JP2011038302A - Structure and method for reinforcing sloped ground - Google Patents

Structure and method for reinforcing sloped ground Download PDF

Info

Publication number
JP2011038302A
JP2011038302A JP2009186252A JP2009186252A JP2011038302A JP 2011038302 A JP2011038302 A JP 2011038302A JP 2009186252 A JP2009186252 A JP 2009186252A JP 2009186252 A JP2009186252 A JP 2009186252A JP 2011038302 A JP2011038302 A JP 2011038302A
Authority
JP
Japan
Prior art keywords
ground
upstream
downstream
reinforcing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009186252A
Other languages
Japanese (ja)
Other versions
JP5405939B2 (en
Inventor
Satoshi Nakajima
聡 中島
Akira Shono
昭 庄野
Hisashi Imai
久 今井
Kazuto Fukutome
和人 福留
Original Assignee
Hazama Corp
株式会社間組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Corp, 株式会社間組 filed Critical Hazama Corp
Priority to JP2009186252A priority Critical patent/JP5405939B2/en
Publication of JP2011038302A publication Critical patent/JP2011038302A/en
Application granted granted Critical
Publication of JP5405939B2 publication Critical patent/JP5405939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently lower a groundwater level by discharging groundwater to a wide range on sloped ground, even when reinforcement measures have to be taken over the wide range of the sloped ground; and to secure the stability of the sloped ground by inhibiting the sliding motion of the sloped ground over the wide range. <P>SOLUTION: A plurality of structures 11 are installed by being formed in such a wall shape as to be continuously elongated to a downstream side of a water channel from an upstream side thereof, in parallel in a direction crossing the sloped ground 3 or a direction orthogonal to the direction of the inclination of the sloped ground 3, in the ground at the terminal end of the sloped ground 3, by using a material (porous concrete with underwater non-separability) with water permeability and strength. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、傾斜地盤補強構造及び工法に関し、特に、傾斜地盤内に構造物を設置して傾斜地盤を補強する傾斜地盤補強構造及び工法に関する。   The present invention relates to an inclined ground reinforcing structure and method, and more particularly to an inclined ground reinforcing structure and method for reinforcing a sloped ground by installing a structure in the inclined ground.
地滑りは、一般に、地形の状況、地盤の成層状態、地下水の状況などに起因して発生する。かかる地滑りを防止するため、通常、傾斜地盤の補強対策として、地滑りを起こさせようとする地下水などの要因を除去又は軽減することなどによって地滑りを抑制する抑制工法や、地中に構造物を打ち込むことにより、地滑り運動を抑止する抑止工法が採用されている。前者の工法には、地表面に水平方向にボーリング削孔して水抜き穴を構築する横ボーリング工(特許文献1参照)や、地下水の集中している箇所に井戸を掘削し、集中的に集水を行う集水井工(特許文献1参照)などがあり、後者の工法では、地中に杭体を打ち込んで地滑りを停止させる杭打ち工(特許文献2参照)や、グランドアンカーを地盤に定着させることにより、傾斜地盤のすべり力に対抗するグランドアンカー工(特許文献3参照)などが知られている。   Landslides generally occur due to topographic conditions, ground stratification, groundwater conditions, and the like. In order to prevent such landslides, normally, as a measure to reinforce sloped ground, a suppression method that suppresses landslides by removing or mitigating factors such as groundwater that causes landslides, and driving structures into the ground Therefore, a deterrent construction method that suppresses landslide movement is adopted. For the former method, horizontal boring (see Patent Document 1) for drilling holes in the ground surface in the horizontal direction to construct drain holes, or drilling wells at locations where groundwater is concentrated, There are drainage wells that collect water (see Patent Document 1), etc., and in the latter method, pile driving (see Patent Document 2) that stops the landslide by driving a pile into the ground, and ground anchors on the ground A ground anchor construction (see Patent Document 3) that resists the sliding force of inclined ground by fixing is known.
特許平11−158861号公報Japanese Patent No. 11-158861 特許平 6− 33464号公報Japanese Patent No. 6-33464 特許2001−152459公報Japanese Patent No. 2001-152459
しかしながら、上記従来の傾斜地盤の対策工(補強構造及び工法)では、地下水位を低下させたり地盤を補強したりする対策効果の及ぶ範囲が限定的であるため、傾斜地盤の滑り移動する方向、範囲を精度よく予測することができない場合や傾斜地盤の滑る可能性の高い箇所が広範囲に亘る場合など、広範囲に地下水を低下させ、かつ地盤を補強する必要がある場合に対応が難しい。この他、地盤を広範囲に補強する方法として、セメントなどの固化材と地盤を攪拌混合して強度の高い改良地盤を形成する深層混合処理工法などが知られているが、この改良地盤では透水性が低下し、この透水性が低下すると、改良地盤背面側の水位が上昇して地盤が不安定化したり下流の地下水枯れが発生したりして、地下水位の低下に関してはむしろ悪影響がある。また、透水性を確保するだけであれば、砂や砕石など透水性の良い材料を溝状に連続して配置することが考えられるが、砂や砕石の置換えのみでは、強度が低く、地盤の補強とならない。さらに、透水性と強度を有する材料にポーラスコンクリートが知られているが、ポーラスコンクリートは通常のコンクリートに比べて、セメントペースト分又はモルタル分が少ないので、水中では骨材表面のセメントペースト分又はモルタル分が簡単に洗い流されて、強度不足となり、強度の高い固化体を形成することができない。このように、従来の各対策工では、広範囲に地下水を低下させ、かつ地盤を補強することは非常に困難であった。   However, in the above conventional slope ground countermeasures (reinforcement structure and construction method), the range of the countermeasure effect of lowering the groundwater level or reinforcing the ground is limited, so the direction of sliding movement of the slope ground, It is difficult to cope with cases where groundwater needs to be lowered over a wide area and the ground needs to be reinforced, such as when the range cannot be predicted with high accuracy, or where there is a high possibility that the inclined ground will slide. In addition, as a method to reinforce the ground extensively, there is known a deep mixing treatment method in which solidified material such as cement and the ground are mixed by stirring to form a high strength improved ground. If the water permeability decreases, the water level on the back side of the improved ground rises and the ground becomes unstable or the groundwater withered downstream. Moreover, if only water permeability is to be secured, it is conceivable to continuously arrange materials with good water permeability, such as sand and crushed stone, in the form of grooves. No reinforcement. Furthermore, porous concrete is known as a material having water permeability and strength. However, porous concrete has less cement paste or mortar than ordinary concrete. Minutes are easily washed away, the strength becomes insufficient, and a solid body with high strength cannot be formed. Thus, it has been very difficult for conventional countermeasures to reduce groundwater over a wide area and reinforce the ground.
本発明は、このような従来の問題を解決するものであり、この種の傾斜地盤補強構造及び工法において、傾斜地盤の滑り移動する方向や範囲を正確に予測することができない場合、傾斜地盤の滑る可能性の高い箇所が広範囲に亘る場合など、傾斜地盤の広範囲に補強対策が必要な場合でも、当該傾斜地盤において広範囲に地下水を排出して、地下水位を効率よく低下させ、また、傾斜地盤の広範囲に亘る滑り運動を抑止して、傾斜地盤の安定を確保すること、を目的とする。   The present invention solves such a conventional problem, and in this type of inclined ground reinforcement structure and construction method, when the sliding direction and range of the inclined ground cannot be accurately predicted, Even when it is necessary to reinforce a wide area of sloping ground, such as when there is a high possibility of slipping over a wide area, groundwater is discharged over a wide area on the sloping ground, effectively reducing the groundwater level. The purpose is to secure the stability of the sloped ground by suppressing the sliding motion over a wide area.
上記目的を達成するために、本発明は、傾斜地盤が当該地盤内に構造物を設置されて補強される傾斜地盤補強構造において、前記構造物は、透水性及び強度を有する材料により、前記傾斜地盤中に水みちの上流側から下流側に向けて延びる壁状に形成して設置される、ことを要旨とする。   In order to achieve the above object, the present invention provides an inclined ground reinforcing structure in which an inclined ground is reinforced by installing a structure in the ground, and the structure is made of the material having water permeability and strength by the material having water permeability and strength. The gist is that it is formed and installed in the board in the shape of a wall extending from the upstream side to the downstream side of the water channel.
本発明はまた、次のように具体化される。
(1)透水性及び強度を有する材料に、水中不分離性を有するポーラスコンクリートが採用される。
(2)構造物は地滑り層を貫通してすべり面下方の不動地盤に定着される。
(3)構造物の上流側端は傾斜地盤中の水みちに対向され、下流側端は傾斜地盤外の地下水の排出先まで延ばされ又は前記地下水の排出先まで延びる地下水の排出手段に接続される。
(4)複数の構造物が傾斜地盤に並列に設置される。
(5)構造物の少なくとも下流側端に対して上流側から、前記構造物と同じ材料からなる延長構造物が傾斜地盤中を横断する方向に延ばされる。
The present invention is also embodied as follows.
(1) Porous concrete having underwater inseparability is adopted as a material having water permeability and strength.
(2) The structure penetrates the landslide layer and is fixed on the immovable ground below the sliding surface.
(3) The upstream end of the structure is opposed to the water channel in the inclined ground, and the downstream end is connected to a groundwater discharge means that extends to the groundwater discharge destination outside the sloped ground or extends to the groundwater discharge destination. Is done.
(4) A plurality of structures are installed in parallel on the inclined ground.
(5) An extension structure made of the same material as the structure is extended in a direction crossing the inclined ground from the upstream side with respect to at least the downstream end of the structure.
また、上記目的を達成するために、本発明は、傾斜地盤を当該地盤内に構造物を設置して補強する傾斜地盤補強工法において、前記構造物を、透水性及び強度を有する材料により、前記傾斜地盤中に水みちの上流側から下流側に向けて延びる壁状に形成して設置する、ことを要旨とする。この場合、透水性及び強度を有する材料に、水中不分離性を有するポーラスコンクリートを採用することが好ましい。また、複数の構造物を傾斜地盤に並列に設置することが好ましい。   In order to achieve the above object, the present invention provides an inclined ground reinforcing method for reinforcing an inclined ground by installing a structure in the ground, and the structure is made of a material having water permeability and strength. The gist is to form and install in a sloped ground in a wall shape extending from the upstream side to the downstream side of the water channel. In this case, it is preferable to employ porous concrete having non-separability in water as the material having water permeability and strength. Moreover, it is preferable to install a plurality of structures in parallel on the inclined ground.
本発明の傾斜地盤補強構造及び工法によれば、傾斜地盤を補強するための構造物を、水中不分離性を有するポーラスコンクリートなど透水性及び強度を有する材料により、傾斜地盤の排水性及び滑り移動を防止するために必要な改良範囲の地盤中に、水みちの上流側から下流側に向けて延びる壁状に形成して設置するので、傾斜地盤の滑り移動する方向や範囲を正確に予測することができない場合、傾斜地盤の滑る可能性の高い箇所が広範囲に亘る場合など、傾斜地盤の広範囲に補強対策が必要な場合でも、構造物の透水性により、当該傾斜地盤において広範囲に地下水を排出して、地下水位を効率よく低下させることができ、また、構造物のせん断抵抗力により、傾斜地盤の広範囲に亘る滑り運動を抑止して、傾斜地盤の安定を確実に保つことができる。   According to the inclined ground reinforcing structure and construction method of the present invention, the structure for reinforcing the inclined ground is made of a material having water permeability and strength, such as porous concrete having non-separability in water. In the ground of the improved range necessary to prevent the ground, it is installed in the shape of a wall extending from the upstream side to the downstream side of the water channel, so the direction and range of the sliding movement of the inclined ground can be accurately predicted If it is impossible to reinforce the wide area of the inclined ground, such as when there is a wide range of places where the slope is likely to slide, groundwater will be discharged extensively on the inclined ground due to the water permeability of the structure. In addition, the groundwater level can be lowered efficiently, and the shear resistance of the structure prevents slipping motion over a wide area of the sloped ground, ensuring stable stability of the sloped ground. Door can be.
本発明の第1の実施の形態における傾斜地盤補強構造を示す斜視図The perspective view which shows the slope ground reinforcement structure in the 1st Embodiment of this invention 同補強構造の側面断面図Side sectional view of the reinforcing structure 本発明の第2の実施の形態における傾斜地盤補強構造を示す平面図The top view which shows the slope ground reinforcement structure in the 2nd Embodiment of this invention 同補強構造の変更例を示す平面図Plan view showing an example of modification of the reinforcing structure
次に、この発明を実施するための形態について図を用いて説明する。図1及び図2に第1の実施の形態を示している。図1及び図2に示すように、この傾斜地盤補強構造1では、傾斜地盤3内に複数の構造物11が設置されて、傾斜地盤3を補強する。   Next, embodiments for carrying out the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment. As shown in FIGS. 1 and 2, in the inclined ground reinforcing structure 1, a plurality of structures 11 are installed in the inclined ground 3 to reinforce the inclined ground 3.
複数の構造物11はそれぞれ、透水性及び強度を有する材料により、傾斜地盤3中に連続的に形成される。透水性及び強度を有する材料としては、水中不分離性を有するポーラスコンクリートが採用される。この場合、ポーラスコンクリートに水中不分離性と強度を確保するため、ポーラスコンクリートに高性能減水剤と水中不分離材を添加される。そして、この水中不分離性を有するポーラスコンクリートからなる複数の構造物11がそれぞれ、傾斜地盤3の排水性及び滑り移動を防止するために必要な改良範囲、この場合、傾斜地盤3末端の地滑り層(すべり土塊)31中に、傾斜地盤3を横断する方向又は傾斜地盤3の傾斜方向に対して直交する方向に並列に、水みちの上流側から下流側に向けて連続して延びる壁状に形成して設置される。この場合、各構造物11は傾斜地盤3(地滑り層31)の末端においてその略全高が地滑り層31の傾斜面に沿って埋設され、各構造物11の下端が地滑り層31を貫通してすべり面32下方の不動地盤33に至り、不動地盤33の中に定着される。そして、各構造物11の上流側端(面)12は傾斜地盤3中の水みちの上流に対向され、下流側端(面)13は傾斜地盤3外の地下水の排出先まで延ばされる。なお、この補強構造1による傾斜地盤3の改良の範囲、置換率、強度は、従来の地盤改良と同様に、円弧すべりによる安定計算により適宜設定される。また、各構造物11間の間隔は、地下水位の低下量、各構造物間のすべり土塊のすり抜け防止、すべり土塊全体を安定させるために必要な強度の確保などから適宜設定される。   Each of the plurality of structures 11 is continuously formed in the inclined ground 3 by a material having water permeability and strength. As the material having water permeability and strength, porous concrete having water underseparability is adopted. In this case, in order to ensure the underwater inseparability and strength of the porous concrete, a high-performance water reducing agent and an underwater inseparable material are added to the porous concrete. The plurality of structures 11 made of porous concrete having an underwater inseparability are respectively improved areas necessary for preventing the drainage of the inclined ground 3 and sliding movement, in this case, the landslide layer at the end of the inclined ground 3. In (sliding block) 31, in the shape of a wall extending continuously from the upstream side to the downstream side of the water channel, in parallel with the direction crossing the inclined ground 3 or the direction orthogonal to the inclined direction of the inclined ground 3 Formed and installed. In this case, each structure 11 is embedded at the end of the inclined ground 3 (landslide layer 31) substantially along the inclined surface of the landslide layer 31, and the lower end of each structure 11 slips through the landslide layer 31. It reaches the stationary ground 33 below the surface 32 and is fixed in the stationary ground 33. The upstream end (surface) 12 of each structure 11 is opposed to the upstream of the water channel in the inclined ground 3, and the downstream end (surface) 13 is extended to the groundwater discharge destination outside the inclined ground 3. It should be noted that the improvement range, replacement rate, and strength of the inclined ground 3 by the reinforcing structure 1 are appropriately set by stable calculation by arc slip, similarly to the conventional ground improvement. Moreover, the space | interval between each structure 11 is suitably set from the fall amount of a groundwater level, prevention of slipping of the sliding soil lump between each structure, ensuring of intensity | strength required in order to stabilize the whole sliding soil lump, etc.
続いて、この補強構造の工法について図1を用いて説明する。この工法では、傾斜地盤3の構造物11を設置する箇所に複数の溝10を掘削し、これらの溝10にそれぞれ構造物11を設置して傾斜地盤3を補強する。これらの溝10はそれぞれ、傾斜地盤3の排水性及び滑り移動を防止するため必要な改良範囲、この場合、傾斜地盤3の地滑り層(すべり土塊)31の末端に、傾斜地盤3を横断する方向又は傾斜地盤3の傾斜方向に対して直交する方向に並列に掘削する。各溝10は、地滑り層31の改良範囲において水みちの上流側所定の位置で地表面30から地滑り層31を貫通してすべり面32下方の不動地盤33まで掘削し、同所定の位置から下流側に向けて徐々に延ばしていき、全体が連続する水平断面略四角形状に形成する。複数の構造物11はそれぞれ、透水性及び強度を有する材料により、傾斜地盤3中に連続的に形成する。透水性及び強度を有する材料として、水中不分離性を有するポーラスコンクリートを使用する。このポーラスコンクリートに水中不分離性と強度を確保するため、ポーラスコンクリートに水中不分離材を添加する。この場合、セメントペースト又はモルタルのフロー値を確保するため、高性能減水剤を併せて添加する。この高性能減水剤と水中不分離材の添加量は、セメントペーストのフロー値と水中投下時の濁度から適宜設定する。なお、ポーラスコンクリートの粗骨材表面にセメントペースト分が均一に行き亘るように、(1)セメントと水中不分離材の混合、(2)水と高性能減水剤の混合、(3)上記2種によるセメントペーストの混合、(4)骨材を投入したセメントペーストと混合、の手順で行うことが好ましい。また、ポーラスコンクリートの目詰まりを防止するため、ポーラスコンクリートの骨材粒径と空隙率を適切に選定する必要がある。このようにしてポーラスコンクリートは水中不分離性を有することにより、地下水中への打設時のセメント分の分離や打設後の地下水によるセメント分の流出を防ぐことができ、ポーラスコンクリートを地下水位以下で、現場打設することが可能となる。そして、傾斜地盤3において各溝10の掘削が水みちの上流側所定の位置から下流側に向けて所定の長さだけ進行する毎に、各溝10の内側面に矢板又は型枠を当て込み、各溝10に水中不分離性を有するポーラスコンクリートを打設して、各溝10に構造物11を形成していく。この場合、ポーラスコンクリートは空隙が多く、ポンプ圧送ができないため、ポーラスコンクリートの打設にはバケットやベルトコンベアを用いることになる。なお、この構造物11の施工に、アームが伸縮する形式で対象深さが20m程度のテレスコ式クラムシェル型バックホウや対象深さが10m程度のスライドアーム型バックホウなどのバックホウを用いることにより、傾斜地盤3に溝10を掘削する作業とポーラスコンクリートの打設作業を同一の機械で行うことができ、有用である。各溝10にポーラスコンクリートを打設した後、各溝10から矢板又は型枠を抜き取る。このようにして、水中不分離性を有するポーラスコンクリートからなる複数の構造物11をそれぞれ、傾斜地盤3の排水性及び滑り移動を防止するために必要な改良範囲、この場合、地滑り層(すべり土塊)31の末端に、傾斜地盤3を横断する方向又は傾斜地盤3の傾斜方向に対して直交する方向に並列に、水みちの上流側から下流側に向けて連続して延びる壁状に形成して設置する。   Next, a method for constructing this reinforcing structure will be described with reference to FIG. In this construction method, a plurality of grooves 10 are excavated at locations where the structures 11 of the inclined ground 3 are installed, and the structures 11 are respectively installed in these grooves 10 to reinforce the inclined ground 3. Each of these grooves 10 has an improved range necessary for preventing drainage and sliding movement of the inclined ground 3, and in this case, at the end of the landslide layer (sliding soil block) 31 of the inclined ground 3, the direction crossing the inclined ground 3. Or it excavates in parallel in the direction orthogonal to the inclination direction of the inclined ground 3. Each groove 10 is excavated from the ground surface 30 through the landslide layer 31 to the fixed ground 33 below the sliding surface 32 at a predetermined position upstream of the water channel in the improved range of the landslide layer 31, and downstream from the predetermined position. It is gradually extended toward the side, and is formed into a substantially rectangular shape with a continuous horizontal section. Each of the plurality of structures 11 is continuously formed in the inclined ground 3 by a material having water permeability and strength. As the material having water permeability and strength, porous concrete having inseparability in water is used. In order to ensure underwater inseparability and strength of this porous concrete, an underwater inseparable material is added to the porous concrete. In this case, in order to ensure the flow value of cement paste or mortar, a high-performance water reducing agent is added together. The addition amount of the high-performance water reducing agent and the underwater non-separating material is appropriately set based on the flow value of the cement paste and the turbidity when dropped in water. (1) Mixing of cement and underwater non-separating material, (2) Mixing of water and high-performance water reducing agent, (3) 2 above It is preferable to perform the procedure of mixing cement paste with seeds and (4) mixing with cement paste charged with aggregate. Moreover, in order to prevent clogging of porous concrete, it is necessary to select appropriately the aggregate particle size and porosity of porous concrete. In this way, porous concrete is inseparable in water, so that it is possible to prevent cement from being separated during placement in groundwater and outflow of cement due to groundwater after placement. In the following, it is possible to place on-site. Each time the excavation of each groove 10 proceeds on the inclined ground 3 by a predetermined length from a predetermined position on the upstream side of the water channel toward the downstream side, a sheet pile or a formwork is applied to the inner surface of each groove 10. Then, porous concrete having underwater inseparability is placed in each groove 10 to form a structure 11 in each groove 10. In this case, since porous concrete has many voids and cannot be pumped, a bucket or a belt conveyor is used for placing the porous concrete. In addition, by using a backhoe such as a telescopic clamshell type backhoe with a target depth of about 20 m and a slide arm type backhoe with a target depth of about 10 m in the construction of the structure 11, the arm extends and contracts. The work of excavating the groove 10 in the board 3 and the work of placing the porous concrete can be performed with the same machine, which is useful. After pouring concrete into each groove 10, a sheet pile or a formwork is extracted from each groove 10. Thus, each of the plurality of structures 11 made of porous concrete having inseparability in water is improved in order to prevent drainage and sliding movement of the inclined ground 3, in this case, a landslide layer (slip mass) ) It is formed at the end of 31 in the shape of a wall continuously extending from the upstream side to the downstream side of the water channel in parallel in the direction crossing the inclined ground 3 or in the direction perpendicular to the inclined direction of the inclined ground 3. Install.
このようにして傾斜地盤3に複数の構造物11が埋め込み設置されることにより、各構造物(ポーラスコンクリート)11の透水性により、傾斜地盤3の水みちを流下する地下水が水みちに対向する各構造物11の上流側端面12から、さらにその両側面14から各構造物11内部に集水されるとともに、この構造物11を排水経路として通過して、各構造物11の下流側端面13から傾斜地盤3外の排出先へ排水される。これにより、傾斜地盤3の広範囲の地下水が複数の構造物11を通じて排出先へ排出され、傾斜地盤3の地下水位が効率よく低下される。また、高い強度を有する各構造物(ポーラスコンクリート)11により地滑り層(すべり土塊)31は高強度に補強され、各構造物11によるせん断抵抗力によって、傾斜地盤3のすべり破壊に対する高い安定性が確保される。なお、この構造物11の強度は従来のセメント系固化材を用いた固結工法の数倍の強度を有するので、この構造物11による改良率は従来の固結工法に比べて少なくなる。   As a result of the plurality of structures 11 being embedded in the inclined ground 3 in this way, the groundwater flowing down the water path of the inclined ground 3 faces the water path due to the water permeability of each structure (porous concrete) 11. Water is collected from the upstream end face 12 of each structure 11 and from both side faces 14 into each structure 11, and passes through the structure 11 as a drainage path to downstream end face 13 of each structure 11. The water is drained to a discharge destination outside the sloped ground 3. Thereby, a wide range of groundwater on the inclined ground 3 is discharged to the discharge destination through the plurality of structures 11, and the groundwater level of the inclined ground 3 is efficiently lowered. Further, the landslide layer (sliding soil block) 31 is reinforced with high strength by each structure (porous concrete) 11 having high strength, and the shear resistance force by each structure 11 provides high stability against the slip failure of the inclined ground 3. Secured. In addition, since the strength of the structure 11 is several times that of a conventional caking method using a cement-based solidifying material, the improvement rate by the structure 11 is smaller than that of the conventional caking method.
以上説明したように、この補強構造1及び工法では、複数の構造物11を、透水性及び強度を有する材料(水中不分離性を有するポーラスコンクリート)により、傾斜地盤3の末端の地盤中に傾斜地盤3を横断する方向又は傾斜地盤3の傾斜方向に対して直交する方向に並列に、水みちの上流側から下流側に向けて連続して延びる壁状に形成して設置するので、傾斜地盤3の滑り移動する方向や範囲を正確に予測することができない場合、傾斜地盤3の滑る可能性の高い箇所が広範囲に亘る場合など、傾斜地盤3の広範囲に補強対策が必要な場合でも、各構造物11の透水性により、当該傾斜地盤3において広範囲に地下水を排出して、地下水位を効率よく低下させることができ、また、各構造物11のせん断抵抗力により、傾斜地盤3の広範囲に亘る滑り運動を抑止して、傾斜地盤3の安定を確実に保つことができる。   As described above, in the reinforcing structure 1 and the construction method, the plurality of structures 11 are formed on the sloped ground in the ground at the end of the sloped ground 3 by using a material having water permeability and strength (porous concrete having underwater inseparability). Since it is formed and installed in a wall shape extending continuously from the upstream side to the downstream side of the water channel in parallel with the direction crossing the board 3 or in the direction orthogonal to the inclination direction of the inclined ground 3, the inclined ground Even if it is necessary to take reinforcement measures in a wide area of the inclined ground 3, such as when it is impossible to accurately predict the direction and range of the sliding movement 3 or when there is a wide range of places where the inclined ground 3 is likely to slide, Due to the water permeability of the structure 11, the groundwater can be discharged in a wide range on the inclined ground 3, and the groundwater level can be lowered efficiently. Thus suppressing the sliding movement over the circumference, it can be kept reliably stable slopes board 3.
また、この補強構造1では、各構造物11を、特に、傾斜地盤3の地滑り層(すべり土塊)31に、傾斜地盤3を横断する方向又は傾斜地盤3の傾斜方向に対して直交する方向に並列に、水みちの上流側から下流側に向けて連続して延びる壁状に形成し、かつ上流側端面12を傾斜地盤3中の水みちに対向させ、下流側端面13を傾斜地盤3外の地下水の排出先まで延ばすので、傾斜地盤3の広範囲の地下水を複数の構造物11を通じて排出先へ効率よく排出して、傾斜地盤3の地下水位を効率よく低下させることができる。   Further, in this reinforcing structure 1, each structure 11 is arranged in a direction crossing the inclined ground 3 or in a direction perpendicular to the inclined direction of the inclined ground 3, particularly on the landslide layer (sliding mud) 31 of the inclined ground 3. In parallel, it is formed in a wall shape extending continuously from the upstream side to the downstream side of the water channel, and the upstream end surface 12 is opposed to the water channel in the inclined ground 3, and the downstream end surface 13 is outside the inclined ground 3. Therefore, it is possible to efficiently discharge a wide range of groundwater on the inclined ground 3 to the discharge destination through the plurality of structures 11, and to effectively reduce the groundwater level of the inclined ground 3.
さらに、この補強構造1では、各構造物11を、特に、傾斜地盤3の地滑り層(すべり土塊)31に、傾斜地盤3を横断する方向又は傾斜地盤3の傾斜方向に対して直交する方向に並列に、水みちの上流側から下流側に向けて連続して延びる壁状に形成し、かつ各構造物11の下端を地滑り層31を貫通してすべり面32下方の不動地盤33の中に定着して設置するので、各構造物(ポーラスコンクリート)11の強度により、地滑り層(すべり土塊)31に十分なせん断抵抗力を付加することができ、傾斜地盤3のすべり破壊に対する高い安定性を確保することができる。   Further, in this reinforcing structure 1, each structure 11 is arranged in a direction crossing the inclined ground 3 or in a direction orthogonal to the inclined direction of the inclined ground 3, particularly on the landslide layer (sliding soil block) 31 of the inclined ground 3. In parallel, it is formed in a wall shape extending continuously from the upstream side to the downstream side of the water channel, and the lower end of each structure 11 passes through the landslide layer 31 and enters the immobile ground 33 below the sliding surface 32. Since it is fixed and installed, the strength of each structure (porous concrete) 11 can add a sufficient shear resistance to the landslide layer (sliding soil block) 31 and has high stability against slip failure of the inclined ground 3. Can be secured.
なお、この実施の形態では、各構造物11の下流側端13を傾斜地盤3外の地下水の排出先まで延ばすものとしたが、各構造物11の下流側端13に地下水の排出先まで延びる地下水の排出手段(排水管や排水路など)が接続されてもよい。また、この実施の形態では、傾斜地盤3に複数の構造物11を並列に設置したが、例えば、傾斜地盤3の幅が比較的狭い場合には、1つの構造物11を設置すればよい。このようにしても上記第1の実施の形態と同様の作用効果を得ることができる。   In this embodiment, the downstream end 13 of each structure 11 is extended to the discharge destination of groundwater outside the inclined ground 3. However, the downstream end 13 of each structure 11 extends to the discharge destination of groundwater. Groundwater discharge means (drainage pipes, drainage channels, etc.) may be connected. In this embodiment, a plurality of structures 11 are installed in parallel on the inclined ground 3. However, for example, if the width of the inclined ground 3 is relatively narrow, one structure 11 may be installed. Even if it does in this way, the effect similar to the said 1st Embodiment can be acquired.
図3に本発明の第2の実施の形態を示している。図3に示すように、この傾斜地盤補強構造2では、傾斜地盤3内に複数の構造物11とともに延長構造物21が設置されて傾斜地盤3が補強される。この場合、複数の構造物11については既に述べたとおりなので、ここでは、延長構造物21についてのみ新たな符号を付して説明を追加する。延長構造物21は各構造物11と同じ材料で同じ工法により設置される。この延長構造物21は各構造物11の少なくとも下流側端13に対して上流側から、この場合、各構造物11の上流側端12から傾斜地盤3中を横断する方向にかつ各構造物11に対して略直交する方向に延ばされる。   FIG. 3 shows a second embodiment of the present invention. As shown in FIG. 3, in the inclined ground reinforcing structure 2, the extended ground structure 21 is installed together with the plurality of structures 11 in the inclined ground 3 to reinforce the inclined ground 3. In this case, since the plurality of structures 11 have already been described, only the extension structure 21 is denoted by a new reference numeral and description is added here. The extension structure 21 is installed by the same method using the same material as each structure 11. The extended structure 21 is at least upstream from the downstream end 13 of each structure 11, in this case, in a direction crossing the inclined ground 3 from the upstream end 12 of each structure 11 and each structure 11. Is extended in a direction substantially perpendicular to the direction.
このようにして延長構造物21が傾斜地盤3中に横断的に埋め込み設置されることにより、延長構造物(ポーラスコンクリート)21の透水性により、傾斜地盤3の水みちを流下する地下水が水みちに対向する延長構造物21の上流側の側面22から延長構造物21内部に集水される。そして、この地下水は延長構造物21を通じて各構造物11に導かれ、各構造物11を通じて各構造物11の下流側端13から傾斜地盤3外の排出先へ排水される。したがって、傾斜地盤3の広範囲の地下水が延長構造物21により集水され、これが各構造物11を通じて排出先に排出されるので、傾斜地盤3の地下水位がより効率よく低下される。また、延長構造物21及び各構造物11の強度により、傾斜地盤3がより高強度に補強され、延長構造物21及び各構造物11によるせん断抵抗力によって、傾斜地盤3のすべり破壊に対する高い安定性が確保される。   In this way, the extension structure 21 is horizontally installed and installed in the inclined ground 3, so that the groundwater flowing down the water path of the inclined ground 3 is caused by the water permeability of the extension structure (porous concrete) 21. Water is collected into the extension structure 21 from the upstream side surface 22 of the extension structure 21. And this groundwater is guide | induced to each structure 11 through the extended structure 21, and is drained through the structure 11 from the downstream end 13 of each structure 11 to the discharge | emission destination out of the inclined ground 3. Accordingly, a wide range of groundwater on the inclined ground 3 is collected by the extension structure 21 and discharged to the discharge destination through each structure 11, so that the groundwater level of the inclined ground 3 is more efficiently lowered. Further, the inclined ground 3 is reinforced with higher strength due to the strength of the extended structure 21 and each structure 11, and high stability against slip failure of the inclined ground 3 due to the shear resistance force by the extended structure 21 and each structure 11. Sex is secured.
このように延長構造物21を各構造物11の少なくとも下流側端13に対して上流側から、この場合は、各構造物11の上流側端12から傾斜地盤3中を横断する方向にかつ各構造物11に対して直交する方向に延ばしたので、傾斜地盤3の滑り移動する方向や範囲を正確に予測することができない場合、傾斜地盤3の滑る可能性の高い箇所が広範囲に亘る場合など、傾斜地盤3の広範囲に補強対策が必要な場合でも、延長構造物21及び各構造物11により、当該傾斜地盤3においてより広範囲に地下水を排出して、地下水位をより効率的に低下させることができ、また、傾斜地盤3のより広範囲の滑り運動を抑止することができる。   In this way, the extension structure 21 is provided from the upstream side with respect to at least the downstream end 13 of each structure 11, in this case, in the direction crossing the inclined ground 3 from the upstream end 12 of each structure 11. Since it extended in the direction orthogonal to the structure 11, when the direction and range of the sliding movement of the inclined ground 3 cannot be accurately predicted, when the place where the inclined ground 3 is likely to slide covers a wide range, etc. Even when reinforcement measures are required over a wide area of the inclined ground 3, the groundwater level can be more efficiently lowered by discharging the groundwater more extensively in the inclined ground 3 by the extended structure 21 and each structure 11. In addition, a wider range of sliding motion of the inclined ground 3 can be suppressed.
なお、この第2の実施の形態では、延長構造物21を各構造物11の上流側端12から傾斜地盤3中を横断する方向にかつ各構造物11に対して略直交する方向に延ばすものとしたが、延長構造物21は各構造物11の少なくとも下流側端に対して上流側から傾斜地盤3中を横断する方向に延ばせばよく、例えば、図4に示すように、延長構造物21を各構造物11の上流側端12から傾斜地盤3中を横断する方向に、さらに各構造物11の上流側端12と下流側端13との間に傾斜地盤3中を横断する方向に延ばしてもよい。また、傾斜地盤に構造物を1つ設置し、この構造物に延長構造物を設ける場合は、延長構造物を構造物の少なくとも下流側端に対して上流側から傾斜地盤中を横断する方向に延ばせばよく、この場合、全体が平面視略T字形又は略十字形の構成となる。このようにしても第2の実施の形態と同様の作用効果を得ることができる。   In the second embodiment, the extension structure 21 is extended from the upstream end 12 of each structure 11 in a direction crossing the inclined ground 3 and in a direction substantially orthogonal to each structure 11. However, the extension structure 21 may be extended from the upstream side in the direction crossing the inclined ground 3 with respect to at least the downstream end of each structure 11, for example, as shown in FIG. Is extended in a direction crossing the inclined ground 3 from the upstream end 12 of each structure 11 and further in a direction crossing the inclined ground 3 between the upstream end 12 and the downstream end 13 of each structure 11. May be. In addition, when one structure is installed on the inclined ground, and this structure is provided with an extended structure, the extended structure is arranged in a direction crossing the inclined ground from the upstream side with respect to at least the downstream end of the structure. In this case, the entire structure is substantially T-shaped or substantially cross-shaped in plan view. Even if it does in this way, the effect similar to 2nd Embodiment can be acquired.
以上、第1、第2の実施の形態では、特に、地滑り土塊を補強し、その安定を確保する点について説明したが、この補強構造及び工法は、土砂地盤の切土、既設盛土、沢部盛土、崖錘堆積物の盛土などの補強に適用して、その安定を確保することもできる。この補強構造及び工法の適用に当たり、現状のままでは安定が確保できない勾配の切土箇所を補強する場合は、切土法面を改良範囲とすることが好ましい。河川堤防などを補強する場合は、法尻部や小段部を改良範囲とすることが好ましい。沢部の埋立て盛土、崖錘堆積物上の盛土を補強する場合は、基礎地盤を含む範囲を改良することが好ましい。   As described above, in the first and second embodiments, in particular, the point of reinforcing the landslide mass and securing its stability has been described. However, this reinforcing structure and construction method can be used to cut earth and sand ground, existing embankment, It can be applied to reinforcement of embankments and embankments of cliff mass deposits to ensure its stability. In applying this reinforcing structure and method, it is preferable to set the cut slope as an improvement range when reinforcing a cut portion with a slope that cannot be secured under the current conditions. When reinforcing a river embankment or the like, it is preferable to make the butt and small steps the improvement range. In the case of reinforcing the embankment on the reclaimed embankment and the cliff mass deposit in the swamp, it is preferable to improve the range including the foundation ground.
1 傾斜地盤補強構造
10 溝
11 構造物
12 上流側端(面)
13 下流側端(面)
14 側面
2 傾斜地盤補強構造
21 延長構造物
22 上流側の側面
3 傾斜地盤
30 地表面
31 地滑り層(すべり土塊)
32 すべり面
33 不動地盤
1 Inclined ground reinforcement structure 10 Groove 11 Structure 12 Upstream end (surface)
13 Downstream end (surface)
14 Side surface 2 Inclined ground reinforcement structure 21 Extension structure 22 Upstream side surface 3 Inclined ground 30 Ground surface 31 Landslide layer (slide mass)
32 slip surface 33 immovable ground

Claims (9)

  1. 傾斜地盤が当該地盤内に構造物を設置されて補強される傾斜地盤補強構造において、
    前記構造物は、透水性及び強度を有する材料により、前記傾斜地盤中に水みちの上流側から下流側に向けて延びる壁状に形成して設置される、
    ことを特徴とする傾斜地盤補強構造。
    In the inclined ground reinforcement structure where the inclined ground is reinforced by installing a structure in the ground,
    The structure is formed and installed in a wall shape extending from the upstream side to the downstream side of the water channel in the inclined ground by a material having water permeability and strength.
    An inclined ground reinforcement structure characterized by that.
  2. 透水性及び強度を有する材料に、水中不分離性を有するポーラスコンクリートが採用される請求項1に記載の傾斜地盤補強構造。   The slope ground reinforcement structure according to claim 1, wherein porous concrete having underwater inseparability is adopted as a material having water permeability and strength.
  3. 構造物は地滑り層を貫通してすべり面下方の不動地盤に定着される請求項1又は2に記載の傾斜地盤補強構造。   The inclined ground reinforcing structure according to claim 1 or 2, wherein the structure penetrates the landslide layer and is fixed to the stationary ground below the sliding surface.
  4. 構造物の上流側端は傾斜地盤中の水みちに対向され、下流側端は傾斜地盤外の地下水の排出先まで延ばされ又は前記地下水の排出先まで延びる地下水の排出手段に接続される請求項1乃至3のいずれかに記載の傾斜地盤補強構造。   The upstream end of the structure is opposed to a water channel in the inclined ground, and the downstream end is extended to a groundwater discharge destination outside the inclined ground, or connected to groundwater discharge means extending to the groundwater discharge destination. Item 4. The inclined ground reinforcing structure according to any one of Items 1 to 3.
  5. 複数の構造物が傾斜地盤に並列に設置される請求項1乃至4のいずれかに記載の傾斜地盤補強構造。   The inclined ground reinforcement structure according to any one of claims 1 to 4, wherein a plurality of structures are installed in parallel on the inclined ground.
  6. 構造物の少なくとも下流側端に対して上流側から、前記構造物と同じ材料からなる延長構造物が傾斜地盤中を横断する方向に延ばされる請求項1乃至5のいずれかに記載の傾斜地盤補強構造。   The sloped ground reinforcement according to any one of claims 1 to 5, wherein an extended structure made of the same material as the structure is extended in a direction crossing the sloped ground from an upstream side at least with respect to a downstream end of the structure. Construction.
  7. 傾斜地盤を当該地盤内に構造物を設置して補強する傾斜地盤補強工法において、
    前記構造物を、透水性及び強度を有する材料により、前記傾斜地盤中に水みちの上流側から下流側に向けて延びる壁状に形成して設置する、
    ことを特徴とする傾斜地盤補強工法。
    In the slope ground reinforcement method for reinforcing the slope ground by installing a structure in the ground,
    The structure is formed and installed in a wall shape extending from the upstream side to the downstream side of the water channel in the inclined ground by a material having water permeability and strength.
    The slope ground reinforcement method characterized by this.
  8. 透水性及び強度を有する材料に、水中不分離性を有するポーラスコンクリートを採用する請求項7に記載の傾斜地盤補強工法。   The slope ground reinforcement method according to claim 7, wherein porous concrete having underwater inseparability is adopted as a material having water permeability and strength.
  9. 複数の構造物を傾斜地盤に並列に設置する請求項7又は8に記載の傾斜地盤補強工法。   The slope ground reinforcement method according to claim 7 or 8, wherein a plurality of structures are installed in parallel on the slope ground.
JP2009186252A 2009-08-11 2009-08-11 Inclined ground reinforcement structure and construction method Active JP5405939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186252A JP5405939B2 (en) 2009-08-11 2009-08-11 Inclined ground reinforcement structure and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186252A JP5405939B2 (en) 2009-08-11 2009-08-11 Inclined ground reinforcement structure and construction method

Publications (2)

Publication Number Publication Date
JP2011038302A true JP2011038302A (en) 2011-02-24
JP5405939B2 JP5405939B2 (en) 2014-02-05

Family

ID=43766330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186252A Active JP5405939B2 (en) 2009-08-11 2009-08-11 Inclined ground reinforcement structure and construction method

Country Status (1)

Country Link
JP (1) JP5405939B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050378A (en) * 2014-08-28 2016-04-11 大成建設株式会社 Slope stabilization structure
JP2016108805A (en) * 2014-12-05 2016-06-20 大成建設株式会社 Slope stabilization structure
JP2016217038A (en) * 2015-05-22 2016-12-22 鹿島建設株式会社 Sand control dam construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238554A (en) * 1994-02-25 1995-09-12 Shimizu Corp Water permeable earth retaining wall
JP3749459B2 (en) * 2001-07-23 2006-03-01 有限会社太田ジオリサーチ Slope stabilization method
JP3773098B2 (en) * 2001-03-30 2006-05-10 有限会社太田ジオリサーチ Landslide control method
JP2008045352A (en) * 2006-08-18 2008-02-28 Kyokado Eng Co Ltd Landslide prevention construction method of valley-filling banking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238554A (en) * 1994-02-25 1995-09-12 Shimizu Corp Water permeable earth retaining wall
JP3773098B2 (en) * 2001-03-30 2006-05-10 有限会社太田ジオリサーチ Landslide control method
JP3749459B2 (en) * 2001-07-23 2006-03-01 有限会社太田ジオリサーチ Slope stabilization method
JP2008045352A (en) * 2006-08-18 2008-02-28 Kyokado Eng Co Ltd Landslide prevention construction method of valley-filling banking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050378A (en) * 2014-08-28 2016-04-11 大成建設株式会社 Slope stabilization structure
JP2016108805A (en) * 2014-12-05 2016-06-20 大成建設株式会社 Slope stabilization structure
JP2016217038A (en) * 2015-05-22 2016-12-22 鹿島建設株式会社 Sand control dam construction method

Also Published As

Publication number Publication date
JP5405939B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN107542108B (en) A kind of reverse construction method of building basement structure
CN201245846Y (en) Clamshell excavator stirring concrete enclosure wall
KR100970766B1 (en) Process for reinforcing base and preventing wash-out of earth under the bridges
JP5405939B2 (en) Inclined ground reinforcement structure and construction method
KR20160030882A (en) A gravity-based structure
JP2011032695A (en) Rainwater subterranean infiltration facility
Karandikar Challenges to quality control in bored cast-in-situ piling in growing urban environment
CN205617396U (en) Close on existing railway line construction protection structure
CN108316237B (en) Revetment retaining wall
CN109577277A (en) A kind of wall-mounted drainage anchor rod barrier wall structure and its construction method
JP2008223407A (en) Dyke foot protective retaining wall and its construction method
KR101074881B1 (en) cut-off wall using sheet pile working method
JP2006057242A (en) Construction method for earth retaining wall
JP6370295B2 (en) Embankment reinforcement structure and its construction method
JP4982631B2 (en) Liquefaction countermeasure method under breakwater by underground wall construction
JP5468052B2 (en) Gravity structure deepening method and gravity structure
KR100961181B1 (en) The well foundation method for which a steel caisson for pier reinforcement was used
KR102051579B1 (en) Soft ground improvement device and that method
JP6832101B2 (en) Reinforcement structure of embankment and reinforcement method of embankment
KR100589131B1 (en) Construction device of underwater bridge base structure that use of barge
Liew et al. Design of Full Top-Down Basement Construction with Drain Raft Concept Over Coastal Weathered Sedimentary Formation in Malaysia
Hamidi et al. The application of jet grouting for the construction of Sydney International Airport runway end safety area
Cashman et al. Methods for Exclusion of Groundwater
JP2017072020A (en) Installation method of capturing body and weir structure
CN109577365A (en) A kind of pile formula drainage anchor rod barrier wall structure and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250