JP3749459B2 - Slope stabilization method - Google Patents

Slope stabilization method Download PDF

Info

Publication number
JP3749459B2
JP3749459B2 JP2001220976A JP2001220976A JP3749459B2 JP 3749459 B2 JP3749459 B2 JP 3749459B2 JP 2001220976 A JP2001220976 A JP 2001220976A JP 2001220976 A JP2001220976 A JP 2001220976A JP 3749459 B2 JP3749459 B2 JP 3749459B2
Authority
JP
Japan
Prior art keywords
slope
sliding block
layer
sliding
stabilization method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001220976A
Other languages
Japanese (ja)
Other versions
JP2003027491A5 (en
JP2003027491A (en
Inventor
太田英将
Original Assignee
有限会社太田ジオリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社太田ジオリサーチ filed Critical 有限会社太田ジオリサーチ
Priority to JP2001220976A priority Critical patent/JP3749459B2/en
Publication of JP2003027491A publication Critical patent/JP2003027491A/en
Publication of JP2003027491A5 publication Critical patent/JP2003027491A5/ja
Application granted granted Critical
Publication of JP3749459B2 publication Critical patent/JP3749459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は斜面安定化工法に関し、より詳しくは自然斜面の安定化に適した斜面安定化工法に関する。
【0002】
【従来の技術】
従来より、自然斜面の安定化工法としては、鉄筋補強土工(ロックボルト工)等の補強材を一定の離間距離を有して略規則的に自然斜面の地表面(移動層)から地盤(不動層)中に略水平又はやや下向きに挿入し、前記補強材の外周をグラウト処理する工法が知られている。
【0003】
この従来の斜面安定化工法では、移動層の全滑動力に対し、挿入された補強材のせん断・曲げ、及び周辺地盤との周面摩擦力で抵抗させ、これにより斜面の安定化を図っている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の斜面安定化工法は、補強材を規則的に一定の離間距離を有して地盤中に配設されているため、移動層が滑動を起こしたときは移動層全域で同一挙動を呈する。すなわち、従来の斜面安定化工法は、滑動力を前記補強材自身の強度(せん断及び曲げ)によって受け止める構造であるため、補強材の材質が弱いか又は合計本数が少ないと、斜面の安定化を十分に維持できない虞があるという問題点があった。
【0005】
本発明はこのような問題点に鑑みなされたものであって、より一層効果的に斜面の安定化を図ることができる斜面安定化工法を提供することを目的とする。
【0006】
【課題を解決するための手段】
通常、自然斜面では、地下水流等の影響で基岩である不動層と崩積土砂である移動層との間にはせん断抵抗(すべり強度)の弱い軟弱層が介在されており、豪雨等で地盤が軟弱化した場合に地すべりを促進してしまう傾向にある。一方、軟弱層上の移動層は、軟弱層に比べると相対的にせん断抵抗は強い。したがって、地すべりを起こし易いこの種の自然斜面では、軟弱層に比べてせん断抵抗の大きな移動層部分の割合が増加するように滑動ブロックを分断し、自然斜面上で滑動形態の異なる複数のブロックを設けることにより、より一層効果的に斜面の安定化を図ることができると考えられる。
【0007】
本発明はこのような点に着目してなされたものであって、本発明に係る斜面安定化工法は、不動層と移動層との間に軟弱層が介在された自然斜面の地すべりを抑制するための斜面安定化工法であって、一対の抵抗体を一組として複数組の抵抗体を前記自然斜面の滑動方向と略平行に配設し、前記複数組の抵抗体で取り囲まれた狭領域を第1の滑動ブロックとすると共に、該第1の滑動ブロックによって分断された前記自然斜面上の各領域を第2の滑動ブロックとし、前記第1の滑動ブロックと前記第2の滑動ブロックとの滑動形態を互いに異ならせて前記自然斜面のせん断抵抗を強化することを特徴としている。
【0008】
また、本発明の斜面安定化工法は、前記第1の滑動ブロックのせん断抵抗は、前記第2の滑動ブロックのせん断抵抗よりも大きいことを特徴としている。
【0009】
上記斜面安定化工法によれば、第1の滑動ブロックのせん断抵抗が、第2の滑動ブロックのせん断抵抗より大きくなるように、第1の滑動ブロックと第2の滑動ブロックとの滑動形態を互いに異ならせているので、第1の滑動ブロックのせん断抵抗が増加して耐滑動性が向上し、さらに第1の滑動ブロックと第2の滑動ブロックとの境界部分の摩擦抵抗によって第2の滑動ブロックの耐滑動性も向上し、これにより斜面全体の安定性も向上する。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて詳説する。
【0011】
図1は自然斜面の一例を模式的に示した斜視図であって、該自然斜面は、基岩(不動層)1と崩積土砂層(移動層)3との間には地下水流に起因して生じる軟弱層4が介在され、前記崩積土砂層3の上面は地表面2を形成している。そして、図中、A部が崩積土砂層3中の移動土塊5からなる崩壊範囲を示し、自然斜面は矢印B方向に滑動し易い土質構造を有している。また、斜面崩壊時には軟弱層4が主たるすべり面を形成する。
【0012】
図2は、本発明の斜面安定化工法の一実施の形態を模式的に示す斜視図であって、本実施の形態では、複数の第1の滑動ブロック7a〜7cが移動土塊5上に形成され、該第1の滑動ブロック7aによって移動土塊5は複数の第2の滑動ブロック8a〜8eに分断されている。
【0013】
第1の滑動ブロック7a〜7cは、具体的には、一対の抵抗体6を一組として複数組の抵抗体(本実施の形態では2組)が移動土塊5の滑動方向と略平行に配設され、前記複数組の抵抗体6で取り囲まれてなる。
【0014】
前記抵抗体6は、図3に示すように、略方形状の頭部プレート9と、基端が該頭部プレート9の略中央部に固着されたPC鋼より線10とを備え、頭部プレート9は地表面2上に載設されると共に、PC鋼より線10は崩積土砂層3及び軟弱層4を貫通し、その先端は基岩1中に挿入され外周部11がグラウト処理されて固定されている。
【0015】
そして、移動土塊5が斜面崩落する場合は、連続したすべり面、すなわち軟弱層内すべり面12と崩積土砂層内すべり面13でせん断破壊が発生する。
【0016】
しかるに、第1の滑動ブロック7aは、抵抗体6を設けなかった場合に比べ、軟弱層4よりも強度の強い崩積土砂層3の比率が増加しているため、せん断抵抗が大きくなり、第1の滑動ブロック7aは豪雨等が生じても滑動し難くなる。
【0017】
しかも、第1の滑動ブロック7aと第2の滑動ブロック8a、8bとの境界には摩擦抵抗が発生するため、第2の滑動ブロック8a、8bのせん断抵抗も大きくなり、したがって抵抗体を設けなかった場合(図1)に比べ、移動土塊5全体の平均せん断抵抗が大きくなり、その結果斜面の滑動性が低下し、斜面は安定化する。
【0018】
【発明の効果】
以上詳述したように本発明に係る斜面安定化工法は、不動層と移動層との間に軟弱層が介在された自然斜面の地すべりを抑制するための斜面安定化工法であって、一対の抵抗体を一組として複数組の抵抗体を前記自然斜面の滑動方向と略平行に配設し、前記複数組の抵抗体で取り囲まれた狭領域を第1の滑動ブロックとすると共に、該第1の滑動ブロックによって分断された前記自然斜面上の各領域を第2の滑動ブロックとし、前記第1の滑動ブロックと前記第2の滑動ブロックとの滑動形態を互いに異ならせて前記自然斜面のせん断抵抗を強化するので、第1の滑動ブロックは、軟弱層よりも強度の強い移動層の比率が増加することからせん断抵抗が大きくなり、第1の滑動ブロック7aは豪雨等が生じても滑動し難くなる。しかも、第1の滑動ブロックと第2の滑動ブロックとの境界には摩擦抵抗が発生するため、第2の滑動ブロックのせん断抵抗も大きくなり、したがって移動層全体の平均せん断抵抗が大きくなり、その結果斜面の滑動性が低下し、斜面は安定化する。
【0019】
そして、自然斜面は長期間にわたり安定を保っている箇所が多く、豪雨などの一時的な不安定化に対して更なる安定化を目指すため、若干の強度増加効果をもたせるだけでよく、弱い軟弱層を通過する滑動面の比率を相対的に小さくし、相対的に強度の大きい崩積土砂層内の強度を利用することで斜面の安定化を容易に実現することができる。
【0020】
また、抵抗体は、移動層の滑動力を抑止する目的ではなく、移動層を分断する目的で使用しているため、従来のロックボルト工のような強度や配置密度を必要とせず、したがって据付工事費も大幅に削減することが可能となる。
【0021】
また、本発明は、第1の滑動ブロックのせん断抵抗の増加で自然斜面の安定化を実現しているので、グラウンドアンカー工や抑止杭工に比べ、地すべりによる滑動力を直接受け持つことがなく、したがって大きな土圧を常時受けることもなく、素材の老朽化に対する影響は少ない。
【図面の簡単な説明】
【図1】 自然斜面の一例を模式的に示した斜視図である。
【図2】 本発明に係る斜面安定化工法の一実施の形態を模式的に示す斜視図である。
【図3】 図2のX−X断面図である。
【符号の説明】
1 基岩(不動層)
3 崩積土砂層(移動層)
4 軟弱層
5 移動土塊
6 抵抗体
7a〜7c 第1の滑動ブロック
8a〜8e 第2の滑動ブロック
9 頭部プレート
10 PC鋼より線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slope stabilization method, and more particularly to a slope stabilization method suitable for stabilizing a natural slope.
[0002]
[Prior art]
Conventionally, as a method of stabilizing natural slopes, reinforcing materials such as reinforcing steel reinforced earth (rock bolt construction) have a regular separation distance from the ground surface (moving layer) of the natural slope to the ground (immobility). A method is known in which the outer periphery of the reinforcing material is grouted by being inserted substantially horizontally or slightly downward in the layer).
[0003]
In this conventional slope stabilization method, the slip force of the moving layer is resisted by the shearing / bending of the inserted reinforcement and the peripheral frictional force with the surrounding ground, thereby stabilizing the slope. Yes.
[0004]
[Problems to be solved by the invention]
However, in the conventional slope stabilization method, since the reinforcing material is regularly arranged in the ground with a constant separation distance, when the moving layer slides, the same behavior is observed throughout the moving layer. Present. That is, the conventional slope stabilization method has a structure in which the sliding force is received by the strength (shear and bending) of the reinforcing material itself. Therefore, if the material of the reinforcing material is weak or the total number is small, the slope is stabilized. There was a problem that there was a possibility that it could not be maintained sufficiently.
[0005]
This invention is made | formed in view of such a problem, Comprising: It aims at providing the slope stabilization construction method which can aim at stabilization of a slope still more effectively.
[0006]
[Means for Solving the Problems]
Usually, on natural slopes, a soft layer with weak shear resistance (slip strength) is interposed between the immovable layer, which is the base rock, and the moving layer, which is collapsed sediment, due to the influence of groundwater flow. When the ground becomes soft, it tends to promote landslides. On the other hand, the moving layer on the soft layer has a relatively strong shear resistance compared to the soft layer. Therefore, on this type of natural slope that is prone to landslides, the sliding block is divided so that the ratio of the moving layer part with larger shear resistance compared to the soft layer increases, and multiple blocks with different sliding forms on the natural slope are separated. By providing, it is thought that stabilization of a slope can be aimed at more effectively.
[0007]
The present invention has been made paying attention to such points, and the slope stabilization method according to the present invention suppresses a landslide on a natural slope in which a soft layer is interposed between a non-moving layer and a moving layer. A slope stabilization method for forming a pair of resistors, a plurality of resistors being arranged substantially parallel to the sliding direction of the natural slope, and being surrounded by the plurality of resistors Is a first sliding block, and each region on the natural slope divided by the first sliding block is a second sliding block, and the first sliding block and the second sliding block The sliding form is made different from each other to enhance the shear resistance of the natural slope.
[0008]
The slope stabilization method of the present invention is characterized in that the shear resistance of the first sliding block is larger than the shear resistance of the second sliding block.
[0009]
According to the slope stabilization method described above, the sliding forms of the first sliding block and the second sliding block are mutually adjusted so that the shear resistance of the first sliding block is larger than the shear resistance of the second sliding block. Therefore, the shear resistance of the first sliding block is increased to improve the sliding resistance, and the second sliding block is further improved by the frictional resistance at the boundary between the first sliding block and the second sliding block. The sliding resistance is also improved, which improves the stability of the entire slope.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a perspective view schematically showing an example of a natural slope, which is caused by groundwater flow between a base rock (immobilized layer) 1 and a collapsed sediment layer (moving layer) 3. Thus, the soft layer 4 generated is interposed, and the upper surface of the collapsed sediment layer 3 forms the ground surface 2. And the A part shows the collapse range which consists of the moving soil blocks 5 in the collapsible sediment layer 3 in the figure, and the natural slope has a soil structure that is easy to slide in the direction of arrow B. Further, when the slope collapses, the soft layer 4 forms a main slip surface.
[0012]
FIG. 2 is a perspective view schematically showing an embodiment of the slope stabilization method of the present invention. In this embodiment, a plurality of first sliding blocks 7 a to 7 c are formed on the moving soil mass 5. Thus, the moving soil block 5 is divided into a plurality of second sliding blocks 8a to 8e by the first sliding block 7a.
[0013]
Specifically, in the first sliding blocks 7a to 7c, a plurality of resistor bodies (two pairs in the present embodiment) are arranged substantially in parallel with the sliding direction of the moving earth block 5 with the pair of resistor bodies 6 as one set. And is surrounded by the plurality of sets of resistors 6.
[0014]
As shown in FIG. 3, the resistor 6 includes a substantially square head plate 9 and a PC steel strand 10 whose base end is fixed to a substantially central portion of the head plate 9. The plate 9 is placed on the ground surface 2 and the PC steel strand 10 penetrates the collapsible sediment layer 3 and the soft layer 4, the tip of which is inserted into the base rock 1 and the outer peripheral part 11 is grouted. Is fixed.
[0015]
When the moving mass 5 collapses on the slope, shear failure occurs on the continuous slip surface, that is, the slip surface 12 in the soft layer and the slip surface 13 in the collapsed sediment layer.
[0016]
However, in the first sliding block 7a, since the ratio of the collapsed sediment layer 3 that is stronger than the soft layer 4 is increased as compared with the case where the resistor 6 is not provided, the shear resistance is increased. The sliding block 7a is difficult to slide even if heavy rain occurs.
[0017]
In addition, since frictional resistance is generated at the boundary between the first sliding block 7a and the second sliding blocks 8a and 8b, the shear resistance of the second sliding blocks 8a and 8b is increased, and therefore no resistor is provided. Compared to the case (FIG. 1), the average shear resistance of the entire moving mass 5 is increased, and as a result, the slidability of the slope is lowered and the slope is stabilized.
[0018]
【The invention's effect】
As described above in detail, the slope stabilization method according to the present invention is a slope stabilization method for suppressing a landslide on a natural slope in which a soft layer is interposed between a non-moving layer and a moving layer. A plurality of sets of resistors are arranged substantially in parallel with the sliding direction of the natural slope, and a narrow region surrounded by the plurality of sets of resistors is used as a first sliding block. Each area on the natural slope divided by one sliding block is defined as a second sliding block, and the sliding form of the first sliding block and the second sliding block is made different from each other to shear the natural slope. Since the resistance is strengthened, the first sliding block has a higher shear resistance due to an increase in the ratio of the moving layer having a higher strength than the soft layer, and the first sliding block 7a slides even if heavy rain occurs. It becomes difficult. In addition, since frictional resistance is generated at the boundary between the first sliding block and the second sliding block, the shear resistance of the second sliding block is also increased, and thus the average shear resistance of the entire moving layer is increased. As a result, the slidability of the slope is reduced and the slope is stabilized.
[0019]
Many natural slopes remain stable over a long period of time, and in order to achieve further stabilization against temporary instability such as heavy rain, it is only necessary to give a slight increase in strength. Stabilization of the slope can be easily realized by making the ratio of the sliding surface passing through the layer relatively small and utilizing the strength in the collapsible sediment layer having a relatively large strength.
[0020]
In addition, the resistor is not used to suppress the sliding force of the moving layer, but is used for the purpose of dividing the moving layer. Construction costs can also be greatly reduced.
[0021]
In addition, since the present invention realizes stabilization of the natural slope by increasing the shear resistance of the first sliding block, it does not directly handle the sliding force due to landslides compared to ground anchor work and deterrent pile work, Therefore, there is little influence on the aging of the material without being constantly subjected to large earth pressure.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing an example of a natural slope.
FIG. 2 is a perspective view schematically showing an embodiment of a slope stabilization method according to the present invention.
3 is a cross-sectional view taken along line XX in FIG.
[Explanation of symbols]
1 Base rock (Fudo layer)
3 Collapsed sediment layer (moving layer)
4 Soft layer 5 Moving mass 6 Resistors 7a to 7c First sliding blocks 8a to 8e Second sliding block 9 Head plate 10 PC steel strand

Claims (2)

不動層と移動層との間に軟弱層が介在された自然斜面の地すべりを抑制するための斜面安定化工法であって、
一対の抵抗体を一組として複数組の抵抗体を前記自然斜面の滑動方向と略平行に配設し、前記複数組の抵抗体で取り囲まれた狭領域を第1の滑動ブロックとすると共に、該第1の滑動ブロックによって分断された前記自然斜面上の各領域を第2の滑動ブロックとし、前記第1の滑動ブロックと前記第2の滑動ブロックとの滑動形態を互いに異ならせて前記自然斜面のせん断抵抗を強化することを特徴とする斜面安定化工法。
A slope stabilization method for suppressing landslides on natural slopes where a soft layer is interposed between the immovable layer and the moving layer,
A pair of resistors as a set and a plurality of sets of resistors are arranged substantially parallel to the sliding direction of the natural slope, and a narrow region surrounded by the plurality of sets of resistors is a first sliding block, Each area on the natural slope divided by the first slide block is defined as a second slide block, and the slide forms of the first slide block and the second slide block are made different from each other, thereby the natural slope. Slope stabilization method characterized by strengthening shear resistance of steel.
前記第1の滑動ブロックのせん断抵抗は、前記第2の滑動ブロックのせん断抵抗よりも大きいことを特徴とする請求項1記載の斜面安定化工法。2. The slope stabilization method according to claim 1, wherein the shear resistance of the first sliding block is larger than the shear resistance of the second sliding block.
JP2001220976A 2001-07-23 2001-07-23 Slope stabilization method Expired - Fee Related JP3749459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220976A JP3749459B2 (en) 2001-07-23 2001-07-23 Slope stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220976A JP3749459B2 (en) 2001-07-23 2001-07-23 Slope stabilization method

Publications (3)

Publication Number Publication Date
JP2003027491A JP2003027491A (en) 2003-01-29
JP2003027491A5 JP2003027491A5 (en) 2005-11-10
JP3749459B2 true JP3749459B2 (en) 2006-03-01

Family

ID=19054715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220976A Expired - Fee Related JP3749459B2 (en) 2001-07-23 2001-07-23 Slope stabilization method

Country Status (1)

Country Link
JP (1) JP3749459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038302A (en) * 2009-08-11 2011-02-24 Hazama Corp Structure and method for reinforcing sloped ground

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438711B2 (en) * 2014-08-28 2018-12-19 大成建設株式会社 Slope stabilization structure
CN105926643B (en) * 2016-05-04 2018-11-13 何满潮 A kind of multi-step cover type refuse dump and its construction method
CN113832992B (en) * 2021-09-09 2023-02-03 武汉大学 Anti-slide pile design optimization method based on slope system instability risk
CN114592531B (en) * 2022-03-11 2023-06-13 重庆三峡学院 Anchoring device for rock-soil side slope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998933A (en) * 1982-11-30 1984-06-07 Mitsubishi Heavy Ind Ltd Prevention of landslide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038302A (en) * 2009-08-11 2011-02-24 Hazama Corp Structure and method for reinforcing sloped ground

Also Published As

Publication number Publication date
JP2003027491A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US5145285A (en) Discontinuous structural reinforcing elements and method of reinforcing and improving soils and other construction materials
US8430603B2 (en) Wall block with barrier member
US6682269B2 (en) Block with multifaceted bottom surface
WO2010052806A1 (en) Retaining wall block and retaining wall
JP3749459B2 (en) Slope stabilization method
US4380409A (en) Crib block for erecting bin walls
US20070003377A1 (en) Foundation pile having a spiral ridge and method of underpinning using same
CN108330992A (en) The supporting construction and its method for protecting support of swelled rock and soil deep vertical shaft
JP6902144B2 (en) Slope ground flow control method and slope ground flow control structure
CN112989467A (en) Simplified Bischot-based soil slope deep-buried shear pile support structure design method
Miki et al. Design and numerical analysis of road embankment with low improvement ratio deep mixing method
CN111173010A (en) Anti-slip structure
CN111501797A (en) Anti-skidding structure for reducing deformation of structures on landslide
JPS5920821B2 (en) Reinforcement material for constructing earth retaining structures
JP3583181B2 (en) Embankment construction method
JP2001073305A (en) Road construction body
DE69910864T2 (en) Composite paving for the floors and banks of river beds
KR100397536B1 (en) Lateral Movement Prevention Construction Method of Bridge Abutment for using Sheet piles
CN1641112A (en) Composite foundation construction method
WO1991018150A1 (en) Elements and methods for reinforcing soil-like materials
JPH02243822A (en) Reinforced soil retaining wall
CN212200455U (en) Anti-slip structure
JP4409151B2 (en) Embankment reinforcement device
CN213708982U (en) A reinforced structure and road bed for ground
JP2002220834A (en) Reinforced earth structure and reinforced earth block

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050921

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3749459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees