JP5202040B2 - Steel material for bearings with excellent wear resistance - Google Patents

Steel material for bearings with excellent wear resistance Download PDF

Info

Publication number
JP5202040B2
JP5202040B2 JP2008055344A JP2008055344A JP5202040B2 JP 5202040 B2 JP5202040 B2 JP 5202040B2 JP 2008055344 A JP2008055344 A JP 2008055344A JP 2008055344 A JP2008055344 A JP 2008055344A JP 5202040 B2 JP5202040 B2 JP 5202040B2
Authority
JP
Japan
Prior art keywords
carbides
carbide
wear resistance
steel material
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008055344A
Other languages
Japanese (ja)
Other versions
JP2009209429A (en
Inventor
学 藤田
和寛 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008055344A priority Critical patent/JP5202040B2/en
Publication of JP2009209429A publication Critical patent/JP2009209429A/en
Application granted granted Critical
Publication of JP5202040B2 publication Critical patent/JP5202040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、軸受部品として用いたときに優れた耐摩耗性を発揮する様な軸受を製造するための鋼材に関するものである。   The present invention relates to a steel material for producing a bearing that exhibits excellent wear resistance when used as a bearing component.

地球環境保全の観点から、軸受部品(以下、単に「軸受」と呼ぶことがある)は、軽量・小型化が進む傾向にあり、それに伴って軸受の使用環境は益々過酷になっている。そして過酷な使用環境の下で、軸受に対する面圧が増大する結果、転動時における軸受の摩耗が顕著化している。こうした摩耗が顕著化すると、軸受の精度が低下するため、軸受としての機能が十分に発揮されず、短期間で交換等のメンテナンスを実施する必要があり、問題となっている。   From the viewpoint of protecting the global environment, bearing components (hereinafter sometimes simply referred to as “bearings”) tend to be lighter and smaller, and the use environment of bearings has become increasingly severe. In a severe usage environment, the bearing pressure on the bearing increases, and as a result, the wear of the bearing during rolling becomes remarkable. When such wear becomes prominent, the accuracy of the bearing is lowered, so that the function as a bearing is not fully exhibited, and it is necessary to perform maintenance such as replacement in a short period of time, which is a problem.

軸受の素材として用いられる鋼材(軸受用鋼材)として、従来からJIS G 4805(1999)に規定されるSUJ2等の高炭素クロム軸受鋼が、自動車や各種産業機械等の種々の分野で用いられている。しかしながら、こうした軸受用鋼材を用いて通常の方法で軸受を構成しても、近年要求される耐摩耗性には対応できず、更なる改善が求められているのが実情である。   As steel materials (steel materials for bearings) used as bearing materials, conventionally, high carbon chromium bearing steels such as SUJ2 defined in JIS G 4805 (1999) have been used in various fields such as automobiles and various industrial machines. Yes. However, even if such a bearing steel material is used to form a bearing by an ordinary method, it is not possible to meet the recently required wear resistance, and further improvements are required.

この問題に対し、鋼材(軸受用鋼材)そのものを改善して軸受の耐摩耗性を改善する技術も提案されている。例えば、特許文献1には、鋼材にMo,W,V等の炭化物形成元素を含有させることによって炭化物を多量に生成させ、これによって軸受用鋼材の耐摩耗性を向上させることが開示されている。しかしこの様な多量の合金元素の使用は、コスト、加工性、製造性に問題が生じやすく、SUJ2ほど汎用性に優れているとは考えにくい。   In response to this problem, a technique for improving the wear resistance of the bearing by improving the steel material (steel material for the bearing) itself has been proposed. For example, Patent Document 1 discloses that a large amount of carbide is generated by adding a carbide forming element such as Mo, W, V or the like to the steel material, thereby improving the wear resistance of the steel material for bearings. . However, the use of such a large amount of alloy elements is likely to cause problems in cost, workability, and manufacturability, and is unlikely to be as versatile as SUJ2.

また、特許文献2では、肌焼鋼を素材とし、これに浸炭や浸炭窒化後に高周波焼入れを行って炭化物を微細分散させ、軌道面の表層部の炭素含有量および硬さを規定することによって、耐摩耗性を向上させる技術が提案されている。この技術では、焼入れ・焼戻し工程だけで軸受を製造できるSUJ2とは異なり、浸炭処理+高周波焼入れ処理を行って軸受を製造するものであるので、浸炭炉や高周波設備が必要となることや、従来の製造工程の変更を余儀なくされることになり、コストアップを招くばかりか、実用化が難しいと思われる。   Further, in Patent Document 2, the case-hardened steel is used as a raw material, and by performing induction hardening after carburizing and carbonitriding, carbide is finely dispersed, and by defining the carbon content and hardness of the surface layer portion of the raceway surface, Techniques for improving wear resistance have been proposed. Unlike SUJ2, which can manufacture bearings only by quenching and tempering processes, the carburizing process and induction hardening process are used to manufacture bearings. It will be forced to change the manufacturing process of this, which will not only raise the cost, but it seems difficult to put into practical use.

一方、汎用性のあるSUJ2鋼を用いることを前提とし、その特性を改善する方法も提案されている。こうした観点から、特許文献3には、素材鋼材としてSUJ2鋼を用い、これに対して温間圧延を行うことによって、全炭化物に対して平均粒径0.5μm以下の炭化物を全炭化物に対して50面積%以上とすると共に、平均粒径1μm以上の炭化物を2面積%以下とすることによって、軸受の摩耗量の低減、更には高寿命化や音響特性の改善が図れることが示されている。   On the other hand, on the premise that versatile SUJ2 steel is used, a method for improving the characteristics has also been proposed. From this point of view, Patent Document 3 uses SUJ2 steel as a raw steel material, and by performing warm rolling on the steel, a carbide having an average particle size of 0.5 μm or less with respect to all carbides It is shown that the wear amount of the bearing can be reduced, and the life can be improved and the acoustic characteristics can be improved by making the carbide having an average particle size of 1 μm or more 2 area% or less, and 50 area% or more. .

しかしながら、こうした技術によっても、耐摩耗性改善の点で不十分な場合がある。即ち、炭化物の面積率や大きさを規定するだけでは、炭化物間の距離の概念が存在せず、通常の製造方法では炭化物が偏って生成する場合が有り、炭化物生成量が少ない箇所から摩耗が生じやすく、良好な耐摩耗性が発揮されないことがある。   However, even such techniques may be insufficient in terms of improving wear resistance. In other words, there is no concept of the distance between carbides simply by defining the area ratio and size of carbides, and in normal manufacturing methods, carbides may be generated unevenly, and wear occurs from places where the amount of carbide generation is small. It is likely to occur and good wear resistance may not be exhibited.

また温間圧延前の圧延組織において、大きな板状セメンタイトが生成していた場合には、温間圧延だけでは炭化物の微細化が不十分になるだけでなく、大きな板状セメンタイトが存在していた付近では、炭化物が偏った状態で存在するため、良好な耐摩耗性が得られないことがある。しかも、この技術では熱間圧延の後に更に温間圧延を行うものであるため、設備投資に要するコストアップを招くばかりか、汎用性の点も依然として解消されないままである。
特開昭63−143239号公報 特開2002−194438号公報 特開平10−259451号公報
In addition, when large plate-like cementite was generated in the rolled structure before warm rolling, not only the refinement of carbides was insufficient with warm rolling alone, but also large plate-like cementite was present. In the vicinity, since the carbides are present in a biased state, good wear resistance may not be obtained. Moreover, since this technique performs further hot rolling after hot rolling, it not only increases the cost required for capital investment, but also the versatility remains unresolved.
JP 63-143239 A JP 2002-194438 A Japanese Patent Laid-Open No. 10-259451

本発明はこの様な事情に鑑みてなされたものであって、その目的は、軸受に適用したときに転動時における耐摩耗性に優れ、しかもコストアップを招くことなく製造できるような、汎用性のある軸受用鋼材を提供することにある。   The present invention has been made in view of such circumstances, and the purpose thereof is general-purpose, which is excellent in wear resistance at the time of rolling when applied to a bearing and can be manufactured without causing an increase in cost. An object of the present invention is to provide a steel material for bearings.

上記課題を解決することのできた本発明の軸受用鋼材とは、JIS G 4805(1999)で規定するSUJ2相当鋼、即ちC:0.95〜1.10%(質量%の意味、化学成分については以下同じ)、Si:0.15〜0.35%、Mn:0.50%以下(0%を含まない)、P:0.025%以下(0%を含まない)、S:0.025%以下(0%を含まない)、Cr:1.30〜1.60%を夫々含み、残部が鉄および不可避不純物からなり、焼入れ・焼戻しした後の任意の断面における炭化物の平均面積率が10〜16%であると共に、炭化物の平均個数が0.35〜0.50個/μm2である点に要旨を有するものである。尚、焼入れ・焼戻しした後とは、鋼材を熱間圧延した後球状化処理し、引き続いて所定の形状としてから、焼入れ・焼戻しした後の状態を意味する。 The steel for bearings of the present invention that has solved the above problems is SUJ2-equivalent steel specified by JIS G 4805 (1999), that is, C: 0.95 to 1.10% (meaning of mass%, chemical composition) Are the same), Si: 0.15 to 0.35%, Mn: 0.50% or less (not including 0%), P: 0.025% or less (not including 0%), S: 0.0. 025% or less (excluding 0%), Cr: 1.30 to 1.60%, respectively, the balance is made of iron and inevitable impurities, and the average area ratio of carbide in any cross section after quenching and tempering is In addition to being 10 to 16%, the average number of carbides is 0.35 to 0.50 / μm 2 . In addition, after quenching and tempering, the steel material is hot-rolled and then spheroidized, and subsequently formed into a predetermined shape and then quenched and tempered.

本発明の軸受用鋼材では、SUJ2鋼を素材として用いることを前提とし、既存の設備を用いて製造条件を適切にすることによって、硬質の炭化物を理想的な分散状態とすることができ、コストアップを招くことなく、従来材に比べて摩耗速度を1/2以下にできるような耐摩耗性に優れた軸受を製造することのできる鋼材が実現でき、こうした軸受用鋼材は汎用性にも優れたものとなる。   The bearing steel of the present invention is based on the premise that SUJ2 steel is used as a raw material, and by making the manufacturing conditions appropriate using existing equipment, it is possible to make hard carbides in an ideal dispersed state, and cost It is possible to produce a steel material that can produce a bearing with excellent wear resistance that can reduce the wear rate to ½ or less compared to conventional materials without incurring an increase in the wear rate. It will be.

本発明者らは、耐摩耗性に優れた軸受を製造するための鋼材(軸受用鋼材)を実現すべく様々な角度から検討した。その結果、軸受を耐摩耗性に優れたものとするためには、硬質の炭化物(セメンタイト)を理想的な状態に分散させ、局部的に摩耗する部分を極力低減することが重要であるとの知見が得られた。例えば、鋼材中の炭化物面積率が大きい状態であっても、分散状態が悪く(単位面積当りの個数が少ない)、炭化物が存在しない領域が多くなると、軸受部品全体としての良好な耐摩耗性が確保できなくなる。   The present inventors have studied from various angles in order to realize a steel material (bearing steel material) for manufacturing a bearing having excellent wear resistance. As a result, in order to make the bearings excellent in wear resistance, it is important to disperse hard carbide (cementite) in an ideal state and to reduce the locally worn parts as much as possible. Knowledge was obtained. For example, even if the carbide area ratio in the steel material is large, if the dispersion state is poor (the number per unit area is small) and the area where no carbide is present increases, good wear resistance as a whole bearing component can be obtained. It cannot be secured.

一方、炭化物の分散状態が良好(単位面積当りの個数が多い)であっても、炭化物の面積率が小さくなれば、炭化物が存在しない部分が多くなり、この場合にも軸受全体としての耐摩耗性が悪くなる。即ち、軸受の転動時における耐摩耗性を改善するためには、軸受における炭化物の面積率を大きくすると共に、炭化物の単位面積(任意の断面)当りの個数を多くする必要がある。   On the other hand, even if the dispersion state of carbide is good (the number per unit area is large), if the area ratio of carbide is small, the portion where carbide is not present increases, and in this case as well, the wear resistance of the entire bearing Sexuality gets worse. That is, in order to improve the wear resistance during rolling of the bearing, it is necessary to increase the area ratio of carbide in the bearing and increase the number of carbide per unit area (arbitrary cross section).

本発明者らは、素材鋼材としてSUJ2相当鋼を用いて、軸受における炭化物の面積率を大きくすると共に、炭化物の単位面積(任意の断面)当りの個数を多くするための条件について検討した。また、軸受の炭化物の分散状態は焼入れ・焼戻し前の組織に大きく依存することから、焼入れ・焼戻し前の組織において炭化物の面積率や個数を理想的な状態に分散する必要がある。換言すれば、焼入れ・焼戻し前の鋼材の段階の組織において炭化物の面積率や個数が理想的な状態に分散されていれば、その鋼材を用いて所定の形状に成形した後焼入れ・焼き戻しして軸受部品とされた後においても、炭化物の面積率や個数は理想的な状態に分散して残ることになる。   The present inventors used SUJ2 equivalent steel as a raw material steel, and examined conditions for increasing the area ratio of carbide in the bearing and increasing the number of carbide per unit area (arbitrary cross section). In addition, since the carbide dispersion state of the bearing greatly depends on the structure before quenching and tempering, it is necessary to disperse the area ratio and number of carbides to an ideal state in the structure before quenching and tempering. In other words, if the area ratio and number of carbides are dispersed in an ideal state in the structure of the steel material before quenching and tempering, the steel material is molded into a predetermined shape and then quenched and tempered. Even after being made into bearing parts, the area ratio and number of carbides remain dispersed in an ideal state.

その結果、熱間圧延をオーステナイト域で比較的低温で行うと共に、その後の球状化処理(球状化焼きなまし処理)の条件を適切にすれば、SUJ2相当鋼を用いても炭化物の面積率を所定量確保できると共に、炭化物の理想的な分散状態が得られ、優れた耐摩耗性を発揮する軸受を得るための鋼材(軸受用鋼材)が実現できた。   As a result, if hot rolling is performed at a relatively low temperature in the austenite region and the conditions for the subsequent spheroidizing treatment (spheroidizing annealing treatment) are made appropriate, even if SUJ2-equivalent steel is used, the carbide area ratio is a predetermined amount. The steel material (bearing steel material) for obtaining a bearing capable of securing an ideal dispersion state of carbide and exhibiting excellent wear resistance could be realized.

本発明の軸受用鋼材は、上記成分組成を満足する鋳片(例えば連続鋳造によって得られるスラブ鋳片)を、通常の分塊圧延および均熱処理(ソーキング炉による均熱拡散処理)等を行った後、熱間圧延および球状化処理(球状化焼なまし処理)を行うに際し、これらの条件を適切に制御することにより得られるが、このときの具体的条件は下記の通りである。   The bearing steel of the present invention was obtained by subjecting a slab satisfying the above component composition (for example, a slab slab obtained by continuous casting) to normal segment rolling and soaking (soaking furnace soaking). Thereafter, when performing hot rolling and spheroidizing treatment (spheroidizing annealing treatment), these conditions are obtained by appropriately controlling, and the specific conditions at this time are as follows.

球状化組織における炭化物を確保するために、オーステナイト域で極力低温での熱間圧延を行うことが有効である。即ち、低温で熱間圧延を行えば、オーステナイト結晶粒が微細となり、これによって炭化物形成の核の起点となる粒界が多くなり、更には球状化処理時、母相に溶け込むのに時間がかかる初析セメンタイトも分散して生成するため、最終的に鋼材中の炭化物の個数を高めることができる。また、結晶粒の微細化に伴って、焼入れ性が低下し、圧延材のパーライト組織のラメラー間隔が大きくなるため、球状化時の炭化物の母相への溶け込みに時間がかかることになる。その結果、炭化物が残留しやすい状態となるため、炭化物の更なる増加が可能となる。従って、オーステナイト結晶粒を可能な限り微細にするため、A変態点以上、850℃以下で熱間圧延を行うことが有効である。 In order to secure carbides in the spheroidized structure, it is effective to perform hot rolling at the lowest possible temperature in the austenite region. That is, if hot rolling is performed at a low temperature, the austenite crystal grains become finer, thereby increasing the number of grain boundaries that serve as starting points for carbide formation nuclei, and further, it takes time to dissolve in the matrix during spheroidization. Since the pro-eutectoid cementite is also dispersed and formed, the number of carbides in the steel material can be finally increased. Further, along with the refinement of crystal grains, the hardenability is lowered and the lamellar spacing of the pearlite structure of the rolled material is increased, so that it takes time to dissolve the carbide into the matrix during spheroidization. As a result, since the carbide is likely to remain, the carbide can be further increased. Therefore, in order to as much as possible austenite grains fine, A 1 transformation point or more, it is effective to perform hot rolling at 850 ° C. or less.

上記の熱間圧延の後は、球状化処理(球状化焼きなまし処理)を行うが、このときの条件は780〜810℃で4〜6時間加熱後、冷却速度を12〜18℃/時として680℃以下まで冷却することが有効である。球状化処理における冷却過程(加熱後の冷却過程)において、鋼材中の炭化物は成長する。このときの冷却速度を低下させれば、炭素の拡散量が多くなるため、炭化物の面積率を大きくすることができる。しかしながら、冷却速度が遅過ぎると、更なる炭素の拡散が進むため炭化物が粗大化凝集してしまい、炭化物の個数が減少することになる。その一方で冷却速度を速くすれば、炭素の拡散が十分でないため、炭化物が成長せず、炭化物面積率を確保できなくなる。こうしたことから、本発明において所定量の炭化物面積率および個数を確保するためには、球状化時の冷却速度(以下、「球状化処理時冷却速度」と呼ぶことがある)を12〜18℃/時に制御する必要がある。   After the above hot rolling, spheroidizing treatment (spheroidizing annealing treatment) is performed. The conditions at this time are 680 to 680 ° C./hour after heating at 780 to 810 ° C. for 4 to 6 hours. It is effective to cool to below ℃. In the cooling process in the spheroidization process (cooling process after heating), carbides in the steel material grow. If the cooling rate at this time is reduced, the amount of carbon diffusion increases, so that the area ratio of carbides can be increased. However, if the cooling rate is too slow, further carbon diffusion proceeds, so that the carbides are coarsely aggregated and the number of carbides decreases. On the other hand, if the cooling rate is increased, carbon is not sufficiently diffused, so that the carbide does not grow and the carbide area ratio cannot be secured. For this reason, in order to ensure a predetermined amount of carbide area ratio and number in the present invention, the cooling rate during spheroidization (hereinafter sometimes referred to as “sphering rate during spheroidizing treatment”) is 12 to 18 ° C. Need to be controlled.

球状化処理時の冷却停止温度は、680℃以下とする必要があるが、これは球状化がほとんど進行しない温度である。尚、一般的な球状化処理条件としては、780〜810℃で4〜6時間加熱後、冷却速度を10℃/時以下で徐冷し、600℃で冷却を停止した後放冷することが行われているが(例えば、「鋼の熱処理 改訂第5版」 社団法人鉄鋼協会編者 昭和56年8月20日発行、第427頁)、このような球状化処理では炭化物の個数は確保できない。   The cooling stop temperature during the spheroidizing treatment needs to be 680 ° C. or less, which is a temperature at which the spheroidizing hardly proceeds. As general spheroidizing treatment conditions, heating at 780 to 810 ° C. for 4 to 6 hours, gradually cooling at a cooling rate of 10 ° C./hour or less, stopping cooling at 600 ° C., and allowing to cool. Although it has been carried out (for example, “Steel Heat Treatment Revision 5th Edition” edited by the Iron and Steel Institute of Japan, August 20, 1981, p. 427), the number of carbides cannot be secured by such spheroidizing treatment.

上記したような製造条件で、熱間圧延および球状化処理を施した鋼材を用い、焼入れ・焼戻しを行うことによって、炭化物の平均面積率(以下、単に「面積率」と呼ぶことがある)を10%以上に確保できると共に、単位面積当りの炭化物の平均個数(以下、単に「個数」と呼ぶことがある)を0.35個/μm2以上に確保できる鋼材であり、こうした鋼材によって耐摩耗性の良好な軸受を製造することができる。前記炭化物の面積率は増大すればするほど、耐摩耗性は向上するが、鋼材の化学成分や製造条件等の関係から16%程度が上限となる。こうしたことは、単位面積当りの炭化物の個数についても同様であり、前記炭化物の個数は多くなればなるほど、耐摩耗性は向上するが、鋼材の化学成分や製造条件等の関係から、0.50個/μm2程度が上限となる。 By using a steel material that has been subjected to hot rolling and spheroidizing treatment under the manufacturing conditions as described above, quenching and tempering are performed to obtain an average area ratio of carbides (hereinafter, sometimes simply referred to as “area ratio”). It is a steel material that can secure 10% or more and can secure an average number of carbides per unit area (hereinafter, simply referred to as “number”) of 0.35 / μm 2 or more. A bearing having good properties can be manufactured. As the area ratio of the carbide increases, the wear resistance improves, but the upper limit is about 16% due to the chemical components of the steel material, production conditions, and the like. The same applies to the number of carbides per unit area. The larger the number of carbides, the better the wear resistance. However, from the relationship of the chemical composition and production conditions of the steel, 0.50 The upper limit is about pieces / μm 2 .

本発明の軸受用鋼材は、所定の部品形状に加工(必要により伸線加工されてから部品形状に加工)された後、焼入れ・焼戻しされて、軸受とされる(必要により軸受表面は研磨される)。本発明の軸受用鋼材は、基本的に軸受を容易に製造することのできる線状・棒状の鋼材として得られるが、そのサイズは、最終製品に応じて適宜決めることができる。即ち、本発明の軸受用鋼材は、製品に成形される前(圧延後)に、必要によって伸線加工された段階のものも含む趣旨である。   The steel material for bearings of the present invention is processed into a predetermined part shape (drawn if necessary and then processed into a part shape), and then quenched and tempered to form a bearing (the bearing surface is polished if necessary). ) Although the steel material for bearings of the present invention is basically obtained as a linear or rod-like steel material that can easily produce a bearing, the size can be appropriately determined according to the final product. That is, the steel material for bearings of the present invention is intended to include those that have been drawn as needed before being formed into products (after rolling).

上記焼入れ処理は、例えば、800〜840℃に加熱され、その温度で所定時間(例えば、30〜60分)保持した後、油焼入れされ、その後焼き戻しされる。このときの焼戻し条件は、鋼材の大きさや形状によっても異なるが(例えば、球、コロ、輪)、通常は120〜180℃×60〜250分程度である。即ち、本発明の軸受用鋼材では、一般的に行われている上記焼入れ・焼戻し条件で、鋼材中の炭化物の面積率や個数が確保できる。   For example, the quenching process is heated to 800 to 840 ° C., held at that temperature for a predetermined time (for example, 30 to 60 minutes), then oil-quenched, and then tempered. The tempering conditions at this time vary depending on the size and shape of the steel material (for example, spheres, rollers, rings), but are usually about 120 to 180 ° C. × 60 to 250 minutes. That is, in the steel for bearings of the present invention, the area ratio and the number of carbides in the steel can be secured under the above-described quenching and tempering conditions.

但し、焼入れ条件については、加熱時間が長すぎる場合には、炭化物が過剰に母相に溶け込み、炭化物の面積率、個数が確保できず、耐摩耗性が得られないことがある。こうしたことから、加熱時間は50分程度までとすることが好ましい(後記試験No.25)。   However, with regard to the quenching conditions, if the heating time is too long, carbides may excessively dissolve in the matrix phase, and the area ratio and number of carbides cannot be ensured, and wear resistance may not be obtained. For these reasons, the heating time is preferably up to about 50 minutes (Test No. 25 described later).

本発明の鋼材は、JIS G 4805(1999)で規定するSUJ2相当鋼であり、C:0.95〜1.10%、Si:0.15〜0.35%、Mn:0.50%以下(0%を含まない)、P:0.025%以下(0%を含まない)、S:0.025%以下(0%を含まない)、Cr:1.30〜1.60%を満たすものである。   The steel material of the present invention is SUJ2-equivalent steel specified by JIS G 4805 (1999), C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less (Not including 0%), P: not exceeding 0.025% (not including 0%), S: not exceeding 0.025% (not including 0%), Cr: satisfying 1.30 to 1.60% Is.

本発明の鋼材の基本的な化学成分組成は上記の通りであって、残部は鉄および不可避不純物である。該不可避不純物としては、Ni,Mo,Cu等が挙げられ、JISに規定される通り、Ni:0.25%未満、Mo:0.08%未満、Cu:0.25%未満である。   The basic chemical composition of the steel material of the present invention is as described above, with the balance being iron and inevitable impurities. Examples of the inevitable impurities include Ni, Mo, Cu, and the like, as defined in JIS, Ni: less than 0.25%, Mo: less than 0.08%, and Cu: less than 0.25%.

以下、実施例によって本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail by way of examples.However, the present invention is not limited by the following examples as a matter of course, and may be implemented with modifications within a range that can meet the gist of the preceding and following descriptions. Of course, they are all possible and are included in the technical scope of the present invention.

C:1.01%、Si:0.25%、Mn:0.36%、P:0.0014%、S:0.0005%、Cr:1.45%、残部:鉄および不可避不純物からなる鋼(SUJ2相当鋼)を連続鋳造で溶製し、155mm角のビレットに分塊圧延した後ソーキング炉(均熱炉)で加熱(加熱温度:1200℃)した。その後、下記表1に示す圧延温度で熱間圧延を行い、直径:70mmの圧延材(丸棒材)を得た。引き続き、795℃に加熱(加熱時間:6時間)した後、下記表1に示す冷却速度(球状化処理時冷却速度)で冷却する球状化処理(球状化焼きなまし処理)を行った(冷却停止温度:680℃、その後放冷)。尚上記鋼材について、下記(1)式に基づいて求められるA1変態点は、751℃である。このとき、2500mm間隔で炉体上部(高さ:約4200mm、幅:約2000mm)の熱電対にて雰囲気を制御した炉内に試料(鋼材)を投入して処理した。 C: 1.01%, Si: 0.25%, Mn: 0.36%, P: 0.0014%, S: 0.0005%, Cr: 1.45%, balance: iron and inevitable impurities Steel (SUJ2-equivalent steel) was melted by continuous casting, rolled into 155 mm square billets, and then heated in a soaking furnace (soaking furnace) (heating temperature: 1200 ° C.). Thereafter, hot rolling was performed at the rolling temperature shown in Table 1 below to obtain a rolled material (round bar) having a diameter of 70 mm. Subsequently, after heating to 795 ° C. (heating time: 6 hours), spheronization treatment (spheroidizing annealing treatment) was performed at the cooling rate (cooling rate during spheroidizing treatment) shown in Table 1 below (cooling stop temperature) : 680 ° C. and then allowed to cool). Note for the steel, A 1 transformation point obtained based on the following equation (1) is 751 ° C.. At this time, samples (steel materials) were put into a furnace whose atmosphere was controlled by a thermocouple at an upper part of the furnace body (height: about 4200 mm, width: about 2000 mm) at intervals of 2500 mm.

1変態点=723−10.7×[Mn]−16.9×[Ni]+29.1×[Si]
+16.9×[Cr]+290×[As]+6.83×[W] …(1)
但し、[Mn],[Ni],[Si],[Cr],[As]および[W]は、夫々Mn,Ni,Si,Cr,AsおよびWの含有量(質量%)を示す。
A 1 transformation point = 723-10.7 × [Mn] −16.9 × [Ni] + 29.1 × [Si]
+ 16.9 × [Cr] + 290 × [As] + 6.83 × [W] (1)
However, [Mn], [Ni], [Si], [Cr], [As] and [W] indicate the contents (mass%) of Mn, Ni, Si, Cr, As and W, respectively.

Figure 0005202040
Figure 0005202040

こうして得られた球状化処理材に対して、840℃に加熱して油焼入れを行うと共に、160℃×120分の条件で焼戻しした。尚、焼入れに際しては、加熱時間は基本的には30分とし、一部のものについては60分とした(後記試験No.25)。   The spheroidized material thus obtained was heated to 840 ° C. for oil quenching and tempered at 160 ° C. for 120 minutes. In the quenching, the heating time was basically 30 minutes, and some were 60 minutes (test No. 25 described later).

得られた鋼材(焼入れ・焼戻し材)について、直径:60mm、厚さ:6mmのスラスト試験片を作製し、下記の方法で炭化物の面積率、個数、表面硬さを測定すると共に、耐摩耗性を評価した。作製したスラスト試験片の外観形状を図1に示す。尚、図1において、1はスラスト試験片、2は荷重ボール(直径:9.525mm)、3は軌道輪を夫々示し、直径Dは60mm,軌道輪幅Wは38.5mmである。これらの結果を、一括して下記表2に示す。   About the obtained steel materials (quenched / tempered materials), a thrust test piece having a diameter of 60 mm and a thickness of 6 mm was prepared, and the area ratio, number, and surface hardness of carbides were measured by the following methods, and abrasion resistance was obtained. Evaluated. The external shape of the produced thrust test piece is shown in FIG. In FIG. 1, 1 is a thrust test piece, 2 is a load ball (diameter: 9.525 mm), 3 is a raceway, diameter D is 60 mm, and raceway width W is 38.5 mm. These results are collectively shown in Table 2 below.

(炭化物の面積率、個数の測定方法)
炭化物の面積率は、スラスト試験片の試験面の軌道輪3付近を走査型電子顕微鏡(「JSM−T220型」 日本電子株式会社製)を用いて4000倍で3視野撮影し、「粒子解析Ver.3.0」(住友金属テクノロジー株式会社製)を用いて面積率を求め、3視野の平均値を求めた。炭化物の個数については、上記炭化物面積率測定時において得られた個数に対して、測定した視野の面積(356μm2)で除した値の平均値を求めた。尚、炭化物は、あまり小さくなると炭化物周囲が判断しにくくなることから、円相当直径(面積を同一としたときに相当する円の直径)が0.1μm以上(4000倍の写真上で0.4mm以上)を測定対象とした。
(Measurement method of area ratio and number of carbides)
The area ratio of the carbide was measured at 4000 magnifications using a scanning electron microscope (“JSM-T220” manufactured by JEOL Ltd.) near the raceway 3 of the test surface of the thrust test piece. .3.0 "(manufactured by Sumitomo Metal Technology Co., Ltd.), the area ratio was determined, and the average value of three fields of view was determined. As for the number of carbides, an average value of values obtained by dividing the number of carbides obtained by the above-mentioned carbide area ratio measurement by the measured field area (356 μm 2 ) was obtained. In addition, since the carbide | carbonized_material becomes difficult to judge the circumference | surroundings of carbide | carbonized_material when it becomes small too much, a circle equivalent diameter (diameter of a circle | round | yen equivalent when the area is the same) is 0.1 micrometer or more (on a 4000 times photograph, 0.4 mm). The above was measured.

(硬さ測定方法)
図1に示したスラスト試験片(未試験のもの:試験を実施しない予備のサンプル)の軌道輪3上で、90°ずつ4箇所の位置(図1中、a〜dで示す)で、荷重98Nで測定し、その平均値を求めた。
(Hardness measurement method)
1 at four positions (indicated by a to d in FIG. 1) at 90 degrees on the raceway ring 3 of the thrust specimen shown in FIG. 1 (untested: spare sample not to be tested). Measurement was performed at 98N, and the average value was obtained.

(耐摩耗性の評価方法)
上記スラスト試験片に対して、転動疲労試験機(「FJ−5T」 株式会社富士試験機製作所製)を用いて評価した。このとき各鋼材における試験回数は、夫々16回ずつ(n=16)とした。このとき、面圧:5.24GPa、負荷速度:1500cpmで実施した。潤滑剤は、「クリセフオイルF8」(新日本石油株式会社製)を用い、摩耗速度は寿命に到達した後(軌道輪に剥離が発生した時点を寿命と判断)、軌道輪の摩耗深さを負荷回数で除して求め、その平均値(n=16)を用いた。摩耗深さについては、粗さ測定器「SE3300」(株式会社小坂研究所製)を用いて、上記4箇所を測定し、その平均値を求めた。この摩耗速度が10(×10-8)μm/回以下であれば、耐摩耗性に優れると判断した。
(Abrasion resistance evaluation method)
The thrust test piece was evaluated using a rolling fatigue tester (“FJ-5T” manufactured by Fuji Testing Machine Co., Ltd.). At this time, the number of tests for each steel material was 16 times (n = 16). At this time, the contact pressure was 5.24 GPa and the load speed was 1500 cpm. “Krysef Oil F8” (manufactured by Nippon Oil Co., Ltd.) is used as the lubricant, and after the wear rate reaches the end of its life (determination is made when the raceway is peeled off), the wear depth of the raceway is loaded. The average value (n = 16) was used by dividing by the number of times. About wear depth, the said 4 places were measured using roughness measuring instrument "SE3300" (made by Kosaka Laboratory Ltd.), and the average value was calculated | required. If the wear rate was 10 (× 10 −8 ) μm / time or less, it was judged that the wear resistance was excellent.

Figure 0005202040
Figure 0005202040

これらの結果から次のように考察することができる。即ち、No.1〜9(試験No.の意味、以下同じ)は、本発明で規定する要件(炭化物の面積率、炭化物の個数)を満足する実施例であり、いずれも優れた耐摩耗性を発揮していることが分かる。   These results can be considered as follows. That is, no. 1 to 9 (meaning of test No., the same applies hereinafter) are examples that satisfy the requirements (area ratio of carbide, number of carbides) defined in the present invention, and all exhibit excellent wear resistance. I understand that.

これに対し、No.10〜25のものは、本発明で規定する要件(炭化物の面積率、炭化物の個数)を外れるものであり、耐摩耗性が劣っている。   In contrast, no. Nos. 10 to 25 deviate from the requirements (the area ratio of carbides and the number of carbides) defined in the present invention, and wear resistance is poor.

詳細には、No.10、11は、圧延温度が850℃よりも高く、球状化処理時の冷却速度が遅い場合である。これらは、オーステナイトの微細化効果が低いものの、炭化物の拡散が十分行われるので、炭化物の面積率は高くなる。しかしながら、球状化処理時の冷却速度が遅いので、炭化物の凝集が進行し、炭化物個数が不足し、耐摩耗性が劣っている。   Specifically, no. 10 and 11 are cases where the rolling temperature is higher than 850 ° C. and the cooling rate during the spheroidizing process is slow. Although these have a low austenite refining effect, since the carbide is sufficiently diffused, the area ratio of the carbide is increased. However, since the cooling rate during the spheroidizing treatment is slow, the agglomeration of carbides proceeds, the number of carbides is insufficient, and the wear resistance is inferior.

No.12〜14は、圧延温度が850℃よりも高くなっており、球状化処理時の冷却速度が適正な場合であっても、オーステナイトの微細化効果が低いため、炭化物個数が確保できず耐摩耗性が不足している。   No. Nos. 12 to 14 have a rolling temperature higher than 850 ° C., and even when the cooling rate at the time of spheronization is appropriate, the austenite refining effect is low, so the number of carbides cannot be ensured and wear resistance. Lack of sex.

No.15、16は、圧延温度が850℃よりも高くなっており、球状化処理時の冷却速度が速すぎる場合である。オーステナイトの微細化効果が低く、更に炭化物が成長しないため、十分な炭化物面積率、個数が確保できず、耐摩耗性が劣っている。   No. 15 and 16 are cases where the rolling temperature is higher than 850 ° C. and the cooling rate during the spheroidizing treatment is too fast. Since austenite has a low refining effect and carbides do not grow, sufficient carbide area ratio and number cannot be ensured, and wear resistance is poor.

No.17〜20は、圧延温度が高すぎ、オーステナイトの微細化効果が得られないため、球状化処理時の冷却速度が速くても遅くても、十分な炭化物面積率や個数を確保することができず、耐摩耗性が劣っている。   No. In Nos. 17 to 20, since the rolling temperature is too high and the effect of refining austenite cannot be obtained, a sufficient carbide area ratio and number can be ensured regardless of whether the cooling rate during spheroidization is fast or slow. The wear resistance is inferior.

No.21、22は、適正な低温圧延を行った後、球状化処理時の冷却速度が遅い場合であり、十分な炭化物面積率が確保されているが、炭化物の凝集が進行して、炭化物の個数が確保できず、耐摩耗性が劣っている。   No. 21 and 22 are cases where the cooling rate during the spheroidizing treatment is slow after performing appropriate low-temperature rolling, and a sufficient carbide area ratio is ensured. Cannot be secured, and wear resistance is poor.

No.23、24は、適正な低温圧延を行った後、球状化処理時の冷却速度が速い場合であり、炭化物同士の凝集が進行しないため、炭化物の個数は確保できるが、成長に要する炭素の拡散が不十分なため、炭化物面積率が確保できず、耐摩耗性が劣っている。   No. Nos. 23 and 24 are cases where the cooling rate during the spheroidizing treatment is high after performing appropriate low-temperature rolling, and the agglomeration of carbides does not proceed, so that the number of carbides can be secured, but the diffusion of carbon required for growth Is insufficient, the carbide area ratio cannot be secured, and the wear resistance is inferior.

No.25は、焼入れ時の加熱時間が長い場合であり、炭化物の、面積率、個数が確保されておらず、耐摩耗性が劣っている。   No. No. 25 is a case where the heating time at the time of quenching is long, and the area ratio and the number of carbides are not secured, and the wear resistance is inferior.

スラスト試験片の外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of a thrust test piece.

符号の説明Explanation of symbols

1 スラスト試験片
2 荷重ボール
3 軌道輪
1 Thrust test piece 2 Load ball 3 Race ring

Claims (1)

C:0.95〜1.10%(質量%の意味、化学成分については以下同じ)、Si:0.15〜0.35%、Mn:0.50%以下(0%を含まない)、P:0.025%以下(0%を含まない)、S:0.025%以下(0%を含まない)、Cr:1.30〜1.60%を夫々含み、残部が鉄および不可避不純物からなり、焼入れ・焼戻しした後の任意の断面における炭化物の平均面積率が10〜16%であると共に、炭化物の平均個数が0.41〜0.50個/μm2であることを特徴とする耐摩耗性に優れた軸受用鋼材。 C: 0.95 to 1.10% (meaning of mass%, chemical components are the same hereinafter), Si: 0.15 to 0.35%, Mn: 0.50% or less (excluding 0%), P: 0.025% or less (not including 0%), S: 0.025% or less (not including 0%), Cr: 1.30 to 1.60%, respectively, the balance being iron and inevitable impurities The carbide has an average area ratio of 10 to 16% in an arbitrary cross-section after quenching and tempering, and an average number of carbides of 0.41 to 0.50 / μm 2. Steel material for bearings with excellent wear resistance.
JP2008055344A 2008-03-05 2008-03-05 Steel material for bearings with excellent wear resistance Expired - Fee Related JP5202040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055344A JP5202040B2 (en) 2008-03-05 2008-03-05 Steel material for bearings with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055344A JP5202040B2 (en) 2008-03-05 2008-03-05 Steel material for bearings with excellent wear resistance

Publications (2)

Publication Number Publication Date
JP2009209429A JP2009209429A (en) 2009-09-17
JP5202040B2 true JP5202040B2 (en) 2013-06-05

Family

ID=41182865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055344A Expired - Fee Related JP5202040B2 (en) 2008-03-05 2008-03-05 Steel material for bearings with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP5202040B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665564B2 (en) * 2011-01-21 2015-02-04 Ntn株式会社 Manufacturing method of bearing ring
EP2666875B1 (en) 2011-01-21 2019-11-27 NTN Corporation Method for manufacturing bearing ring, bearing ring
JP5820325B2 (en) * 2012-03-30 2015-11-24 株式会社神戸製鋼所 Steel material for bearings excellent in cold workability and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975314B2 (en) * 1999-08-27 2007-09-12 株式会社ジェイテクト Bearing part material and rolling bearing raceway manufacturing method

Also Published As

Publication number Publication date
JP2009209429A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5357994B2 (en) Machine structural steel for cold working and method for producing the same
US9593389B2 (en) Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
CN103237913B (en) Rolling bearing and method for producing same
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP2008088478A (en) Steel component for bearing having excellent fatigue property
CN104718305A (en) Bearing element, rolling bearing and process for producing bearing element
JP5114148B2 (en) Steel material for bearings with excellent stability of rolling fatigue life and method for producing the same
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP5202040B2 (en) Steel material for bearings with excellent wear resistance
JP5990428B2 (en) Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP2007100126A (en) Rolling member and ball bearing
JP6205960B2 (en) Steel for bearing
JP6205961B2 (en) Bearing, rolling bearing and manufacturing method thereof
JP6610131B2 (en) Hot forged parts and method for producing hot forged parts
JP2022170056A (en) steel
Atay et al. Investigation of the Microstructure and Mechanical Properties of Heat-Treated 42CrMoS4 Steel
JP2005139534A (en) Hypereuctectoid steel
WO2017146057A1 (en) Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same
JP2017150066A (en) Steel material and carburized steel component excellent in stability of rolling motion fatigue life and manufacturing method therefor
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
JPH05179401A (en) Bearing steel
JP5820325B2 (en) Steel material for bearings excellent in cold workability and manufacturing method thereof
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing
JP6350156B2 (en) Crankshaft and crankshaft steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees