JP3748730B2 - Roll support equipment for continuous casting equipment - Google Patents

Roll support equipment for continuous casting equipment Download PDF

Info

Publication number
JP3748730B2
JP3748730B2 JP05150099A JP5150099A JP3748730B2 JP 3748730 B2 JP3748730 B2 JP 3748730B2 JP 05150099 A JP05150099 A JP 05150099A JP 5150099 A JP5150099 A JP 5150099A JP 3748730 B2 JP3748730 B2 JP 3748730B2
Authority
JP
Japan
Prior art keywords
less
continuous casting
bearing
roll support
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05150099A
Other languages
Japanese (ja)
Other versions
JP2000246410A (en
Inventor
喜久男 前田
幸生 藤井
幸久 津森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP05150099A priority Critical patent/JP3748730B2/en
Publication of JP2000246410A publication Critical patent/JP2000246410A/en
Application granted granted Critical
Publication of JP3748730B2 publication Critical patent/JP3748730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Description

【0001】
【発明の属する技術分野】
この発明は、連続鋳造設備のピンチロールやガイドロール等を、ハウジングに回転自在に支持するロール支持装置に関するものである。
【0002】
【従来の技術】
鋼板や棒鋼等の素材となるスラブやブルーム等の鋳片は、ほとんど連続鋳造設備で製造されている。また、アルミニウム等の非鉄金属の分野でも、鋳片の製造に連続鋳造設備が使用される場合がある。スラブやブルームの連続鋳造設備には、垂直型、湾曲型、または、これらを組み合わせた垂直湾曲型のものが多く使用され、非鉄金属や異形部材の連続鋳造設備には、一部で水平型のものも使用されている。
【0003】
図1は、連続鋳造設備の例として、本発明の実施形態である垂直湾曲型のものを示す。この連続鋳造設備は、鋼板用のスラブを製造するものであり、取鍋2に入れられた溶鋼がタンディシュ3を介して鋳型4に鋳入され、鋳型4内で1次冷却されて表層部の凝固した鋳片5が、ピンチロール6で鋳型4の下方へ垂直に引き抜かれる。ピンチロール6で引き抜かれた鋳片5は、多数のガイドロール7に挟持されて湾曲状に案内され、各ロール間に配置されたスプレー(図示省略)で2次冷却されて全体が凝固したのち、湾曲部の出口に配置されたトーチ8で所定の長さに切断される。
【0004】
上記ピンチロールやガイドロールは、連続鋳造設備の型式等によって異なるが、これらのロールは転がり軸受でハウジングに回転自在に支持され、鋳造速度に合わせて低速で回転駆動される。転がり軸受としては複列ころ軸受が用いられることが多い。かかるロールの支持装置は、鋳片からの熱により高温環境下におかれ、かつ、鋳片から剥離したスケール等の異物や、冷却水およびその水蒸気が飛散する劣悪な環境下で高負荷を受ける。これらのロール支持装置の転がり軸受は、高炭素クロム軸受鋼のSUJ2を焼入れ処理したものが用いられ、温度上昇時の寸法変化を防止するために、これらの軸受はその使用温度よりも高温で焼戻し処理されている。
【0005】
【発明が解決しようとする課題】
上述したように、連続鋳造設備のロール支持装置の転がり軸受は、高温環境下で高負荷、低速回転で使用されるため、潤滑グリースの油膜ができ難く、かつ冷却水等の侵入でグリースが洗い流されるので、軌道面の摩耗や、ピーリングおよびスミアリング等の表面損傷が生じることがある。また、スケール等の異物を噛み込んで軌道面に圧痕が生じる場合もある。このため、これらの摩耗や表面損傷で軌道面が荒れてロール支持装置のメインテナンス周期が短い等の問題となることがある。
【0006】
通常、連続鋳造設備は昼夜連続で運転され、その定期修理の時期は、上工程の製鋼工程や下工程の圧延工程と調整して決められるので、ロール支持装置のメインテナンスのために連続鋳造設備を不定期に停止させることは、連続鋳造設備の稼働率を低下させるのみでなく、製鋼工程や圧延工程の稼働率にも影響する。近年は、連鋳鋳片を再加熱なしで圧延するダイレクト圧延や、連鋳鋳片を熱い間に再加熱炉に装入するホットチャージド圧延の比率が増加しているため、連続鋳造設備の突発停止が圧延工程へ与える影響はさらに大きくなっている。
【0007】
そこで、この発明の課題は、メインテナンス周期の長い連続鋳造設備のロール支持装置を提供することである。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、ロールをハウジングに転がり軸受により回転自在に支持する連続鋳造設備のロール支持装置において、前記軸受の少なくとも軌道輪を、合金元素として質量%で、Cを1.0%以上で1.2%以下、Siを0.3%以上で3.0%以下、Niを0.1%以上で3.0%以下含有し、かつ、Vを0.05%以上で1.0%以下、Moを0.05%以上で0.25%未満を単独または複合して含有する鋼材で形成し、この表面硬さをロックウェル硬さHRC58以上とした構成を採用したのである。
【0009】
前記軸受の少なくとも軌道輪を形成する鋼材の合金元素について、Si量を0.3〜3.0%含有させたのは、Siは高温域での軟化を抑制し、転がり軸受の耐熱性を改善する作用があるためである。0.3%未満ではその効果が得られず、Si量の増加に伴って耐熱性は向上するが、3.0%を越えて多量に含有させてもその効果は飽和し、かつ、熱間加工性や被削性が低下するので、上限を3.0%に限定した。
【0010】
Niを0.1〜3.0%、Vを0.05〜1.0%、Moを0.05〜0.25%未満ずつ単独または複合で含有させたのは、以下の理由による。
【0011】
Niは、鋼中に固溶してマトリックスを強化するとともに、特に軸受が高温下で使用された場合に、転動疲労過程における組織の変化を抑制し、かつ高温域での硬さの低下も抑制する。したがって、Niは高温環境下での転動疲労特性と耐摩耗性、耐表面損傷性を向上させる効果を有する。Niは耐食性を改善する効果もある。これらの効果を得るためには、Niを0.1%以上含有させる必要があるので、添加する場合の下限を0.1%とした。しかし、3.0%を越えてNiを含有させると、焼き入れ処理時に多量の残留オーステナイトが生成されて、所定の硬さを得られなくなり、また鋼材コストも高価になるので、上限を3.0%に限定した。
【0012】
Vは、炭素と結合して微細な炭化物を析出させ、結晶粒を微細化して強度、靱性を改善するとともに、高温焼戻し処理時の軟化を抑制し、さらに高温域での軟化も抑制する。したがって、上述したNiと同様に、Vは高温環境下での転動疲労特性と耐摩耗性、耐表面損傷性を向上させる効果を有する。この効果を得るために、V含有量の下限を0.05%とした。上限を1.0%に限定したのは、1.0%を越えてVを多量に含有させると、被削性と熱間加工性が低下するからである。
【0013】
Moは、鋼の焼入れ性を改善するとともに、焼戻し脆性を防止し、さらに高温域での軟化も抑制する。したがって、Moも高温環境下での転動疲労特性と耐摩耗性、耐表面損傷性を向上させる効果を有する。この効果を得るために、Mo含有量の下限を0.05%とした。Mo含有量を0.25%以上にすると被削性が低下し、かつ鋼材コストも上昇するので、上限を0.25%未満に限定した。
【0014】
上述した各合金元素の働きで、軸受が高温で焼戻し処理を施されても、その表面硬さをロックウェル硬さHRC58以上とすることにより、優れた転動疲労特性を確保した上で、耐摩耗性と耐表面損傷性を向上させ、軸受の耐久寿命を延ばして、ロール支持装置のメインテナンス周期を長くすることができる。
【0015】
前記鋼材に、合金元素として質量%で、Mnを0.2%以上で1.5%以下、Crを0.3以上で5.0%以下添加することにより、軸受の転動疲労特性と耐摩耗性、耐表面損傷性をさらに向上させることができる。
【0016】
すなわち、MnとCrは、いずれも鋼材の焼入れ性を改善し、Mnは鋼中に固溶して鋼を強靱化し、Crは炭化物を形成して鋼を強化する。Mn含有量の下限を0.2%、Cr含有量の下限を0.3%としたのは、これらの効果を得るためである。また、Mn含有量の上限を1.5%に限定したのは被削性の低下を避けるためであり、Cr含有量の上限を5.0%に限定したのは、大形の炭化物の生成による脆化を防止するためである。
【0017】
前記軸受の少なくとも軌道輪の表層に浸炭窒化層を形成し、この浸炭窒化層の残留オーステナイト量を10体積%以上とすることにより、軌道輪の表面層に高い靱性を付与して、亀裂の発生や進展を抑え、軸受の耐久寿命をさらに延ばすことができる。
【0018】
すなわち、浸炭窒化処理で表面層の窒素含有量を高めると、表面層のMs点(マルテンサイト変態開始温度)が低くなり、これを焼き入れすると、表面層に未変態のオーステナイトが多く残留する。残留オーステナイトは、高い靱性と加工硬化特性を有し、亀裂の発生や進展を抑える働きをする。また、Ms点が低下した表面層は、マルテンサイト変態が内部よりも遅れて始まり、かつ変態量も内部より少ないので、表面層には圧縮の残留応力が形成され、表面層の疲労強度が向上する。浸炭窒化層の残留オーステナイト量を10体積%以上としたのは、これらの効果を得るためである。一方、内部は高温焼戻しにより残留オーステナイト量が減少するので、使用時の残留オーステナイトの分解による寸法経年変化は抑えられる。
【0019】
前記転がり軸受装置としては複列ころ軸受を採用することができる。
【0020】
【発明の実施の形態】
以下、図面に基づき、この発明の実施形態を説明する。図1は、本発明のロール支持装置1を用いた連続鋳造設備を示す。この連続鋳造設備は、前述したように鋼板用のスラブを製造するものであり、取鍋2に入れられた溶鋼がタンディシュ3を介して鋳型4に鋳入され、鋳型4内で表層部の凝固した鋳片5が、ピンチロール6で鋳型4の下方へ垂直に引き抜かれる。ピンチロール6で引き抜かれた鋳片5は、多数のガイドロール7に挟持されて湾曲状に案内され、スプレー冷却されて全体が凝固したのち、湾曲部の出口に配置されたトーチ8で所定の長さに切断される。なお、図示は省略するが、各ガイドロール7も別のハウジングのロール支持装置で回転自在に支持されている。
【0021】
前記ロール支持装置1は、図2(a)に示すように、ピンチロール6のネック部9を、複列の自動調心ころ軸受10でハウジング11に回転自在に支持しており、軸受部の両側は、それぞれシールリング12、13とオイルシール14、15でシールされている。自動調心ころ軸受10は、図2(b)に拡大して示すように、外周面に複列の軌道16を有する内輪17と、内周面に球面軌道18を有する外輪19の間に、複列のたる形のころ20を保持器21で転動自在に保持したものであり、外輪19はハウジング11の内周面に嵌合され、内輪17はピンチロール6のネック部9に、シールリング12、13で軸方向を固定されている。
【0022】
前記内輪17と外輪19は、後の表1に実施例として示す化学成分を有する鋼を素材として、840℃〜860℃に加熱したのち塩浴中へ焼入れし、350℃で焼戻ししたものである。一部の実施例では、焼入れ前の加熱をアンモニアガスが添加された浸炭性雰囲気中で行い、浸炭窒化処理も施した。浸炭窒化処理を施したものについては、焼戻し温度を230℃とした。
【0023】
前記実施例の自動調心ころ軸受10の内輪17および外輪19は、サンプル抽出による検査の結果、いずれもロックウェル硬さHRC58以上の表面硬さを有し、浸炭窒化処理を施したものは、浸炭窒化層の残留オーステナイト量が10体積%以上になっていた。
【0024】
上述した実施形態は、垂直湾曲型の連続鋳造設備のピンチロール支持装置について示したが、本発明のロール支持装置は、非鉄金属分野を含めた種々の型式の連続鋳造設備において、ピンチロールやガイドロール等の支持に用いることができる。
【0025】
【表1】

Figure 0003748730
【0026】
以下に実施例および比較例を挙げる。
【0027】
【実施例】
表1に示す6種類の化学成分を有する鋼を素材として、上述した焼入れ焼戻し処理を施した試験片と軌道輪、およびこの軌道輪を用いた玉軸受(表1中の実施例1〜6)を用意した。実施例1〜6に示した一部の鋼材に浸炭窒化処理を施した試験片、軌道輪および玉軸受(表1中の実施例7〜8)も用意した。
【0028】
【比較例】
高炭素クロム軸受鋼SUJ2および本願の化学成分範囲を外れる2種類の化学成分を有する鋼を焼入れ焼戻し処理した試験片と軌道輪、およびこの軌道輪を用いた玉軸受(表1中の比較例1〜3)を用意した。SUJ2を素材としたものについては、浸炭窒化処理も施した試験片、軌道輪および玉軸受(表1中の比較例4)も用意した。
【0029】
上記実施例および比較例の試験片、軌道輪および玉軸受のいずれかのサンプルについて、寸法安定性試験、ピーリング試験、スミアリング試験、サバン型摩耗試験および異物混入寿命試験を実施した。
各試験の概要と結果は以下の通りである。
【0030】
(1)寸法安定性試験
350℃および230℃で焼戻し処理した軸受内輪を、それぞれ250℃と150℃で恒温保持し、内径の寸法変化率を測定した。保持時間は2500時間とし、収縮の変化率は負の値で表示した。試験結果を表2に示す。
【0031】
【表2】
Figure 0003748730
【0032】
実施例1〜6および比較例3の内輪は、寸法変化率が0.01%以下であり、優れた寸法安定性を示す。浸炭窒化処理を施した実施例7、8は、これらよりもわずかに寸法変化率が大きいが、規格(0.015%以下)の範囲内に納まっている。比較例1は、寸法変化率は小さいが、350℃焼戻し、250℃保持の試験で収縮の寸法変化を示すため、内輪の嵌め合い応力が過多となる恐れがある。また、CrとMoを多く含有する比較例3は膨張率が高く、規格を外れている。
【0033】
(2)ピーリング試験
ピーリング試験は、円筒部に緩やかな曲率を有するリング状の試験片を駆動軸と、この駆動軸に平行な従動軸に取り付け、両試験片の円筒面を互いに押し当てて転動させるものである。各試験片の寸法は、直径40mm、高さ12mm、円筒部の曲率半径60mmであり、駆動軸側試験片の円筒面はRmax 3μmの粗さに研削仕上げ、従動軸側試験片の円筒面は鏡面仕上げされる。ピーリング強度は、試験終了時の従動軸側試験片円筒面のピーリング発生面積率で評価される。実施例1、7および比較例1、2について、以下の試験条件でピーリング試験を行った。なお、駆動軸側および従動軸側の両試験片は、同種のサンプルのものをペアとして用いた。
【0034】
・試験片の最大表面粗さ:3.0μm(駆動軸側)、0.2μm(従動軸側)
・接触面圧Pmax :2.3GPa
・潤滑油 :タービン油VG46
・駆動軸回転速度:2000rpm
・総回転数 :4.8×105
【0035】
【表3】
Figure 0003748730
【0036】
試験結果を表3に示す。実施例の試験片は、いずれもピーリング発生面積率が1%程度であり、優れたピーリング強度を示す。比較例の各試験片は、実施例の3倍以上の大きなピーリング発生面積率になっている。
【0037】
(3)スミアリング試験
スミアリング試験は、ピーリング試験と同じ装置を用いて、2つのリング状試験片を同様に転動させるものである。この試験の場合は、従動軸が一定速度で回転駆動され、駆動軸は従動軸と等速回転から徐々に増速される点が異なる。また、従動軸側試験片の円筒面が駆動軸側試験片と同じ表面粗さRmax 3μmに仕上げられる点も異なる。スミアリング強度は、試験片の円筒面にスミアリングが発生した時点の駆動軸と従動軸の速度比で評価される。実施例1、7および比較例1、2、4について、以下の試験条件でスミアリング試験を行った。なお、この試験においても、摺動されるペアの試験片は同種のサンプルのものとした。
【0038】
・試験片の最大表面粗さ:3.0μm
・接触面圧Pmax :2.1GPa
・潤滑油 :タービン油VG46
・駆動軸回転速度:200rpmから100rpmずつ増速
・従動軸回転速度:200rpm一定
試験結果を表3に併せて示す。実施例の試験片は、比較例1に対して、いずれも1.4倍以上の大きな速度比までスミアリングが発生しない。比較例の各試験片は、実施例の半分程度の速度差でスミアリングが発生している。
【0039】
(4)サバン型摩耗試験
サバン型摩耗試験は、平板試験片を硬質の回転円筒の円筒面に一定時間押圧し、回転円筒との摺動で生じる平板試験片の摩耗痕の幅を測定して、体積摩耗量を算出するものである。実施例1、7および比較例1、2、4について、以下の試験条件でサバン型摩耗試験を行った。耐摩耗性は、比較例1の焼戻し温度が180℃のものとの体積摩耗量の比で評価した。
【0040】
・平板試験片 :幅5mm
・回転円筒 :直径40mm、幅4mm、硬さHRC62
・押圧荷重 :78.4N
・接触面圧Pmax :206MPa
・潤滑油 :タービン油VG68
・回転速度 :2000rpm
・試験時間 :10分
試験結果を表3に併せて示す。実施例の試験片は、高温で焼戻しされても表面硬さが低下していないため、優れた耐摩耗性を示し、いずれも浸炭窒化処理を施された比較例4よりも体積摩耗量が少ない。
【0041】
(4)異物混入寿命試験
実施例1、7および比較例1、2、4の玉軸受を硬質異物が混入された油浴中の回転軸に取り付け、ラジアル荷重を負荷して寿命試験を行った。この試験では、サンプル数Nを6とし、耐久寿命はL10寿命(サンプルの90%が破損しないで使える時間)で評価し、寿命比は比較例1の焼戻し温度が180℃のもののL10寿命を基準値とした。
【0042】
・玉軸受寸法 :内径30mm、外径62 mm、幅16mm
・回転速度 :2000rpm
・ラジアル荷重:6.86kN
・潤滑油 :タービン油VG56(25ccの油浴、油温60℃)
・異物 :ガスアトマイズ金属粉(粒径100〜180μm、硬さHV700〜800、混入量0.1g/リットル)
試験結果を表3に併せて示す。実施例の玉軸受は、浸炭窒化処理なしの実施例1でも寿命比が2倍を越え、浸炭窒化処理をした実施例7は寿命比が10倍近い長寿命になっている。
【0043】
以上の各試験結果より、実施例のものは、優れた耐摩耗性と耐表面損傷性を有するとともに、異物混入下でも耐久寿命が長く、かつ使用中の寸法の経年変化も少ないことがわかる。
【0044】
【発明の効果】
以上のように、この発明の連続鋳造設備のロール支持装置は、ロールを支持する転がり軸受の少なくとも軌道輪を、合金元素として質量%で、Cを1.0%以上で1.2%以下、Siを0.3%以上で3.0%以下、Niを0.1%以上で3.0%以下含有し、かつ、Vを0.05%以上で1.0%以下、Moを0.05%以上で0.25%未満を単独または複合して含有する鋼材で形成し、表面硬さをロックウェル硬さHRC58以上としたので、焼入れ焼戻し処理後の軸受の材質と表面硬さを高温下でも安定して転動疲労特性と耐摩耗性、耐表面損傷性に優れたものとし、高温環境下で使用されるロール支持装置のメインテナンス周期を長くして、連続鋳造設備の稼働率、さらには連続鋳造設備の上下工程の稼働率を高めることがきる。
【0045】
また、合金元素として質量%で、Mnを0.2%以上で1.5%以下、Crを0.3以上で5.0%以下添加することにより、前記転動疲労特性と耐摩耗性、耐表面損傷性をさらに向上させることができ、軸受の少くとも軌道輪の表層に浸炭窒化層を形成し、この浸炭窒化層の残留オーステナイト量を10体積%以上とすることにより、表面層に高い靱性を付与して、亀裂の発生や進展を抑え、ロール支持装置のメインテナンス周期をさらに延ばすことができる。
【図面の簡単な説明】
【図1】実施形態のロール支持装置が組み込まれた連続鋳造設備の外観斜視図
【図2】aは図1のロール支持装置の軸受部示す縦断面図、bはaの要部拡大断面図
【符号の説明】
1 ロール支持装置
2 取鍋
3 タンディシュ
4 鋳型
5 鋳片
6 ピンチロール
7 ガイドロール
8 トーチ
9 ネック部
10 自動調心ころ軸受軌道
11 ハウジング
12、13 シールリング
14、15 オイルシール
16 軌道
17 内輪
18 軌道
19 外輪
20 ころ
21 保持器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a roll support device that rotatably supports a pinch roll, a guide roll, and the like of a continuous casting facility on a housing.
[0002]
[Prior art]
Most slabs and bloom slabs, such as steel plates and steel bars, are manufactured with continuous casting equipment. Also, in the field of non-ferrous metals such as aluminum, continuous casting equipment may be used for the production of slabs. Many of the continuous casting equipment for slabs and blooms are of vertical type, curved type, or vertical curved type that combines these, and some non-ferrous metal and deformed parts are cast horizontally. Things are also used.
[0003]
FIG. 1 shows a vertical bending type as an embodiment of the present invention as an example of a continuous casting facility. This continuous casting equipment is for producing a slab for a steel plate. Molten steel placed in a ladle 2 is cast into a mold 4 through a tundish 3 and is primarily cooled in the mold 4 to form a surface layer portion. The solidified slab 5 is drawn vertically below the mold 4 by the pinch roll 6. The slab 5 pulled out by the pinch roll 6 is sandwiched between a large number of guide rolls 7 and guided in a curved shape. After being secondarily cooled by a spray (not shown) disposed between the rolls, the whole is solidified. Then, it is cut into a predetermined length by a torch 8 disposed at the exit of the curved portion.
[0004]
The pinch rolls and guide rolls differ depending on the type of continuous casting equipment, but these rolls are rotatably supported on the housing by rolling bearings and are driven to rotate at a low speed according to the casting speed. As a rolling bearing, a double row roller bearing is often used. Such a roll support device is subjected to a high load in a poor environment where the heat from the slab is placed in a high temperature environment and foreign matter such as scales peeled off from the slab, cooling water and its water vapor scatter. . The rolling bearings of these roll support devices are made by quenching high carbon chrome bearing steel SUJ2, and these bearings are tempered at a temperature higher than their operating temperature in order to prevent dimensional changes when the temperature rises. Has been processed.
[0005]
[Problems to be solved by the invention]
As described above, since the rolling bearing of the roll support device of the continuous casting equipment is used at a high load and a low speed under a high temperature environment, it is difficult to form an oil film of lubricating grease, and the grease is washed away by intrusion of cooling water or the like. As a result, wear on the raceway surface and surface damage such as peeling and smearing may occur. In some cases, a foreign object such as a scale bites into the raceway surface. For this reason, there are cases where the raceway surface is rough due to such wear or surface damage, and the maintenance cycle of the roll support device is short.
[0006]
Normally, continuous casting equipment is operated continuously day and night, and the period of periodic repairs is determined by adjusting the upper steelmaking process and the lower rolling process. Therefore, continuous casting equipment is used for maintenance of roll support equipment. Stopping irregularly not only lowers the operating rate of the continuous casting equipment, but also affects the operating rate of the steel making process and rolling process. In recent years, the ratio of direct rolling, in which continuous cast slabs are rolled without reheating, and hot charged rolling, in which continuous cast slabs are charged into a reheating furnace while hot, has increased. The impact of the stop on the rolling process is even greater.
[0007]
Then, the subject of this invention is providing the roll support apparatus of the continuous casting installation with a long maintenance cycle.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a roll supporting device for a continuous casting facility for rotatably supported by a rolling bearing the roll housing, at least bearing ring of the bearing, by mass% as an alloying element, C 1.0% or more and 1.2% or less, Si 0.3% or more and 3.0% or less , Ni 0.1% or more and 3.0% or less , and V 0.05 % % Or more and 1.0% or less, Mo is 0.05% or more and less than 0.25% is formed of a steel material alone or in combination, and the surface hardness is set to Rockwell hardness HRC58 or more. Adopted.
[0009]
The alloy element of the steel material that forms at least the bearing ring of the bearing contains Si in an amount of 0.3 to 3.0% because Si suppresses softening in a high temperature region and improves the heat resistance of the rolling bearing. This is because there is an action to do. If it is less than 0.3%, the effect cannot be obtained, and the heat resistance is improved as the amount of Si is increased. However, if the content exceeds 3.0%, the effect is saturated and hot. Since workability and machinability deteriorate, the upper limit was limited to 3.0%.
[0010]
The reason why Ni is contained in an amount of 0.1 to 3.0%, V is 0.05 to 1.0%, and Mo is less than 0.05 to 0.25% alone or in combination is as follows.
[0011]
Ni dissolves in steel and strengthens the matrix. In particular, when the bearing is used at high temperatures, it suppresses changes in the structure during the rolling fatigue process and reduces the hardness at high temperatures. Suppress. Therefore, Ni has an effect of improving rolling fatigue characteristics, wear resistance, and surface damage resistance in a high temperature environment. Ni also has the effect of improving the corrosion resistance. In order to acquire these effects, since it is necessary to contain Ni 0.1% or more, the minimum in the case of adding was made into 0.1%. However, if Ni is contained in excess of 3.0%, a large amount of retained austenite is generated during the quenching process, and a predetermined hardness cannot be obtained, and the cost of the steel material becomes expensive. Limited to 0%.
[0012]
V binds to carbon to precipitate fine carbides, refines crystal grains to improve strength and toughness, suppresses softening during high-temperature tempering treatment, and further suppresses softening in a high-temperature region. Therefore, like Ni described above, V has an effect of improving rolling fatigue characteristics, wear resistance, and surface damage resistance under a high temperature environment. In order to obtain this effect, the lower limit of the V content is set to 0.05%. The reason why the upper limit is limited to 1.0% is that if V is contained in a large amount exceeding 1.0%, machinability and hot workability are lowered.
[0013]
Mo improves the hardenability of the steel, prevents temper embrittlement, and further suppresses softening at high temperatures. Therefore, Mo also has the effect of improving rolling fatigue characteristics, wear resistance, and surface damage resistance in a high temperature environment. In order to obtain this effect, the lower limit of the Mo content is set to 0.05%. If the Mo content is 0.25% or more, the machinability decreases and the steel material cost also increases, so the upper limit was limited to less than 0.25%.
[0014]
Even if the bearing is subjected to tempering treatment at a high temperature due to the action of each alloy element described above, the surface hardness is set to Rockwell hardness HRC58 or more to ensure excellent rolling fatigue characteristics. The wear resistance and surface damage resistance can be improved, the durability life of the bearing can be extended, and the maintenance cycle of the roll support device can be extended.
[0015]
By adding mass% as an alloying element to the steel material, Mn is 0.2% or more and 1.5% or less, and Cr is 0.3 or more and 5.0% or less. Abrasion and surface damage resistance can be further improved.
[0016]
That is, both Mn and Cr improve the hardenability of the steel material, Mn dissolves in the steel and strengthens the steel, and Cr forms carbides and strengthens the steel. The reason why the lower limit of the Mn content is 0.2% and the lower limit of the Cr content is 0.3% is to obtain these effects. In addition, the upper limit of the Mn content is limited to 1.5% in order to avoid a decrease in machinability, and the upper limit of the Cr content is limited to 5.0% in order to generate large carbides. This is to prevent embrittlement due to the above.
[0017]
By forming a carbonitriding layer on at least the surface layer of the bearing ring of the bearing and making the amount of retained austenite of the carbonitriding layer 10 volume% or more, the surface layer of the bearing ring is imparted with high toughness and cracks are generated. And the progress can be suppressed, and the durability life of the bearing can be further extended.
[0018]
That is, when the nitrogen content of the surface layer is increased by carbonitriding, the Ms point (martensite transformation start temperature) of the surface layer is lowered, and when this is quenched, a large amount of untransformed austenite remains in the surface layer. Residual austenite has high toughness and work-hardening properties and functions to suppress the occurrence and development of cracks. Also, the surface layer with a lower Ms point starts martensite transformation later than the inside, and the amount of transformation is less than the inside, so that a compressive residual stress is formed in the surface layer and the fatigue strength of the surface layer is improved. To do. The reason why the amount of retained austenite in the carbonitrided layer is set to 10% by volume or more is to obtain these effects. On the other hand, since the amount of retained austenite is reduced due to high temperature tempering, the dimensional change due to decomposition of retained austenite during use can be suppressed.
[0019]
A double row roller bearing can be adopted as the rolling bearing device.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a continuous casting facility using the roll support apparatus 1 of the present invention. As described above, this continuous casting equipment is for producing a slab for a steel plate. Molten steel placed in a ladle 2 is cast into a mold 4 through a tundish 3, and the surface layer portion is solidified in the mold 4. The cast slab 5 is pulled out vertically below the mold 4 by the pinch roll 6. The slab 5 pulled out by the pinch roll 6 is sandwiched between a large number of guide rolls 7 and guided in a curved shape. After being cooled and sprayed, the whole is solidified, and then the torch 8 disposed at the exit of the curved portion Cut to length. In addition, although illustration is abbreviate | omitted, each guide roll 7 is also rotatably supported by the roll support apparatus of another housing.
[0021]
As shown in FIG. 2A, the roll support device 1 rotatably supports a neck portion 9 of a pinch roll 6 on a housing 11 with a double-row self-aligning roller bearing 10. Both sides are sealed by seal rings 12 and 13 and oil seals 14 and 15, respectively. As shown in an enlarged view in FIG. 2B, the self-aligning roller bearing 10 is provided between an inner ring 17 having a double row raceway 16 on an outer peripheral surface and an outer ring 19 having a spherical raceway 18 on an inner peripheral surface. A double-row barrel-shaped roller 20 is rotatably held by a cage 21, an outer ring 19 is fitted to the inner peripheral surface of the housing 11, and an inner ring 17 is sealed to the neck portion 9 of the pinch roll 6. The axial direction is fixed by the rings 12 and 13.
[0022]
The inner ring 17 and the outer ring 19 are made of steel having chemical components shown in the following Table 1 as an example, heated to 840 ° C. to 860 ° C., quenched into a salt bath, and tempered at 350 ° C. . In some examples, heating before quenching was performed in a carburizing atmosphere to which ammonia gas was added, and carbonitriding was also performed. For the carbonitrided one, the tempering temperature was 230 ° C.
[0023]
The inner ring 17 and the outer ring 19 of the self-aligning roller bearing 10 of the above-described embodiment are both subjected to a carbonitriding process, as a result of inspection by sample extraction, both having a surface hardness of Rockwell hardness HRC58 or higher. The amount of retained austenite in the carbonitrided layer was 10% by volume or more.
[0024]
The above-described embodiments have shown the pinch roll support device of the vertical bending type continuous casting equipment. However, the roll support device of the present invention can be used in various types of continuous casting equipment including the non-ferrous metal field. It can be used for supporting a roll or the like.
[0025]
[Table 1]
Figure 0003748730
[0026]
Examples and comparative examples are given below.
[0027]
【Example】
Using steels having six kinds of chemical components shown in Table 1 as raw materials, the test pieces and race rings subjected to the quenching and tempering treatment described above, and ball bearings using the race rings (Examples 1 to 6 in Table 1) Prepared. Test pieces, bearing rings and ball bearings (Examples 7 to 8 in Table 1) obtained by subjecting some of the steel materials shown in Examples 1 to 6 to carbonitriding were also prepared.
[0028]
[Comparative example]
High carbon chrome bearing steel SUJ2 and test pieces and race rings that were quenched and tempered of steels having two types of chemical components that deviate from the chemical component range of the present application, and ball bearings using the race rings (Comparative Example 1 in Table 1) ~ 3) were prepared. For those using SUJ2 as a raw material, a test piece, bearing ring and ball bearing (Comparative Example 4 in Table 1) which were also carbonitrided were also prepared.
[0029]
A dimensional stability test, a peeling test, a smearing test, a savan-type wear test, and a foreign matter contamination life test were performed on any of the samples of the test pieces, race rings and ball bearings of the above-mentioned examples and comparative examples.
The outline and results of each test are as follows.
[0030]
(1) Dimensional stability test The bearing inner rings tempered at 350 ° C and 230 ° C were kept at a constant temperature at 250 ° C and 150 ° C, respectively, and the dimensional change rate of the inner diameter was measured. The holding time was 2500 hours, and the rate of contraction change was displayed as a negative value. The test results are shown in Table 2.
[0031]
[Table 2]
Figure 0003748730
[0032]
The inner rings of Examples 1 to 6 and Comparative Example 3 have a dimensional change rate of 0.01% or less and exhibit excellent dimensional stability. In Examples 7 and 8 subjected to the carbonitriding process, the dimensional change rate is slightly larger than these, but is within the range of the standard (0.015% or less). In Comparative Example 1, although the dimensional change rate is small, the dimensional change of shrinkage is shown in the test of tempering at 350 ° C. and holding at 250 ° C., so there is a possibility that the fitting stress of the inner ring becomes excessive. Further, Comparative Example 3 containing a large amount of Cr and Mo has a high expansion coefficient and is out of specification.
[0033]
(2) Peeling test In the peeling test, a ring-shaped test piece having a gentle curvature is attached to a cylindrical portion on a drive shaft and a driven shaft parallel to the drive shaft, and the cylindrical surfaces of both test pieces are pressed against each other for rolling. It is something to move. Each test piece has a diameter of 40 mm, a height of 12 mm, and a cylindrical portion with a radius of curvature of 60 mm. The cylindrical surface of the drive shaft side test piece is ground to a roughness of Rmax 3 μm, and the cylindrical surface of the driven shaft side test piece is Mirror finish. The peeling strength is evaluated by the peeling generation area ratio of the cylindrical surface of the driven shaft side test piece at the end of the test. For Examples 1 and 7 and Comparative Examples 1 and 2, a peeling test was performed under the following test conditions. In addition, the sample of the same kind was used as a pair for both the test pieces on the drive shaft side and the driven shaft side.
[0034]
・ Maximum surface roughness of test piece: 3.0 μm (drive shaft side), 0.2 μm (driven shaft side)
Contact surface pressure Pmax: 2.3 GPa
・ Lubricant: Turbine oil VG46
・ Drive shaft rotation speed: 2000rpm
・ Total number of revolutions: 4.8 × 10 5 times [0035]
[Table 3]
Figure 0003748730
[0036]
The test results are shown in Table 3. The test pieces of the examples all have a peeling generation area ratio of about 1% and exhibit excellent peeling strength. Each test piece of the comparative example has a large peeling area ratio that is three times or more that of the example.
[0037]
(3) Smearing test The smearing test rolls two ring-shaped test pieces in the same manner using the same apparatus as the peeling test. In this test, the driven shaft is rotationally driven at a constant speed, and the driving shaft is different from the driven shaft in that the speed is gradually increased from constant speed rotation. Another difference is that the cylindrical surface of the driven shaft side test piece is finished to the same surface roughness Rmax 3 μm as the drive shaft side test piece. The smearing strength is evaluated by the speed ratio between the drive shaft and the driven shaft when smearing occurs on the cylindrical surface of the test piece. For Examples 1 and 7 and Comparative Examples 1, 2, and 4, smearing tests were performed under the following test conditions. In this test as well, the pair of specimens to be slid was of the same type.
[0038]
・ Maximum surface roughness of specimen: 3.0 μm
・ Contact pressure Pmax: 2.1 GPa
・ Lubricant: Turbine oil VG46
-Drive shaft rotational speed: Increased by 200 rpm from 200 rpm-Driven shaft rotational speed: 200 rpm constant Test results are also shown in Table 3. In the test pieces of Examples, smearing does not occur up to a large speed ratio of 1.4 times or more compared to Comparative Example 1. Each test piece of the comparative example is smeared with a speed difference of about half that of the example.
[0039]
(4) Sabang-type wear test The Sabang-type wear test is a method in which a flat test piece is pressed against the cylindrical surface of a hard rotating cylinder for a certain period of time, and the width of the wear mark on the flat test piece generated by sliding with the rotating cylinder is measured. The volume wear amount is calculated. For Examples 1 and 7 and Comparative Examples 1, 2, and 4, a Saban-type wear test was performed under the following test conditions. The abrasion resistance was evaluated by the ratio of the volume wear amount with that of Comparative Example 1 having a tempering temperature of 180 ° C.
[0040]
・ Flat plate test piece: Width 5mm
・ Rotating cylinder: diameter 40mm, width 4mm, hardness HRC62
・ Pressure load: 78.4N
Contact surface pressure Pmax: 206 MPa
・ Lubricant: Turbine oil VG68
・ Rotation speed: 2000rpm
Test time: 10 minutes test results are also shown in Table 3. The test pieces of the examples show excellent wear resistance because the surface hardness does not decrease even when tempered at a high temperature, and each of them has a smaller volume wear amount than the comparative example 4 subjected to carbonitriding treatment. .
[0041]
(4) Foreign matter mixing life test The ball bearings of Examples 1 and 7 and Comparative Examples 1, 2, and 4 were attached to a rotating shaft in an oil bath mixed with hard foreign matter, and a life test was performed by applying a radial load. . In this test, the number of samples N was 6, and the durability life was evaluated as L10 life (time in which 90% of the sample can be used without being damaged), and the life ratio was based on the L10 life when the tempering temperature of Comparative Example 1 was 180 ° C. Value.
[0042]
Ball bearing dimensions: 30 mm inner diameter, 62 mm outer diameter, 16 mm width
・ Rotation speed: 2000rpm
・ Radial load: 6.86kN
Lubricating oil: Turbine oil VG56 (25 cc oil bath, oil temperature 60 ° C.)
Foreign matter: gas atomized metal powder (particle size 100 to 180 μm, hardness HV 700 to 800, mixing amount 0.1 g / liter)
The test results are also shown in Table 3. The ball bearing of the example has a life ratio exceeding twice even in Example 1 without the carbonitriding treatment, and the life ratio of Example 7 with the carbonitriding treatment is nearly 10 times longer.
[0043]
From the above test results, it can be seen that the examples have excellent wear resistance and surface damage resistance, have a long durability life even under the presence of foreign matter, and have little aging change in dimensions during use.
[0044]
【The invention's effect】
As described above, the roll support device of the continuous casting equipment according to the present invention includes at least a bearing ring of a rolling bearing that supports the roll in mass% as an alloy element, and C is 1.0% or more and 1.2% or less, Si is 0.3% or more and 3.0% or less , Ni is 0.1% or more and 3.0% or less , V is 0.05% or more and 1.0% or less, and Mo is 0.00%. It is made of steel material containing 05% or more and less than 0.25% alone or in combination, and the surface hardness is set to Rockwell hardness HRC58 or more, so the material and surface hardness of the bearing after quenching and tempering treatment are high temperature The rolling fatigue characteristics, wear resistance, and surface damage resistance are stable even under high conditions, the maintenance cycle of roll support equipment used in high temperature environments is lengthened, the operation rate of continuous casting equipment, Can increase the operating rate of the upper and lower processes of continuous casting equipment
[0045]
Further, by adding mass% as an alloy element, Mn is 0.2% or more and 1.5% or less, and Cr is 0.3 or more and 5.0% or less, the rolling fatigue characteristics and wear resistance, The surface damage resistance can be further improved, and a carbonitriding layer is formed on the surface layer of at least the bearing ring of the bearing, and the amount of retained austenite of the carbonitriding layer is 10% by volume or more. It is possible to impart toughness, suppress the occurrence and development of cracks, and further extend the maintenance cycle of the roll support device.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a continuous casting facility in which a roll support device of an embodiment is incorporated. FIG. 2a is a longitudinal sectional view showing a bearing portion of the roll support device of FIG. [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Roll support apparatus 2 Ladle 3 Tundish 4 Mold 5 Slab 6 Pinch roll 7 Guide roll 8 Torch 9 Neck part 10 Self-aligning roller bearing track 11 Housing 12, 13 Seal ring 14, 15 Oil seal 16 Track 17 Inner ring 18 Track 19 Outer ring 20 Roller 21 Cage

Claims (4)

ロールをハウジングに転がり軸受により回転自在に支持する連続鋳造設備のロール支持装置において、前記軸受の少なくとも軌道輪を、合金元素として質量%で、Cを1.0%以上で1.2%以下、Siを0.3%以上で3.0%以下、Niを0.1%以上で3.0%以下含有し、かつ、Vを0.05%以上で1.0%以下、Moを0.05%以上で0.25%未満を単独または複合して含有する鋼材で形成し、この表面硬さをロックウェル硬さHRC58以上としたことを特徴とする連続鋳造設備のロール支持装置。In a roll support device of a continuous casting facility that rotatably supports a roll by a rolling bearing on a housing, at least the bearing ring of the bearing is mass% as an alloy element, and C is 1.0% or more and 1.2% or less, Si is 0.3% or more and 3.0% or less , Ni is 0.1% or more and 3.0% or less , V is 0.05% or more and 1.0% or less, and Mo is 0.00%. A roll support device for continuous casting equipment, characterized in that it is formed of a steel material containing not less than 05% and less than 0.25% alone or in combination, and the surface hardness is not less than Rockwell hardness HRC58. 前記鋼材に、合金元素として質量%で、Mnを0.2%以上で1.5%以下、Crを0.3%以上で5.0%以下添加した請求項1に記載の連続鋳造設備のロール支持装置。2. The continuous casting equipment according to claim 1, wherein the steel material is added by mass% as an alloy element, Mn is 0.2% or more and 1.5% or less, and Cr is 0.3% or more and 5.0% or less. Roll support device. 前記軸受の少なくとも軌道輪の表層に浸炭窒化層を形成し、この浸炭窒化層の残留オーステナイト量を10体積%以上とした請求項1または2に記載の連続鋳造設備のロール支持装置。The roll support device for a continuous casting facility according to claim 1 or 2, wherein a carbonitriding layer is formed on at least a surface layer of the bearing ring of the bearing, and a residual austenite amount of the carbonitriding layer is 10% by volume or more. 前記転がり軸受が複列ころ軸受である請求項1乃至3のいずれかに記載の連続鋳造設備のロール支持装置。The roll support device for continuous casting equipment according to any one of claims 1 to 3, wherein the rolling bearing is a double row roller bearing.
JP05150099A 1999-02-26 1999-02-26 Roll support equipment for continuous casting equipment Expired - Fee Related JP3748730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05150099A JP3748730B2 (en) 1999-02-26 1999-02-26 Roll support equipment for continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05150099A JP3748730B2 (en) 1999-02-26 1999-02-26 Roll support equipment for continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2000246410A JP2000246410A (en) 2000-09-12
JP3748730B2 true JP3748730B2 (en) 2006-02-22

Family

ID=12888711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05150099A Expired - Fee Related JP3748730B2 (en) 1999-02-26 1999-02-26 Roll support equipment for continuous casting equipment

Country Status (1)

Country Link
JP (1) JP3748730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802273B2 (en) * 2009-10-06 2011-10-26 Ntn株式会社 bearing
KR101372591B1 (en) * 2011-12-19 2014-03-11 주식회사 포스코 Multi dividing Pinch roll for segment of contious casting

Also Published As

Publication number Publication date
JP2000246410A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP3593668B2 (en) Rolling bearing
JP4423754B2 (en) Manufacturing method of rolling shaft
JP3128803B2 (en) Rolling bearing
JP6857738B2 (en) Steel materials for carburized bearing parts
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP2876715B2 (en) Rolling bearing
JP2001519853A (en) Steel and bearing parts manufacturing method
JP2002115030A (en) Rolling bearing for spindle of machine tool
WO2018041170A1 (en) Self-lubricating rolling bearing and preparation method therefor
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
KR20000006384A (en) Roll supporting device for a rolling mill arrangement
JP3656372B2 (en) Rolling bearing
JPH09257041A (en) Rolling bearing resistant for surface flaw
JP2002180203A (en) Needle bearing components, and method for producing the components
JPH1161337A (en) Rolling member and rolling device provided with the same
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP3748730B2 (en) Roll support equipment for continuous casting equipment
JP2008232212A (en) Rolling device
JP2006328514A (en) Rolling supporting device
JP5202040B2 (en) Steel material for bearings with excellent wear resistance
Doll Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings
JP3084421B2 (en) Rolling bearing made of carburized steel
JP2006045591A (en) Tapered roller bearing
JP2007217719A (en) Rolling member, rolling bearing and manufacturing methods thereof
JPH05179401A (en) Bearing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees