<-4> to 8×10<-3> Pa and the partial pressure for the inert gas in the heat treatment is preferably 1.3×10<3> to 8×10<3> Pa. Furthermore, in the case of the dimethyl sulfide gas, the pressure in forming the film is preferably 6.7×10<-4> to 1.2×10<-2> Pa and the partial pressure for the inert gas. in the heat treatment is preferably 6.7×10<3> to 1.7×10<4> Pa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、IIa −VIb 族化合物
半導体を母材とするエレクトロルミネッセンス薄膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescent thin film containing a IIa-VIb group compound semiconductor as a base material.

【0002】[0002]

【従来の技術】ディスプレイ用エレクトロルミネッセン
ス(以下ELと略記する)素子は、二重絶縁層構造の適
用により、高輝度、長寿命が達成され、軽量、薄型ディ
スプレイ装置として実用化されるに至った。図13は二
重絶縁層構造EL素子の断面図である。ガラス基板1に
は順に、透明電極層2、第1絶縁層3、EL発光層4、
第2絶縁層5そして背面電極層6が順に積層されてい
る。
2. Description of the Related Art Electroluminescent (hereinafter abbreviated as EL) elements for displays have achieved high brightness and long life by applying a double insulating layer structure, and have been put to practical use as lightweight and thin display devices. . FIG. 13 is a cross-sectional view of a double insulating layer structure EL element. On the glass substrate 1, a transparent electrode layer 2, a first insulating layer 3, an EL light emitting layer 4,
The second insulating layer 5 and the back electrode layer 6 are sequentially stacked.

【0003】透明電極層2は、例えば、酸化インジウム
・スズ(ITO)の蒸着またはスパッタ薄膜である。第
1絶縁層3と第2絶縁層5は二酸化珪素、窒化珪素その
他金属酸化物の薄膜などが用いられている。通常は、透
明電極層2と背面電極層6との間に印加される交流電圧
によって駆動、発光されるので、EL発光層4を挟んで
絶縁層は対称に作られている。第2絶縁層5はEL発光
層4の側面も完全に被覆しており、EL発光層4内の電
導キャリアは外部から供給されることはなく輝度特性を
安定化しており、またEL発光層4を外気から遮断し、
EL素子の変質を防止するので長寿命が達成されてい
る。
The transparent electrode layer 2 is, for example, a vapor-deposited or sputtered thin film of indium tin oxide (ITO). For the first insulating layer 3 and the second insulating layer 5, thin films of silicon dioxide, silicon nitride and other metal oxides are used. Usually, the insulating layers are symmetrically arranged with the EL light emitting layer 4 sandwiched therebetween, because they are driven and emitted by an AC voltage applied between the transparent electrode layer 2 and the back electrode layer 6. The second insulating layer 5 completely covers the side surface of the EL light emitting layer 4, and the conductive carrier in the EL light emitting layer 4 is not supplied from the outside to stabilize the luminance characteristic. Shut off from the outside air,
A long life is achieved because the EL element is prevented from being altered.

【0004】背面電極層6はアルミニウムなどの金属の
蒸着またはスパッタ薄膜である。各電極層は、表示の目
的に従ってパターニングされることが多い。EL発光層
4は、IIa −VIb 族化合物半導体が母材であり、発光中
心として希土類元素が添加されることが多い。透明電極
層2と背面電極層6に交流電圧を印加し電圧を上昇さ
せ、EL発光層4の電界が約1.3 ×106 V/cmの発光開始
電界に達すると発光が開始し、それより少し高い電界で
発光輝度は飽和する。この発光開始電界が低く、輝度が
高いことが良いEL発光層の条件である。
The back electrode layer 6 is a vapor-deposited or sputtered thin film of metal such as aluminum. Each electrode layer is often patterned according to the purpose of display. The EL light emitting layer 4 is composed of a IIa-VIb group compound semiconductor as a base material, and rare earth elements are often added as a light emission center. AC voltage is applied to the transparent electrode layer 2 and the back electrode layer 6 to increase the voltage, and when the electric field of the EL light emitting layer 4 reaches a light emission starting electric field of about 1.3 × 10 6 V / cm, light emission starts, and a little more than that. The emission brightness is saturated in a high electric field. The conditions for the EL light emitting layer are that the light emission starting electric field is low and the brightness is high.

【0005】母材がIIa−VIb 族化合物半導体で、添加
発光中心が希土類元素の場合では。EL発光機構は、電
界励起されたホットエレクトロンにより叩かれた発光中
心から電離された電子の正孔との再結合発光である。典
型例はZnS:Ceである。電界励起が効率良く行われ
るためには、ホットエレクトロンが発光中心以外の欠陥
とは衝突しないで、できるだけ高いエネルギーを電界か
ら得る必要がある。これは、母材結晶中の発光中心と伝
導電子発生源以外の欠陥が少ないことによって達せられ
る。
In the case where the base material is a IIa-VIb group compound semiconductor and the added luminescence center is a rare earth element. The EL emission mechanism is recombination emission of electrons ionized from the emission center hit by hot electrons excited by an electric field with holes. A typical example is ZnS: Ce. In order for the electric field excitation to be performed efficiently, it is necessary to obtain as high energy as possible from the electric field without causing hot electrons to collide with defects other than the emission center. This can be achieved by the fact that there are few defects other than the emission center and the conduction electron source in the host crystal.

【0006】EL発光層4は厚さ約0.5μm のIIa −
VIb 族化合物半導体の薄膜であり、何種類かの成膜方法
があるが、不純物の添加と、大面積の成膜が容易である
ことから、製造レベルではエレクトロンビーム蒸着法と
スパッタ法が主である。IIa族元素に比べてVIb 族元素
の飽和蒸気圧が高く、VIb 族元素は解離しやすい。いず
れの成膜方法においても、VIb 族元素の解離を防止する
手段を講じているが、VIb 族元素不足の欠陥を完全に無
くすことは不可能である。成膜直後のEL発光層は、II
族元素とVI族元素との化学量論的ずれ(VIb族元素が不足
する) の欠陥だけではなく、結晶タイプの異なる材質の
上に成膜されることによる、アモルファス層とそこから
発生する微細結晶の結晶粒界も持っている。そのため、
発光開始電界は高く、発光輝度も低い。アモルファス層
はEL発光しないのでデッドレヤーと言われている。ま
た、上記方法による成膜中に発光層に取り込まれた酸素
は電子のトラップとして働き発光特性を落としている。
The EL light emitting layer 4 has a thickness of about 0.5 μm IIa-
It is a VIb group compound semiconductor thin film, and there are several types of film formation methods.However, since it is easy to add impurities and form large areas, the electron beam evaporation method and the sputtering method are mainly used at the manufacturing level. is there. The VIb group element has a higher saturated vapor pressure than the IIa group element, and the VIb group element is easily dissociated. In each of the film forming methods, measures are taken to prevent dissociation of the VIb group element, but it is impossible to completely eliminate defects due to the VIb group element deficiency. The EL emission layer immediately after film formation is II
Not only defects due to stoichiometric difference between the group VI element and the group VI element (VIb group element is insufficient), but the amorphous layer and the fine particles generated from it due to the film formation on materials with different crystal types. It also has crystal grain boundaries. for that reason,
The light emission starting electric field is high and the light emission luminance is low. Since the amorphous layer does not emit EL light, it is called dead layer. In addition, the oxygen taken into the light emitting layer during the film formation by the above method acts as an electron trap and deteriorates the light emitting property.

【0007】成膜後の高発光開始電界、低発光輝度の難
点を解消するために、成膜法の改善とともに成膜直後の
EL発光層を熱処理して、結晶性を向上させる試みがな
されてきている。EL発光層の真空中あるいは不活性ガ
ス雰囲気中での熱処理は、化合物半導体母材からのVI族
元素の解離による空孔が生じ結晶性は改善されない。熱
処理中のVIb 族元素の解離を防止するために、熱処理雰
囲気と処理条件を特開平1−272093の提案のよう
に硫黄ガス、または硫黄ガスか硫化水素をふくむ不活性
ガス中で、700℃、5時間の処理、あるいは特開平4
−121995の提案のように硫化性ガス中で650℃
以上の温度で、4時間の処理とすることなどが試みられ
ている。但し、後者の場合は、発光中心以外の添加物が
添加されているEL発光層が対象である。
In order to solve the problems of high emission starting electric field and low emission brightness after film formation, attempts have been made to improve the film formation method and heat treat the EL light emitting layer immediately after film formation to improve the crystallinity. ing. The heat treatment of the EL light emitting layer in a vacuum or in an inert gas atmosphere does not improve the crystallinity due to the generation of vacancies due to the dissociation of the Group VI element from the compound semiconductor base material. In order to prevent the dissociation of the VIb group element during the heat treatment, the heat treatment atmosphere and the treatment conditions are set to 700 ° C. in a sulfur gas or an inert gas containing sulfur gas or hydrogen sulfide, as proposed in JP-A 1-272093. Processing for 5 hours, or Japanese Patent Laid-Open No. 4
650 ° C. in sulfidizing gas as proposed by -121995
Attempts have been made to carry out the treatment at the above temperature for 4 hours. However, in the latter case, the EL emission layer to which an additive other than the emission center is added is targeted.

【0008】IIa 族−セレン化合物半導体を母材とする
薄膜についての、低圧セレンガス雰囲気中での、成膜あ
るいはセレン雰囲気での成膜後の熱処理は知られていな
い。
There is no known heat treatment for a thin film containing a Group IIa-selenium compound semiconductor as a base material in a low pressure selenium gas atmosphere or after the film formation in a selenium atmosphere.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この様
な熱処理方法では、硫黄ガスを添加していない場合はも
ちろん硫黄ガスを添加した場合であっても硫黄ガス濃度
が低いため、EL薄膜中の酸素の除去や結晶性の向上は
充分ではない。また、熱処理時間も長く、基板の変形や
透明電極の変質の可能性もある。
However, in such a heat treatment method, since the sulfur gas concentration is low not only when sulfur gas is not added but also when sulfur gas is added, the oxygen in the EL thin film is reduced. Are not sufficiently removed or the crystallinity is not improved. Further, the heat treatment time is long, and there is a possibility that the substrate may be deformed or the transparent electrode may be deteriorated.

【0010】この発明の目的は、上記欠点を解消し、発
光輝度の高いIIa 族−硫黄化合物半導体およびIIa 族−
セレン化合物半導体を母材とするEL薄膜の製造方法を
提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a high emission luminance of a group IIa-sulfur compound semiconductor and a group IIa-.
An object of the present invention is to provide a method for manufacturing an EL thin film using a selenium compound semiconductor as a base material.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、第1の発明は、IIa 族−硫黄化合物半導体を母材
とする薄膜を、低圧の硫黄,硫化ジエチル,硫化ジメチ
ルから選ばれるいずれかのガス雰囲気中で成膜し引き続
き常圧での不活性ガスと前記硫化性ガスのいずれかのガ
スとのガス雰囲気中で熱処理するエレクトロルミネッセ
ンス薄膜の製造方法であることとする。
In order to achieve the above object, the first invention is that a thin film containing a group IIa-sulfur compound semiconductor as a base material is selected from low-pressure sulfur, diethyl sulfide and dimethyl sulfide. A method for producing an electroluminescent thin film is one in which film formation is performed in any gas atmosphere, and then heat treatment is performed in a gas atmosphere of an inert gas at atmospheric pressure and one of the sulfurizing gases.

【0012】第1の発明に記載の製造方法において、成
膜時の硫黄ガス雰囲気の圧力を8.0×10-3〜6.7 ×10-2
Paとし、熱処理時の硫黄の不活性ガスに対する分圧を
2.7×104 〜8.0 ×104 Paとすると良い。第1の発明
に記載の製造方法において、成膜時の硫化ジエチルガス
雰囲気の圧力を8.0 ×10-4〜8.0 ×10-3Paとし、熱処
理時の硫化ジエチルの不活性ガスに対する分圧を1.3 ×
103 〜8.0 ×103 Paとすると良い。
In the manufacturing method according to the first aspect of the invention, the pressure of the sulfur gas atmosphere during film formation is 8.0 × 10 −3 to 6.7 × 10 −2.
Pa and the partial pressure of sulfur against the inert gas during heat treatment
2.7 × 10 4 to 8.0 × 10 4 Pa is preferable. In the manufacturing method according to the first aspect of the present invention, the pressure of the diethyl sulfide gas atmosphere during film formation is 8.0 × 10 -4 to 8.0 × 10 -3 Pa, and the partial pressure of diethyl sulfide with respect to the inert gas during the heat treatment is 1.3. ×
It is good to set it to 10 3 to 8.0 × 10 3 Pa.

【0013】第1の発明に記載の製造方法において、成
膜時の硫化ジメチルガス雰囲気の圧力を6.7 ×10-4〜1.
2 ×10-2 Paとし、熱処理時の硫化ジメチルの不活性
ガスに対する分圧を6.7 ×103 〜1.7 ×104 Paとする
と良い。第2の発明は、IIa 族−セレン化合物半導体を
母材とする薄膜を、低圧セレンガス雰囲気中で成膜し引
き続き常圧での不活性ガスとセレンガスとの混合ガス雰
囲気中で熱処理するエレクトロルミネッセンス薄膜の製
造方法であることとする。
In the manufacturing method according to the first invention, the pressure of the dimethyl sulfide gas atmosphere during film formation is 6.7 × 10 -4 to 1.
It is preferable that the pressure is 2 × 10 −2 Pa and the partial pressure of dimethyl sulfide with respect to the inert gas during the heat treatment is 6.7 × 10 3 to 1.7 × 10 4 Pa. A second invention is an electroluminescent thin film in which a thin film containing a Group IIa-selenium compound semiconductor as a base material is formed in a low-pressure selenium gas atmosphere and then heat-treated in a mixed gas atmosphere of an inert gas and selenium gas under normal pressure. The manufacturing method of

【0014】第2の発明に記載の製造方法において、成
膜時のセレンガス雰囲気の圧力を9.3 ×10-3〜6.7 ×10
-2Paとし、熱処理時のセレンの不活性ガスに対する分
圧を6.7 ×103 〜3.3 ×104 Paとすると良い。
In the manufacturing method according to the second aspect of the invention, the pressure of the selenium gas atmosphere during film formation is 9.3 × 10 −3 to 6.7 × 10.
It is preferable that the pressure is −2 Pa and the partial pressure of selenium with respect to the inert gas during the heat treatment is 6.7 × 10 3 to 3.3 × 10 4 Pa.

【0015】[0015]

【発明の実施の形態】IIa −VIb 族化合物半導体を母材
とする薄膜を、IIa −VIb 族化合物からのVIb 族元素の
解離の臨界圧力以上の圧力のVIb 族単体、あるいはジメ
チルまたはジエチルのVIb 族化合物のガス雰囲気中で成
膜することにより、IIa −VIb 族化合物の蒸発源の分解
をある程度抑えることができる。
BEST MODE FOR CARRYING OUT THE INVENTION A thin film containing a IIa-VIb group compound semiconductor as a base material is prepared by using a VIb group alone at a pressure higher than the critical pressure for dissociation of a VIb group element from a IIa-VIb group compound, or a VIb of dimethyl or diethyl. Deposition of the evaporation source of the IIa-VIb group compound can be suppressed to some extent by forming the film in a gas atmosphere of the group compound.

【0016】このようにして成膜されたIIa −VIb 族化
合物半導体のEL薄膜にはまだVIb族の空孔や酸素が含
まれていて、発光輝度は充分には高くない。これらのE
L薄膜を、成膜時よりも遙に高圧の103 〜104 Pa
のVIb 族単体、あるいはジメチルまたはジエチルのVIb
族化合物のガス雰囲気中での熱処理は、VIb 族元素の空
孔を埋めるだけでなく酸素の VIb族元素への置換も行
う。
The IIa-VIb group compound semiconductor EL thin film thus formed still contains VIb group vacancies and oxygen, and the emission brightness is not sufficiently high. These E
The L thin film has a pressure of 10 3 to 10 4 Pa, which is much higher than that at the film formation
Group VIb alone, or VIb of dimethyl or diethyl
The heat treatment of the group compound in a gas atmosphere not only fills the holes of the group VIb element but also replaces oxygen with the group VIb element.

【0017】上記の作用の促進に関して、次のことは重
要である。VIb 族元素の8員環分子の分解の温度を、こ
の発明のように、200℃以上と高くすることにより、
VIb族元素ガスは4原子以上の多原子分子よりサイズが
小さい2原子分子を多く含むようになるため、熱処理時
には発光層に短時間で深く入り込み反応を起こしやす
い。
Regarding the promotion of the above-mentioned action, the following is important. By increasing the decomposition temperature of the 8-membered ring molecule of the VIb group element to 200 ° C. or higher as in the present invention,
Since the VIb group element gas contains a large amount of diatomic molecules having a size smaller than that of polyatomic molecules of 4 atoms or more, it easily penetrates into the light emitting layer in a short time during the heat treatment to cause a reaction.

【0018】また、この発明で用いるジメチルまたはジ
エチルのVIb 族化合物のガスは1分子当たりVIb 族原子
を1個しか含まず、分解してVIb 族元素単体を生じやす
いので、2原子分子を多く含むVIb 族元素単体ガス雰囲
気よりもさらにEL層に短時間で深く入り込み反応を起
こしやすい。下記の全ての実施例に共通する二重絶縁層
構造EL素子の製造方法を次に記す。
Further, the gas of the VIb group compound of dimethyl or diethyl used in the present invention contains only one VIb group atom per molecule, and is easily decomposed to produce a VIb group element simple substance, so that it contains many diatomic molecules. It is more likely to enter the EL layer deeper in a short time than in a VIb group element simple gas atmosphere and cause a reaction. A method of manufacturing a double insulating layer structure EL element which is common to all the following examples will be described below.

【0019】50×50mm2 のノンアルカリガラスを
基板として、その表面に、170nmの膜厚のITO膜
をスパッタ法で成膜、次いで30nmの二酸化ケイ素膜
を成膜、さらに180nmの窒化ケイ素を成膜する。こ
の上に以下の実施例で詳述するようにEL層を硫黄,硫
化ジエチル,硫化ジメチルのいずれかのガス雰囲気中で
成膜し、不活性ガスと硫黄,硫化ジエチル,硫化ジメチ
ルのいずれかのガスとのガス雰囲気中で熱処理した後、
180nmの窒化ケイ素、30nmの二酸化ケイ素膜を
成膜する。最後に膜厚400nmのアルミニウム膜を電
極として成膜する。
Using a non-alkali glass of 50 × 50 mm 2 as a substrate, an ITO film having a thickness of 170 nm is formed on the surface by a sputtering method, then a silicon dioxide film having a thickness of 30 nm is formed, and further a silicon nitride film having a thickness of 180 nm is formed. To film. An EL layer is formed thereon in a gas atmosphere of any one of sulfur, diethyl sulfide and dimethyl sulfide as described in detail in the following examples, and an inert gas and one of sulfur, diethyl sulfide and dimethyl sulfide is formed. After heat treatment in a gas atmosphere with gas,
A 180 nm silicon nitride film and a 30 nm silicon dioxide film are formed. Finally, an aluminum film having a film thickness of 400 nm is formed as an electrode.

【0020】こうして作製されたEL素子の輝度評価
は、1kHzの正弦波をITO膜とアルミニウムの電極
膜との間に印加し、市販の輝度計で測定した。発光開始
電圧+60Vの電圧印加時の発光強度をその発光層の輝
度とする。 実施例1 この発明の一実施例として、EuをドープしたSrSの
EL層の製造方法について説明する。
The brightness of the EL device thus manufactured was evaluated by applying a sine wave of 1 kHz between the ITO film and the aluminum electrode film and measuring with a commercially available brightness meter. The light emission intensity when a voltage of light emission start voltage +60 V is applied is the luminance of the light emitting layer. Example 1 As an example of the present invention, a method for manufacturing an EL layer of SrS doped with Eu will be described.

【0021】Euを0.1mol%をドープしたSrS
の焼結ペレットを蒸発源として、EB法により、膜厚8
00nmのSrSを成膜した。基板温度は500℃とし
た。成膜時のガス雰囲気の効果を調べるために、成膜時
の雰囲気を硫黄(以下Sと記す)ガス雰囲気とし、Sガ
ス雰囲気のSの圧力範囲を2.7 ×10-3〜8.0 ×10-1Pa
とした。Sの圧力を確保するため成膜室全体の温度を2
00℃以上に保持した。EL層のSガス雰囲気中での熱
処理は行わなかった。
SrS doped with 0.1 mol% of Eu
Using sinter pellets as evaporation source, film thickness of 8
A film of SrS of 00 nm was formed. The substrate temperature was 500 ° C. In order to examine the effect of the gas atmosphere during film formation, the atmosphere during film formation was a sulfur (hereinafter referred to as S) gas atmosphere, and the pressure range of S in the S gas atmosphere was 2.7 × 10 −3 to 8.0 × 10 −1. Pa
And In order to secure the pressure of S, the temperature of the entire film forming chamber is set to 2
The temperature was maintained at 00 ° C or higher. The EL layer was not heat-treated in an S gas atmosphere.

【0022】図1は成膜時のSガス雰囲気の圧力に対す
る輝度のグラフである。直線1xは成膜時のガス雰囲気
が特に特定ガスの導入の無い大気からの残留ガスで圧力
4.0×10-3Paであり熱処理は行っていない場合の輝度
である。図1から、Sガス雰囲気での輝度は破線1xで
示す残留ガスでの輝度よりも、8.0 ×10-3〜6.7 ×10 -2
PaのSガス雰囲気の圧力範囲で上回っていることが判
る。成膜時のSガス雰囲気の圧力の輝度に対する効果の
最適値は2.7 ×10-2Paであることが判る。次に、Sガ
ス雰囲気中での熱処理の効果を調べた。成膜時の雰囲気
は残留ガスである。EL層の熱処理雰囲気はArとSの
混合ガスとし全圧を1気圧(約1 ×105 Pa)とし
た。そのうちSの分圧範囲を2.7 ×104 〜8.0 ×104
a、基板温度範囲を560〜700℃、熱処理時間は1
時間とした。
FIG. 1 shows the pressure of the S gas atmosphere during film formation.
It is a graph of the brightness. Line 1x is the gas atmosphere during film formation
Is the residual gas from the atmosphere without the introduction of a specific gas.
4.0 x 10-3Luminance when Pa and no heat treatment
Is. From FIG. 1, the brightness in the S gas atmosphere is indicated by the broken line 1x.
8.0 x 10 than the brightness with residual gas shown-3~ 6.7 x 10 -2
It was found that the pressure exceeded the Pa S gas atmosphere pressure range.
It Of the effect of the pressure of the S gas atmosphere during film formation on the brightness
Optimal value is 2.7 x 10-2It turns out that it is Pa. Next, S
The effect of heat treatment in the atmosphere was investigated. Atmosphere during film formation
Is the residual gas. The heat treatment atmosphere of the EL layer is Ar and S
It is a mixed gas and the total pressure is 1 atm (about 1 × 10FivePa)
Was. The partial pressure range of S is 2.7 × 10Four~ 8.0 x 10FourP
a, the substrate temperature range is 560 to 700 ° C., and the heat treatment time is 1
It was time.

【0023】図2はSガス雰囲気中での熱処理時のSの
分圧に対する輝度のグラフである。図2にも図1と同様
な破線1xを付記してある。図2より熱処理時には63
0℃でSの分圧範囲が2.7 ×104 〜8.0 ×104 Paで破
線1xを輝度が上回ることが判る。また、Sの分圧の最
適値は基板温度によらずに、5.3 ×104 〜6.0 ×104
aであり、基板温度の最適値は630℃であることが判
る。
FIG. 2 is a graph of luminance against partial pressure of S during heat treatment in an S gas atmosphere. A broken line 1x similar to that in FIG. 1 is additionally shown in FIG. From Fig. 2, 63 during heat treatment
It can be seen that the luminance exceeds the broken line 1x when the partial pressure range of S is 2.7 × 10 4 to 8.0 × 10 4 Pa at 0 ° C. The optimum value of the partial pressure of S is 5.3 × 10 4 to 6.0 × 10 4 P regardless of the substrate temperature.
It can be seen that the optimum value of the substrate temperature is 630 ° C.

【0024】図3は成膜時のSガス雰囲気の圧力と熱処
理時のSの分圧とを対とした場合のEL素子の印加電圧
に対する輝度グラフである。これらの製造条件を表1に
示す。
FIG. 3 is a brightness graph with respect to the applied voltage of the EL element when the pressure of the S gas atmosphere at the time of film formation and the partial pressure of S at the time of heat treatment are paired. Table 1 shows these manufacturing conditions.

【0025】[0025]

【表1】 図3より、発光開始電圧は殆ど変わらないが、輝度は大
きく変わり、Cの輝度が最も良いことが判る。最適圧力
はCカーブのときであり成膜時では2.7 ×10-2Pa、熱
処理時では5.3 ×104 Paであることが判る。 実施例2 この発明の他の実施例として、CeをドープしたSrS
のEL層の製造方法について説明する。
[Table 1] It can be seen from FIG. 3 that the light emission start voltage hardly changes, but the luminance changes greatly, and the luminance of C is the best. It can be seen that the optimum pressure is C curve, which is 2.7 × 10 -2 Pa during film formation and 5.3 × 10 4 Pa during heat treatment. Embodiment 2 As another embodiment of the present invention, Ce-doped SrS
The method for manufacturing the EL layer of is described.

【0026】Ceを0.2 mol%をドープしたSrSの
焼結ペレットを蒸発源として、EB法により、膜厚80
0nmのSrSを成膜した。基板温度は550℃とし
た。成膜時のガス雰囲気の効果を調べるために、成膜時
のガス雰囲気を硫化ジエチル(以下DESと記す)ガス
雰囲気とし、圧力範囲を8.0 ×10-4〜8.0 ×10 -3Pa
とした。
Using a sintered pellet of SrS doped with 0.2 mol% of Ce as an evaporation source, a film thickness of 80 was obtained by the EB method.
A 0 nm SrS film was formed. The substrate temperature was 550 ° C. In order to investigate the effect of the gas atmosphere during film formation, the gas atmosphere during film formation was a diethyl sulfide (hereinafter referred to as DES) gas atmosphere, and the pressure range was 8.0 × 10 -4 to 8.0 × 10 -3 Pa.
And

【0027】EL層のDESガス雰囲気中での熱処理は
行わなかった。図4は成膜時のDESガス雰囲気の圧力
に対する輝度のグラフである。直線2xは成膜時のSガ
ス雰囲気の最適圧力2.7 ×10-2Pa、熱処理時のSガス
雰囲気でのSの最適分圧5.3 ×104 PaのときのEL層
の輝度である。この実験結果はDESガス雰囲気の輝度
に対する効果はSガス雰囲気の効果をDESガス雰囲気
が8.0 ×10-4〜8.0 ×10 -3Paの圧力範囲で上回るこ
とを示している。図4から、成膜時のDESの圧力の輝
度に対する効果の最適圧力は2.7 ×10-3Paであること
が判る。
The EL layer was not heat-treated in a DES gas atmosphere. FIG. 4 is a graph of luminance against pressure in the DES gas atmosphere during film formation. The straight line 2x is the brightness of the EL layer when the optimum pressure of the S gas atmosphere during film formation is 2.7 × 10 −2 Pa and the optimum partial pressure of S in the S gas atmosphere during heat treatment is 5.3 × 10 4 Pa. This experimental result shows that the effect of the DES gas atmosphere on the brightness exceeds the effect of the S gas atmosphere in the DES gas atmosphere in the pressure range of 8.0 × 10 −4 to 8.0 × 10 −3 Pa. It can be seen from FIG. 4 that the optimum pressure for the effect of the DES pressure on the luminance during film formation is 2.7 × 10 −3 Pa.

【0028】次に、DESガス雰囲気中での熱処理の効
果を調べた。成膜時の雰囲気は残留ガスで圧力は4.0 ×
10 -3 Paである。EL層の熱処理雰囲気はArとDE
Sの混合ガスとし全圧を1気圧とした。DESの分圧範
囲は1.3 ×103 〜8.0 ×103Pa、基板温度を630℃
とした。図5はDESガス雰囲気中での熱処理時のDE
Sの分圧に対する輝度のグラフである。図5には前記図
4と同様の直線2xを付記してある。やはり、DESガ
ス雰囲気の輝度に対する効果は1.3 ×103 〜8.0 ×103
のDESの分圧範囲で破線2xすなわちS以上であるこ
とを示している。最適のDESの分圧は5.3 ×10 3 Pa
であることが判る。
Next, the effect of heat treatment in a DES gas atmosphere
I checked the fruit. The atmosphere during film formation is residual gas and the pressure is 4.0 ×
Ten-3Pa. The heat treatment atmosphere of the EL layer is Ar and DE
A mixed gas of S was used and the total pressure was 1 atm. DES partial pressure range
Box is 1.3 × 103~ 8.0 x 103Pa, substrate temperature 630 ° C
And Figure 5 shows DE during heat treatment in DES gas atmosphere.
It is a graph of the brightness | luminance with respect to the partial pressure of S. The above figure is shown in FIG.
A straight line 2x similar to that of No. 4 is added. After all, DES
The effect on brightness of the atmosphere is 1.3 × 103~ 8.0 x 103
In the partial pressure range of DES, the broken line 2x, that is, S or more,
Is shown. Optimal DES partial pressure is 5.3 x 10 3Pa
It turns out that

【0029】図6は成膜時のDESガス雰囲気の圧力と
熱処理時のDESの分圧とを対とした場合のEL素子の
印加電圧に対する輝度グラフである。これらの条件を表
2に示す。
FIG. 6 is a luminance graph with respect to the applied voltage of the EL element when the pressure of the DES gas atmosphere during film formation and the partial pressure of DES during heat treatment are paired. Table 2 shows these conditions.

【0030】[0030]

【表2】 図6より、発光開始電圧は殆ど変わらないが、輝度は大
きく変わり、Gが最も輝度が良いことが判る。表2より
成膜時と熱処理時での最適圧力はGカーブであり、それ
ぞれ2.7 ×10 -1 、5.3 ×104 Paであることが判る。 実施例3 この発明の別の実施例として、CeをドープしたSrS
のEL層の製造方法について説明する。
[Table 2] It can be seen from FIG. 6 that the light emission start voltage hardly changes, but the brightness changes greatly, and G has the best brightness. It can be seen from Table 2 that the optimum pressures during film formation and during heat treatment are G curves, which are 2.7 × 10 −1 and 5.3 × 10 4 Pa, respectively. Example 3 As another example of the present invention, Ce-doped SrS
The method for manufacturing the EL layer of is described.

【0031】Ceを0.2mol%をドープしたSrS
の焼結ペレットを蒸発源として、EB法により、膜厚6
00nmのSrSを成膜した。基板温度は500℃とし
た。成膜時の雰囲気ガスの効果を調べるために、成膜時
の雰囲気ガスを硫化ジメチル(以下DMSと記す)雰囲
気とした。DMSガス雰囲気の圧力範囲を5.3 ×10 -4
1.3 ×10-2Paとした。
SrS doped with 0.2 mol% of Ce
A film thickness of 6 is obtained by the EB method using the sintered pellets of
A film of SrS of 00 nm was formed. Substrate temperature is 500 ° C
Was. In order to investigate the effect of atmospheric gas during film formation,
Atmosphere gas of dimethyl sulfide (hereinafter referred to as DMS) atmosphere
I was worried. The pressure range of DMS gas atmosphere is 5.3 × 10 -Four~
1.3 x 10-2It was Pa.

【0032】EL層のDMSガス雰囲気中での熱処理は
行わなかった。図7は成膜時のDMSガス雰囲気の圧力
に対する輝度のグラフである。破線3xは成膜時のSガ
ス雰囲気での最適圧力2.7 ×10-2Pa、熱処理時のSの
最適分圧5.3 ×104 PaのときのEL層の輝度である。
この実験結果はDESガス雰囲気の輝度に対する効果は
Sガス雰囲気の効果をDMSガス雰囲気が6.7 ×10-4
1.2 ×10-2Paの範囲で上回ることを示している。図7
から、成膜時のDMSガス雰囲気の圧力の輝度に対する
効果の最適値は2.7 ×10-3であることが判る。
The EL layer was not heat-treated in a DMS gas atmosphere. FIG. 7 is a graph of luminance against pressure in the DMS gas atmosphere during film formation. The broken line 3x represents the brightness of the EL layer when the optimum pressure in the S gas atmosphere during film formation is 2.7 × 10 −2 Pa and the optimum partial pressure of S during heat treatment is 5.3 × 10 4 Pa.
The results of this experiment show that the effect on the brightness of the DES gas atmosphere is the effect of the S gas atmosphere and that of the DMS gas atmosphere is 6.7 × 10 -4 .
It shows that it exceeds 1.2 × 10 -2 Pa. Figure 7
From this, it is understood that the optimum value of the effect of the pressure of the DMS gas atmosphere on the brightness during film formation is 2.7 × 10 −3 .

【0033】次に、DMSガス雰囲気中での熱処理の効
果を調べた。成膜時の雰囲気は残留ガスで圧力は4.0 ×
10 -3 Paである。EL層の熱処理雰囲気はArとDM
Sの混合ガスとし全圧を1気圧とした。そのうちDMS
の分圧範囲を5.3 ×103 〜1.9 ×104 Pa、基板温度を
630℃とした。図8はDMSガス雰囲気中での熱処理
時のDMSの分圧に対する輝度のグラフである。図8に
は前記図7での説明と同様に破線3xを付記してある。
図8よりDMSの分圧が6.7 ×103 〜1.2 ×104 Paの
範囲で破線3xすなわちSガス雰囲気のときの輝度を上
回ることが判る。最適値は基板温度630℃のとき、D
MSの分圧が1.3 ×104 Paであることが判る。
Next, the effect of heat treatment in a DMS gas atmosphere was investigated. The atmosphere during film formation is residual gas and the pressure is 4.0 ×
It is 10 −3 Pa. The heat treatment atmosphere of the EL layer is Ar and DM
A mixed gas of S was used and the total pressure was 1 atm. Of which DMS
The partial pressure range was 5.3 × 10 3 to 1.9 × 10 4 Pa and the substrate temperature was 630 ° C. FIG. 8 is a graph of luminance against partial pressure of DMS during heat treatment in a DMS gas atmosphere. A broken line 3x is additionally shown in FIG. 8 similarly to the description in FIG.
It can be seen from FIG. 8 that the partial pressure of DMS exceeds the brightness in the broken line 3x, that is, in the S gas atmosphere, in the range of 6.7 × 10 3 to 1.2 × 10 4 Pa. The optimum value is D when the substrate temperature is 630 ° C.
It can be seen that the partial pressure of MS is 1.3 × 10 4 Pa.

【0034】図9は成膜時のDMSガス雰囲気の圧力と
熱処理時のDMSの分圧とを対とした場合のEL素子の
印加電圧に対する輝度グラフである。これらの条件を表
3に示す。
FIG. 9 is a luminance graph with respect to the applied voltage of the EL element when the pressure of the DMS gas atmosphere during film formation and the partial pressure of DMS during heat treatment are paired. Table 3 shows these conditions.

【0035】[0035]

【表3】 図9より、発光開始電圧は殆ど変わらないが、輝度は大
きく変わり、Kが最も輝度が良いことが判る。表3より
成膜時と熱処理時の最適圧力はKカーブのときで、それ
ぞれ2.7 ×10-3 、1.3 ×104 Paであることが判る。 実施例4 この発明のさらに別の実施例として、Ceをドープした
SrSeのEL層の製造方法について説明する。
[Table 3] From FIG. 9, it can be seen that the light emission start voltage hardly changes, but the brightness changes greatly, and K has the best brightness. It can be seen from Table 3 that the optimum pressures during film formation and heat treatment are 2.7 × 10 −3 and 1.3 × 10 4 Pa for the K curve, respectively. Example 4 As yet another example of the present invention, a method of manufacturing an EL layer of SrSe doped with Ce will be described.

【0036】Ceを0.1mol%をドープしたSrS
eの焼結ペレットを蒸発源として、EB法により、膜厚
600nmのSrSeを成膜した。基板温度は400℃
とした。成膜時の雰囲気の効果を調べるために、成膜時
の雰囲気をSeガス雰囲気とし、Seガス雰囲気の圧力
範囲を8.0 ×10-3〜8.0 ×10-2Paとした。
SrS doped with 0.1 mol% of Ce
Using the sintered pellet of e as an evaporation source, SrSe having a film thickness of 600 nm was formed by the EB method. Substrate temperature is 400 ° C
And In order to investigate the effect of the atmosphere during film formation, the atmosphere during film formation was Se gas atmosphere, and the pressure range of Se gas atmosphere was 8.0 × 10 −3 to 8.0 × 10 −2 Pa.

【0037】EL層のSe雰囲気中での熱処理は行わな
かった。図10は成膜時のSeガス雰囲気の圧力に対す
る輝度のグラフである。直線4xは成膜時の雰囲気が残
留空気で圧力2.7 ×10-3Paであり、熱処理は行ってい
ない場合の輝度である。図10から、Se雰囲気での輝
度に対する硬化は、破線4xすなわち残留ガスのときの
輝度よりも9.3 ×10-3〜6.7 ×10-2Paの範囲で上回っ
ていることが判る。成膜時のSeガス雰囲気の圧力の輝
度に対する効果の最適値は2.7 ×10-2Paであることが
判る。
The heat treatment of the EL layer in the Se atmosphere was not performed. FIG. 10 is a graph of the luminance against the pressure of the Se gas atmosphere during film formation. The straight line 4x is the luminance when the atmosphere during film formation is residual air and the pressure is 2.7 × 10 −3 Pa, and the heat treatment is not performed. From FIG. 10, it can be seen that the curing with respect to the luminance in the Se atmosphere is higher than the luminance with the broken line 4x, that is, with the residual gas in the range of 9.3 × 10 −3 to 6.7 × 10 −2 Pa. It can be seen that the optimum value of the effect of the pressure of the Se gas atmosphere on the brightness during film formation is 2.7 × 10 -2 Pa.

【0038】次に、Seガス雰囲気中での熱処理の効果
を調べた。成膜時の雰囲気は残留ガスで圧力は2.7 ×10
-3 Paである。EL層の熱処理雰囲気はArとSeの
混合ガスとし全圧を1気圧とした。そのうちSeの分圧
範囲を3.3 ×103 〜4.0 ×10 4 Pa、基板温度範囲を5
80℃とした。図11はSeガス雰囲気中での熱処理時
のSeの分圧に対する輝度のグラフである。図11より
Seが6.7 ×103 〜3.3 ×104 Paの分圧範囲で破線4
xすなわち残留ガスのときより輝度が上回ることが判
る。最適値は基板温度630℃のときに、Seの分圧2.
0 ×104 Paであることが判る。
Next, the effect of heat treatment in a Se gas atmosphere
I checked. The atmosphere during film formation is residual gas and the pressure is 2.7 × 10
-3Pa. The heat treatment atmosphere of the EL layer is made of Ar and Se.
A mixed gas was used and the total pressure was 1 atm. Partial pressure of Se
Range 3.3 x 103~ 4.0 x 10 FourPa, substrate temperature range 5
It was set to 80 ° C. Figure 11 shows heat treatment in Se gas atmosphere.
5 is a graph of luminance against partial pressure of Se in FIG. From Figure 11
Se is 6.7 x 103~ 3.3 x 10FourBroken line 4 in the partial pressure range of Pa
x, that is, the brightness is higher than that of the residual gas.
It The optimum value is the partial pressure of Se when the substrate temperature is 630 ℃ 2.
0 x 10FourIt turns out that it is Pa.

【0039】図12は成膜時のSeガス雰囲気の圧力と
熱処理時のSe分圧Jを対とした場合のEL素子の印加
電圧に対する輝度グラフである。これらの条件を表4に
示す。
FIG. 12 is a brightness graph with respect to the applied voltage of the EL element when the pressure of the Se gas atmosphere during film formation and the Se partial pressure J during heat treatment are paired. Table 4 shows these conditions.

【0040】[0040]

【表4】 図12より、発光開始電圧は殆ど変わらないが、輝度は
大きく変わり、Oが最も輝度が良いことが判る。表4よ
り成膜時と熱処理時での最適圧力はOカーブのときでそ
れぞれ2.7 ×10 -4 、2.0 ×104 Paであることが判
る。
[Table 4] From FIG. 12, it can be seen that the light emission start voltage hardly changes, but the luminance changes greatly, and O has the best luminance. It can be seen from Table 4 that the optimum pressures during film formation and during heat treatment are 2.7 × 10 −4 and 2.0 × 10 4 Pa for the O curve, respectively.

【0041】[0041]

【発明の効果】この発明によれば、 IIa −VIb 族化合
物半導体を母材とする薄膜を、IIa −VIb 族化合物から
のVIb 族元素の解離の臨界圧力以上の圧力のVIb 族単
体、あるいはジメチルまたはジエチルのVIb 族化合物の
ガス雰囲気中で成膜することにより、IIa −VIb 族化合
物の蒸発源の分解をある程度抑え、さらに、成膜時より
も遙に高圧の103 〜104 PaのVIb 族単体、あるい
はジメチルまたはジエチルのVIb 族化合物のガス雰囲気
中での熱処理によってVIb 族元素の空孔を埋めるだけで
なく酸素の VIb族元素への置換も行い、短時間で、高輝
度のEL薄膜を得ることができる。
According to the present invention, a thin film containing a IIa-VIb group compound semiconductor as a base material is prepared by using a group VIb simple substance having a pressure higher than the critical pressure for the dissociation of the VIb group element from the IIa-VIb group compound or dimethyl group. Alternatively, by forming a film in a gas atmosphere of a VIb group compound of diethyl, decomposition of the evaporation source of the IIa-VIb group compound is suppressed to some extent, and further, VIb of 10 3 to 10 4 Pa at a pressure much higher than that at the time of film formation is used. EL thin film with high brightness in a short time, not only filling the holes of VIb group element by heat treatment of group VI simple substance or VIb group compound of dimethyl or diethyl in gas atmosphere but also replacing oxygen with VIb group element Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】成膜時のSガス雰囲気の圧力に対する輝度のグ
ラフ
FIG. 1 is a graph of luminance against pressure in an S gas atmosphere during film formation.

【図2】Ar−S雰囲気中での熱処理時のSの分圧に対
する輝度のグラフ
FIG. 2 is a graph of luminance against partial pressure of S during heat treatment in an Ar—S atmosphere.

【図3】S雰囲気中で成膜、熱処理したEL素子の印加
電圧に対する輝度グラフ
FIG. 3 is a brightness graph with respect to an applied voltage of an EL element formed and heat-treated in an S atmosphere.

【図4】成膜時のDESガス雰囲気の圧力に対する輝度
のグラフ
FIG. 4 is a graph of luminance against pressure in a DES gas atmosphere during film formation.

【図5】Ar−DES雰囲気中での熱処理時のDESの
分圧に対する輝度のグラフ
FIG. 5 is a graph of luminance against partial pressure of DES during heat treatment in an Ar-DES atmosphere.

【図6】DES雰囲気中で成膜、熱処理したEL素子の
印加電圧に対する輝度グラフ
FIG. 6 is a luminance graph with respect to an applied voltage of an EL element formed and heat-treated in a DES atmosphere.

【図7】成膜時のDMSガス雰囲気の圧力に対する輝度
のグラフ
FIG. 7 is a graph of luminance against pressure in a DMS gas atmosphere during film formation.

【図8】Ar−DMS雰囲気中での熱処理時のDMSの
分圧に対する輝度のグラフ
FIG. 8 is a graph of luminance against partial pressure of DMS during heat treatment in an Ar-DMS atmosphere.

【図9】DMS雰囲気中で成膜、熱処理したEL素子の
印加電圧に対する輝度グラフ
FIG. 9 is a luminance graph with respect to an applied voltage of an EL element formed and heat-treated in a DMS atmosphere.

【図10】成膜時のSeガス雰囲気の圧力に対する輝度
のグラフ
FIG. 10 is a graph of luminance against pressure of Se gas atmosphere during film formation.

【図11】Ar−Se雰囲気中での熱処理時のSeの分
圧に対する輝度のグラフ
FIG. 11 is a graph of luminance against Se partial pressure during heat treatment in an Ar—Se atmosphere.

【図12】Se雰囲気中で成膜、熱処理したEL素子の
印加電圧に対する輝度グラフ
FIG. 12 is a luminance graph against applied voltage of an EL element that is formed and heat-treated in an Se atmosphere.

【図13】二重絶縁層構造EL素子の断面図FIG. 13 is a sectional view of a double insulating layer structure EL device.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極層 3 第1絶縁層 4 EL発光層 5 第2絶縁層 6 背面電極層 A〜P 発光輝度カーブ 1 Glass Substrate 2 Transparent Electrode Layer 3 First Insulating Layer 4 EL Light Emitting Layer 5 Second Insulating Layer 6 Back Electrode Layer A to P Luminance Curve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05B 33/14 H05B 33/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical indication H05B 33/14 H05B 33/14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】IIa 族−硫黄化合物半導体を母材とする薄
膜を、低圧の硫黄,硫化ジエチル,硫化ジメチルから選
ばれるいずれかのガス雰囲気中で成膜し引き続き常圧で
の不活性ガスと前記いずれかのガスとのガス雰囲気中で
熱処理するエレクトロルミネッセンス薄膜の製造方法。
1. A thin film comprising a Group IIa-sulfur compound semiconductor as a base material is formed in a gas atmosphere selected from low-pressure sulfur, diethyl sulfide and dimethyl sulfide, and then an inert gas at normal pressure is used. A method for producing an electroluminescent thin film, which comprises heat-treating in a gas atmosphere with any of the above gases.
【請求項2】請求項1に記載の製造方法において、成膜
時の硫黄ガス雰囲気の圧力が8.0 ×10-3〜6.7 ×10-2
aであり、熱処理時の硫黄の不活性ガスに対する分圧が
2.7 ×104 〜8.0 ×104 Paであることを特徴とするエ
レクトロルミネッセンス薄膜の製造方法。
2. The manufacturing method according to claim 1, wherein the pressure of the sulfur gas atmosphere during film formation is 8.0 × 10 −3 to 6.7 × 10 −2 P.
a and the partial pressure of sulfur with respect to the inert gas during heat treatment is
2.7 × 10 4 to 8.0 × 10 4 Pa, a method for producing an electroluminescent thin film.
【請求項3】請求項1に記載の製造方法において、成膜
時の硫化ジエチルガス雰囲気の圧力が8.0 ×10-4〜8.0
×10-3Paであり、熱処理時の硫化ジエチルの不活性ガ
スに対する分圧が1.3 ×103 〜8.0 ×103 Paであるこ
とを特徴とするエレクトロルミネッセンス薄膜の製造方
法。
3. The manufacturing method according to claim 1, wherein the pressure of the diethyl sulfide gas atmosphere during film formation is 8.0 × 10 −4 to 8.0.
A method for producing an electroluminescent thin film, characterized in that it has a pressure of × 10 -3 Pa and a partial pressure of diethyl sulfide to an inert gas during heat treatment of 1.3 × 10 3 to 8.0 × 10 3 Pa.
【請求項4】請求項1に記載の製造方法において、成膜
時の硫化ジメチルガス雰囲気の圧力が6.7 ×10-4〜1.2
×10-2 Paであり、熱処理時の硫化ジメチルの不活性
ガスに対する分圧が6.7 ×103 〜1.7 ×104 Paである
ことを特徴とするエレクトロルミネッセンス薄膜の製造
方法。
4. The manufacturing method according to claim 1, wherein the pressure of the dimethyl sulfide gas atmosphere during film formation is 6.7 × 10 −4 to 1.2.
× 10 -2 is Pa, the manufacturing method of the electroluminescent film, wherein the partial pressure to an inert gas of dimethyl sulfide during the heat treatment is 6.7 × 10 3 ~1.7 × 10 4 Pa.
【請求項5】IIa 族−セレン化合物半導体を母材とする
薄膜を、低圧のセレンガス雰囲気中で成膜し引き続き常
圧での不活性ガスとセレンガスとの雰囲気中で熱処理す
るエレクトロルミネッセンス薄膜の製造方法。
5. Production of an electroluminescent thin film in which a thin film containing a group IIa-selenium compound semiconductor as a base material is formed in a low-pressure selenium gas atmosphere and then heat-treated in an atmosphere of an inert gas and selenium gas at normal pressure. Method.
【請求項6】請求項5に記載の製造方法において、成膜
時のセレンガス雰囲気の圧力が9.3 ×10-3〜6.7 ×10-2
Paであり、熱処理時のセレンの不活性ガスに対する分
圧が6.7 ×103 〜3.3 ×104 Paであることを特徴とす
るエレクトロルミネッセンス薄膜の製造方法。
6. The manufacturing method according to claim 5, wherein the pressure of the selenium gas atmosphere during film formation is 9.3 × 10 −3 to 6.7 × 10 −2.
Pa, and the partial pressure of selenium to the inert gas at the time of heat treatment is 6.7 × 10 3 to 3.3 × 10 4 Pa, the method for producing an electroluminescent thin film.
JP7284854A 1994-11-02 1995-11-01 Production of electroluminescent thin film Pending JPH08225782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7284854A JPH08225782A (en) 1994-11-02 1995-11-01 Production of electroluminescent thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26926894 1994-11-02
JP6-269268 1994-11-02
JP7284854A JPH08225782A (en) 1994-11-02 1995-11-01 Production of electroluminescent thin film

Publications (1)

Publication Number Publication Date
JPH08225782A true JPH08225782A (en) 1996-09-03

Family

ID=26548697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7284854A Pending JPH08225782A (en) 1994-11-02 1995-11-01 Production of electroluminescent thin film

Country Status (1)

Country Link
JP (1) JPH08225782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503139B1 (en) * 2002-01-23 2005-07-21 세이코 엡슨 가부시키가이샤 Manufacturing method of organic el device and manufacturing apparatus thereof, organic el device, electronics equipment and liquid droplet ejecting device
JP2010168458A (en) * 2009-01-22 2010-08-05 Kobe Steel Ltd Mixed phosphor and method for manufacturing the same
JP2015502423A (en) * 2011-11-24 2015-01-22 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Luminescent material and process for forming the luminescent material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503139B1 (en) * 2002-01-23 2005-07-21 세이코 엡슨 가부시키가이샤 Manufacturing method of organic el device and manufacturing apparatus thereof, organic el device, electronics equipment and liquid droplet ejecting device
US7517549B2 (en) 2002-01-23 2009-04-14 Seiko Epson Corporation Method of, and apparatus for, manufacturing organic EL device; organic EL device; electronic device; and liquid droplet ejection apparatus
JP2010168458A (en) * 2009-01-22 2010-08-05 Kobe Steel Ltd Mixed phosphor and method for manufacturing the same
JP2015502423A (en) * 2011-11-24 2015-01-22 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Luminescent material and process for forming the luminescent material

Similar Documents

Publication Publication Date Title
US6090434A (en) Method for fabricating electroluminescent device
WO2011004601A1 (en) Phosphor crystal film and process for making same
JPH08225782A (en) Production of electroluminescent thin film
JP3644131B2 (en) Manufacturing method of EL element
JP3750199B2 (en) Method for manufacturing thin-film electroluminescence device
JP5283166B2 (en) Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JP3381292B2 (en) Method for forming electroluminescent element
JP3599356B2 (en) Electroluminescence element
JP2857624B2 (en) Method for manufacturing electroluminescent element
JP3446542B2 (en) Thin film EL element
JP4928329B2 (en) Thin film inorganic EL element
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JPH0883684A (en) Manufacture of electroluminescence thin film and manufacturing device therefor
JP3487618B2 (en) Electroluminescence element
JPH0817574A (en) Manufacture of thin film electroluminecent element
Dimitrova et al. Green Emission from Er-Doped AlN Thin Films Prepared by RF Magnetron Sputtering
JPH10261367A (en) Phosphor film forming method
JPH05255835A (en) Formation of oxysulfide thin film
JP2011057953A (en) Ultraviolet excitation phosphor, electron-beam excitation phosphor, blue phosphor for collision excitation type el, method for producing thin film of blue phosphor for collision excitation type el, filmy el element, filmy el display, and filmy el lamp
JPH0888086A (en) El element and manufacture of el element
JPH01246790A (en) Thin film el element and its manufacture
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH07122363A (en) Manufacture of electroluminescence element
JPH01130496A (en) Film type electroluminescenece element