JP3745730B2 - Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance - Google Patents

Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance Download PDF

Info

Publication number
JP3745730B2
JP3745730B2 JP2002333533A JP2002333533A JP3745730B2 JP 3745730 B2 JP3745730 B2 JP 3745730B2 JP 2002333533 A JP2002333533 A JP 2002333533A JP 2002333533 A JP2002333533 A JP 2002333533A JP 3745730 B2 JP3745730 B2 JP 3745730B2
Authority
JP
Japan
Prior art keywords
steel plate
metal
hot
dross
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333533A
Other languages
Japanese (ja)
Other versions
JP2004169068A (en
Inventor
久芳 小松
和彦 本田
秋男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002333533A priority Critical patent/JP3745730B2/en
Publication of JP2004169068A publication Critical patent/JP2004169068A/en
Application granted granted Critical
Publication of JP3745730B2 publication Critical patent/JP3745730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、美麗な表面外観を有する溶融亜鉛めっき鋼板の製造する方法の関するものである。
【0002】
【従来の技術】
従来、連続溶融金属めっきを施す場合には、一般的には、図5に示すように、還元性雰囲気中で焼鈍した鋼板1は、ターンダンロール4を介してスナウト3から溶融めっき槽2の溶融めっき浴5に導き浸漬され、次いでシンクロール6によって方向転換させて垂直方向に引き上げて行き、鋼板1の表面に付着して上がってきた溶融亜鉛の余剰な分を浴上に設けられた一対のガスワイピングノズル7によって所定のめっき目付量に調整することにより鋼板1の表面に所望のめっきを施すめっき法であり、その代表的な設備が、図5に示す連続溶融金属めっき装置の概略図である。なお、符号8はめっき浴面を示す。
【0003】
一方、連続溶融亜鉛めっきにおいては、めっき浴に亜鉛を用いる他に亜鉛と素地鋼との界面に硬くてもらいFe−Znの合金層の成長を抑制し、めっき密着性を向上させるために亜鉛中にAlを添加する場合がある。すなわち、めっき層と素地鋼との界面にAl富化層を形成させることにより亜鉛と素地鋼との界面のFe−Znの合金層を適度に抑制し、めっき層の剥離を防止するものである。このような連続溶融亜鉛めっきにおいては、溶融亜鉛が大気中の酸素や溶融亜鉛中に添加されているAlや、さらには鋼板等との化学反応によって生じるドロスが溶融亜鉛浴中に必然的に発生するという問題がある。特に、合金化溶融亜鉛めっき鋼板の製造工程から、溶融亜鉛めっき鋼板の製造工程に切替える際に浮遊ドロスの発生での問題が大きい。
【0004】
上記した連続溶融亜鉛めっきラインでの操業中にめっき浴に発生したドロスが、鋼板をめっき浴から引き上げられる際にドロスが鋼板に付着してしまい、品質上鋼板の外観および品質の劣化の原因となっていた。そこで、このドロスを除去し、鋼板の外観および品質劣化を防止する方法として、例えば特許文献1に開示されているように、溶融亜鉛ポット内にストリップを囲むコの字状の堰を設置し、この堰によって区切られた場所に溶融亜鉛ポット内から汲み上げた清浄な溶融亜鉛を流し込んで堰内部の溶融亜鉛に一方向の流れを作り、ストリップ近傍からドロスを排除して製品への付着を防止する溶融亜鉛めっき設備におけるストリップへのドロス付着防止方法が知られている。
【0005】
また、特許文献2に開示されているように、Zn−Al−Mg系溶融めっき鋼板の製造方法において、スナウトの先端を浴に浸漬することにより、加熱炉から送り出された鋼帯が浴に浸漬されるまでの間を大気雰囲気から遮断すると共に該スナウト内を非酸化性雰囲気に保持し、スナウト内の浴を通過している鋼帯にメタル以外の浮遊物が漂着するのを抑制する表面外観の優れた溶融Zn−Al−Mg系溶融めっき鋼板の製造方法が知られている。
【0006】
また、特許文献3には、めっき浴から垂直に上昇する鋼帯を挟んで、めっき浴の直上に設けられた一対の移動磁界発生コイルの磁極間にめっき浴面及び浴中の鋼帯を貫くU字状の軌跡をなす磁界を発生させ、この磁界が鋼帯の幅方向の何れか一方に移動することでその移動方向と同じ向きの電磁力を発生させ、この電磁力により磁界が貫いた部分のめっき浴中のめっき金属を鋼帯の幅方向に対流させ、これによりめっき浴面の浮遊するドロスを鋼帯の周辺から除去し、ドロスの鋼帯への付着を防止する方法が知られている。
【0007】
また、特許文献4には、溶融めっき浴から引き上げられる鋼帯の表裏両面に対向した移動磁場発生コイルで鋼帯を所定の搬送ラインに沿って走行させながら、鋼帯の立上り部近傍の湯面に、鋼帯の幅方向中央部から幅方向両端部に向かった電磁力を移動磁場により発生させ、電磁力で湯面近傍の溶融めっき金属を幅方向中央部から幅方向両端部に流動させる溶融めっき浴のトップドロス除去方法が知られている。
【0008】
さらには、特許文献5には、溶融金属めっき装置の溶融金属浴において、発生するトップドロスを電磁誘導作用による推進力を利用して除去する溶融金属浴のトップドロス除去方法、特許文献6には、めっき浴中の溶融金属に含まれる析出物を濾過し、ついで濾過後の溶融金属を、溶融金属中に浸漬された鋼帯の全幅にわたって、吹き付けることを特徴とする鋼帯の溶融金属めっき方法等が知られている。
【0009】
【引用文献】
(1)特許文献1(特開平6−32298号公報)
(2)特許文献2(特開2000−64015号公報)
(3)特許文献3(特開平11−36046号公報)
(4)特許文献4(特開平10−53850号公報)
(5)特許文献5(特開昭54−33234号公報)
(6)特許文献6(特開昭64−28354号公報)
【0010】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1の場合のドロスは溶融亜鉛ポット内の亜鉛表面近傍に浮遊するものを対象とし、また、堰内部に溶融亜鉛を流し込む方式を取り、速度勾配が浴面にとって大きく流れる方式が採用されている。さらに、ポンプからの吐出速度は2〜5m/s(120〜300m/分)で行なわれている。従って、本発明が目的としているサポートロールから浴表面に浮遊するドロスを対象としているものでなく、また、本発明の速度勾配と異なる流速を与え、かつ、流速が速いために攪拌流が生じて結果的に鋼板へ浮流ドロスを付着させることになるという欠点がある。
【0011】
また、特許文献2の場合は、Zn−Al−Mg系溶融めっきでの、スナウト内の浴を通過している鋼板にメタル以外の浮遊物が漂着するのを抑制するために、スナウト内での強制水平流の流速として鋼板の幅方向に0.015〜0.5m/secを流動させるもので、最大3m/分と流速が低く、浮遊ドロスを完全に付着防止するには十分な効果が得られない。また、特許文献3〜5は、いずれもめっき浴の直上ないしめっき浴面に設けられた電磁力で湯面近傍の溶融めっき金属を幅方向中央部から幅方向両端部に流動させる溶融めっき浴のトップドロス除去方法である。さらに、特許文献6の場合は、濾過工程という複雑な工程を必要としている。
【0012】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、鋼板がめっき浴を出るめっき浴面から100mm以内の深さであって、鋼板表面から100mm以内の範囲で、さらには鋼板に対し〜20°の角度でメタルを吐出し、メタルの所定の流れを造り、このメタルの流れにより発生するメタル剪断力でめっき浴中に浮遊するドロスを鋼板から分断し鋼板に付着するのを防止する美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法を提供する。
【0013】
その発明の要旨とするところは、
(1)還元性雰囲気中で焼鈍した鋼板をスナウトを経て溶融亜鉛浴中に導きめっきする連続溶融亜鉛めっきラインにおいて、鋼板をAl:0.08〜0.50質量%、Fe:0.10質量%以下、残部Znからなる溶融亜鉛めっき浴に浸漬した後、該溶融亜鉛めっき浴から引き上げるに際し、溶融亜鉛めっき浴槽の鋼板出側のめっき浴面から100mm以内の深さであって、かつ、鋼板表面から100mm以内の範囲でのめっき浴中に、鋼板板幅 方向に平行、かつ鋼板に対し5〜20°の角度にてメタル流速30〜100m/分を有するメタル流を生じさせ、鋼板に追従するめっき浴中の浮遊ドロスの付着を防止することを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。
【0014】
)前記(1)記載の方法において、鋼板速度(SV)とメタル流速(MV)との関係を下記範囲とすることを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。
(1)30≦SV<140の場合、30≦MV≦100
(2)140≦SV<180の場合、30+0.5(SV−140)<MV≦100
(3)180≦SV≦200の場合、50≦MV≦100
)前記(1)または(2)に記載のメタル流速30〜70m/分とすることを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。
)前記(1)〜(3)に記載のメタル流層厚を30〜95mmとすることを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法である。
【0015】
【発明の実施の形態】
以下、本発明について詳細に説明する。
上述したように、連続溶融亜鉛めっきにおいては、溶融亜鉛が大気中の酸素や溶融亜鉛中に添加されているAlや、さらには鋼板等との化学反応によって生じるドロスが溶融亜鉛浴中に必然的に発生する。このドロスは、大きくスナウト内で起因するベタツキドロスまたはヘドロドロスとFe−Zn、Fe−Al系合金に起因する微細ドロスまたは散砂ドロスおよび酸化ドロスであるトップドロスに区分することができる。
【0016】
上記ドロスの発生は、溶融亜鉛浴組成によって大きく影響し、浴中にAl濃度を高くした場合は、比重の比較的低いトップドロス(Fe2 Al5 :比重約4、Fe2 ZnAl4 :比重約5、ZnO、Al2 3 )が発生し、Al濃度が低い場合には、比重の比較的高いボトムドロス(FeZn7 :比重7.3)が発生する。また、その中間に属する浮遊ドロス(Fe2 ZnAl4 +FeZnx :比重5〜7.3)が存在する。本発明では、特に上記めっき浴中に浮遊するドロスで大きさが5mm以下の浮力が殆ど働かずに浮遊しているものの対策として効果があるものである。
【0017】
本発明において、Al:0.08〜0.50質量%、Fe:0.10質量%以下、残部Znからなる溶融亜鉛めっき浴を対象とした理由は、溶融亜鉛めっき製造の場合と溶融合金化めっきの場合を配慮したもので、合金化めっきの場合は、Al濃度が低く、一方、溶融亜鉛めっき浴組成の場合はAl濃度が合金化に比べて高い。この両者を同一めっき槽を用いて連続操業中に切り替え使用する関係から、両者を製造するAl濃度を含めて、合金化めっきのパウダリング性を考慮した最低値とする0.08質量%を下限した。また、溶融亜鉛めっき浴組成の最大値と密着性を考慮して、その上限値の0.50質量%としたものである。
【0018】
上記めっき浴組成から発生したドロス対策として、特に、上述したようにトップドロスやボトムドロスでなく、その中間に属する浮遊ドロスを対象とする。その時の浮遊ドロスの大きさは5mmφ、または、長径が5mm以下のものを指す。なお、1個の大きさが0.5mmφ以下のものは、めっき後の表面外観を損ねるまでに至っていないので、本発明の対象外とした。また、Feを0.10質量%以下としたのは、Feは不純物として連続溶融亜鉛めっき操業中に鋼板から必然的に入ってくるもので、出来るだけ低い方が好ましい。しかし、0.10質量%を超えるとめっき密着性を劣化させることから、その上限を0.10質量%とした。また、その時のめっき浴温度は通常430〜500℃の範囲で操業されるのが好ましい。
【0019】
図1は、本発明に係るめっき浴面でのメタル随伴流の状態を示す図である。図1(a)は横断面図であり、図1(b)は上断面図である。この図に示すように、溶融亜鉛めっき浴槽の鋼板出側のめっき浴面8へのメタル随伴流は、速度勾配9のように鋼板1との境界層10を生じる。この境界層厚みをδとすると、この境界層厚みδ=√η/(ρUL)×Lで推定できる。ただし、L=300mm、U=100mpm=10000/60〔cm/s〕、η=3.93×10-2〔P〕、ρ=7〔g/cm3 〕とする。上記の境界層厚みの計算から境界層厚みδ=0.3mmと算出できる。
【0020】
また、上記境界層中での粒子の動きは、流体内に速度勾配があり、かつ、粒子の速度の方が流体の速度より小さい時には、流体速度が大きい方に粒子を移動させる力が働くと言うサフマン力により粒子速度up=(81.2/12π)×d/v0.5 (u−up)√du/dy、ただし、upは粒子の浮上速度で密度が液体より低いときには、u<upとなる。従って、upはマイナスであり、粒子(ドロスの密度は5g/cm3 程度である)は鋼板から離れる。従って、境界層の中にある粒子(≦0.3mm)は外側に向かう力を受けることになる。しかし、境界層厚み0.3mmを超える大きさの粒子は、慣性力により近づいて、外側に向かう力を受ける前に鋼板に付着する可能性が高い。そこで、本発明に係る対象ドロスは0.5〜5mmφの浮遊ドロスを対象とすることから、この大きさでは、鋼板の周囲の境界層流は無視しても良いことが判った。この事実から、鋼板近傍の粒子(ドロス)が近づく前に粒子を横方向に流すことが、本発明における特徴である。
【0021】
図2は、鋼帯との境界層10近傍でのメタル流の状況を示す図である。図2(a)は従来のメタル流の状況を示すものであり、図2(b)は本発明によるメタル流の状況を示す。上記したことから、従来技術である特許文献1に開示されている技術では、メタル流速が極めて大きいために大きな粒子(トップドロス)を横方向に流せることは出来るが、小さな粒子は鋼板に付着することになる。すなわち、図2(a)のように、横方向の流れは乱流となり、乱流の渦に巻き込まれる粒子は鋼板近傍で鋼板1に近寄って付着することになる。
【0022】
これに対し、本発明の流れは、メタルポンプの吐出口から横方向に最適な位置、最適なメタル流速をもって供給されるので、図2(b)に示すように、主流11(主も強い流速)の位置が鋼板1から離れ、鋼板近傍の粒子は上述したサフマン力の原理により粒子速度upは抵抗力が働きu>upとなり、主流13側に引き寄せられる。すなわち、鋼板1とメタルポンプ(図示せず)からのメタル吐出口の位置〔A点〕は、鋼板1より5mm程度(L0 )離れている必要がある。A点が5mm程度以上離れると鋼板と横流の間に隙間が出来、外部から溶融亜鉛と共に粒子が侵入する。一方、〔B点〕は100mm以内(L3 )に位置するのが好ましい。100mmを超えると横方向の速度勾配9が着かなくなり、主流側に粒子は引き寄せられる効果が少なくなるからである。
【0023】
図3は、本発明に係るめっき浴面でのメタル流層を発生させる装置の概略図である。この図に示すように、溶融亜鉛めっき浴槽から鋼板出側のめっき浴面8からサポートロール12間において、めっき浴面8からL1 およびL2 の位置にメタル吐出口11を設置し、このメタル吐出口11を使用してメタル流速30〜100m/分を有するメタル流を生じさせる。すなわち、L2 の位置はめっき浴面8から100mm以内の深さに配設するもので、100mmを超える深い位置でのメタル流を生じさせても、鋼板に働くメタルの剪断力は小さく浮遊ドロスを鋼板から分離し鋼板に付着を防止する効果が小さく、かつ、浴中から出る直前で効果が大きいことから、その最大の深さを100mmとした。なお、明細書中で用いているメタル流層厚とは、L2 −L1 の長さのことである。また、L1 は、亜鉛浴表面から5mm程度以上下げることが望ましい。この理由は、メタル流層が、表面に出ると、表面を攪拌して巻き込む恐れがあるためである。
【0024】
また、メタル速度30〜100m/分としたのは、めっき速度が30〜100mm/分において、めっき外観が損なわれない良好な結果が得られた。しかし、30m/分未満ではメタルの剪断力が得られず浮遊ドロスを鋼板から分離し、鋼板に浮遊ドロスの付着を防止する効果が少なく美麗な外観がえられない。また、100m/分を超えると吐出口の管の縁近傍に乱流剥離による渦が生じやすくなり、ドロスが鋼板側に移動する頻度が上がり、ドロスが鋼板に付きやすくなる。鋼板へのドロス付着となることから、その上限を100m/分とした。好ましくは、30〜70m/分とする。なお、ここで言うメタル速度とはメタルポンプの流量(m3 /分)を吐出口の断面積(m2 )で割った計算値であり、すなわち、吐出口から出るメタルの平均流速のことである。
【0025】
図4は、本発明に係るめっき浴面でのメタル流層を発生させる装置の上断面図である。この図に示すように、メタル吐出口11を鋼板1からL3 の位置であり、かつ、鋼板1に対し、メタル吐出口11の角度θを〜20°の範囲でメタル流を生じさせ、鋼板に追従するめっき浴中の浮遊ドロスの付着するのを防止するものである。浮遊ドロスの付着を防止するためには、鋼板周囲に効率的な流れを作るのに角度が必要である。すなわち、上述したサフマン力原理により、鋼板からドロスを引き離す力を作用させるためには、角度を付けた方が鋼板周囲の流れの方向と速度勾配がより明確になり、より強く作用することになる。しかし、20°を超えるとその効果は逆に減少することから、その上限を20°とした。
【0026】
次に、メタル流速(MV)については、鋼板速度(SV)との関係があり、鋼板速度が速くなるに伴って、メタル流速も高める必要がある。その関係については、下記の範囲で行なうのが好ましい。
(1)30≦SV<140の場合、30≦MV≦100
(2)140≦SV<180の場合、30+0.5(SV−140)<MV≦100
(3)180≦SV≦200の場合、50≦MV≦100
すなわち、鋼板速度が30≦SV<140の場合、140≦SV<180の場合および180≦SV≦200の場合に分けてそれぞれの場合でのメタル流速を制御することが望ましい。
【0027】
上述した範囲においてメタル流を生じさせるものであるが、そのメタル流層厚としては、30〜95mmとする。30mm未満では、十分なメタルの剪断力が得られず美麗な外観がえられない。また、95mmを超える層でのメタル流は剪断力が飽和し、それ以上のメタル層を形成することは設備上高価なものになりコストアップとなることから、その上限を95mmとした。このように鋼板に対してメタル流を生じさせる装置としては、メタルポンプを使用するのが一般的であるが、これに限定されることなく、例えば電磁式のリニアモータ等も使用することが出来る。
【0028】
【実施例】
以下、本発明について実施例によって具体的に説明する。 厚さ0.7mm、幅1200mmの低炭素鋼板を素材とし、連続溶融亜鉛めっきラインで、表1に示すめっき浴組成、鋼板速度にて浸漬した。その時のメタル流速およびメタルポンプ位置ならびにメタル吐出口角度θの条件を表1に示す。その結果をめっき外観性にて評価した。表1に示すように、No.1〜12は本発明例であり、No.13〜20は比較例である。No.13〜15はメタル速度が遅いために、表面外観が不良となった。No.16はメタル速度が速いために、表面外観が不良となった。No.17〜20はいずれもメタル吐出口の位置が鋼板から離れた位置にあり、かつ、No.17はめっき浴の深い位置にあり、また、No.20はめっき浴面から深い位置にあるため、表面外観が不良であることが判る。これに対し、本発明No.1〜12のいずれも、表面外観の優れた溶融亜鉛めっき鋼板を得ることが出来た。
【0029】
【表1】

Figure 0003745730
【0030】
【発明の効果】
以上述べたように、本発明により浮遊ドロスの付着が抑制され、美麗な表面外観を有する溶融亜鉛めっき鋼板を得ることができると共に、そのめっき品質の向上と製品歩留りの向上を図ることが出来る優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明に係るめっき浴面でのメタル随伴流の状態を示す図である。
【図2】鋼帯との境界層近傍でのメタル流の状況を示す図である。
【図3】本発明に係るめっき浴面でのメタル流層を発生させる装置の概略図である。
【図4】本発明に係るめっき浴面でのメタル流層を発生させる装置の上断面図である。
【図5】一般的な連続溶融金属めっき装置の概略図である。
【符号の説明】
1 鋼板
2 溶融めっき槽
3 スナウト
4 ターンダンロール
5 めっき浴
6 シンクロール
7 ガスワイピングノズル
8 めっき浴面
9 速度勾配
10 境界層
11 メタル吐出口
12 サポートロール
13 主流[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance.
[0002]
[Prior art]
Conventionally, when continuous molten metal plating is performed, generally, as shown in FIG. 5, a steel plate 1 annealed in a reducing atmosphere is transferred from a snout 3 to a hot dipping bath 2 via a turn-roller roll 4. A pair of the molten zinc that is guided and immersed in the hot dipping bath 5, then changed in direction by the sink roll 6 and pulled up in the vertical direction, and the excess of the hot zinc adhering to the surface of the steel plate 1 is provided on the bath. 5 is a plating method in which a desired plating amount is applied to the surface of the steel sheet 1 by adjusting the coating weight per unit area by the gas wiping nozzle 7, and a typical facility is a schematic diagram of a continuous molten metal plating apparatus shown in FIG. 5. It is. Reference numeral 8 denotes a plating bath surface.
[0003]
On the other hand, in continuous hot dip galvanizing, in addition to using zinc in the plating bath, the interface between zinc and the base steel is made hard so that the growth of the alloy layer of Fe-Zn is suppressed and the plating adhesion is improved. In some cases, Al is added. That is, by forming an Al-enriched layer at the interface between the plating layer and the base steel, the Fe—Zn alloy layer at the interface between zinc and the base steel is moderately suppressed, and peeling of the plating layer is prevented. . In such continuous hot dip galvanizing, dross generated by chemical reaction with molten oxygen and oxygen added to the atmosphere, molten zinc, and even steel sheets inevitably occurs in the molten zinc bath. There is a problem of doing. In particular, when switching from the manufacturing process of the galvannealed steel sheet to the manufacturing process of the hot dip galvanized steel sheet, there is a great problem in generating floating dross.
[0004]
The dross generated in the plating bath during the operation in the above-mentioned continuous hot dip galvanizing line adheres to the steel plate when the steel plate is pulled up from the plating bath, which causes deterioration of the appearance and quality of the steel plate in terms of quality. It was. Therefore, as a method of removing this dross and preventing the appearance and quality deterioration of the steel sheet, for example, as disclosed in Patent Document 1, a U-shaped weir surrounding the strip is installed in the molten zinc pot, Pour clean molten zinc pumped from inside the molten zinc pot into the place delimited by this weir to create a one-way flow in the molten zinc inside the weir and eliminate dross from the vicinity of the strip to prevent adhesion to the product A method for preventing dross from adhering to a strip in a hot dip galvanizing facility is known.
[0005]
Further, as disclosed in Patent Document 2, in the method for producing a Zn-Al-Mg hot-dip plated steel sheet, the steel strip fed out of the heating furnace is immersed in the bath by immersing the tip of the snout in the bath. Surface appearance that keeps the inside of the snout in a non-oxidizing atmosphere and prevents floating of objects other than metal from drifting to the steel strip passing through the bath in the snout. The manufacturing method of the hot-dip Zn-Al-Mg type hot-dip plated steel sheet is known.
[0006]
In Patent Document 3, a steel strip rising vertically from the plating bath is sandwiched, and the plating bath surface and the steel strip in the bath are penetrated between the magnetic poles of a pair of moving magnetic field generating coils provided immediately above the plating bath. A magnetic field having a U-shaped trajectory is generated, and this magnetic field moves in one of the width directions of the steel strip to generate an electromagnetic force in the same direction as the moving direction. This electromagnetic force penetrates the magnetic field. A method is known in which the plating metal in the plating bath of the part is convected in the width direction of the steel strip, thereby removing the dross floating on the plating bath surface from the periphery of the steel strip and preventing the dross from adhering to the steel strip. ing.
[0007]
In addition, Patent Document 4 discloses a hot water surface in the vicinity of a rising portion of a steel strip while running the steel strip along a predetermined transfer line with a moving magnetic field generating coil facing both front and back surfaces of the steel strip pulled up from the hot dipping bath. In addition, an electromagnetic force is generated by a moving magnetic field from the widthwise center of the steel strip to both ends in the width direction, and the molten metal is caused to flow from the center in the width direction to both ends in the width direction by the electromagnetic force. A method for removing the top dross from the plating bath is known.
[0008]
Further, Patent Document 5 discloses a molten metal bath top dross removal method for removing generated top dross using a propulsive force due to electromagnetic induction in a molten metal bath of a molten metal plating apparatus. A method for hot metal plating of a steel strip characterized by filtering precipitates contained in the molten metal in a plating bath and then spraying the filtered molten metal over the entire width of the steel strip immersed in the molten metal Etc. are known.
[0009]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 6-32298)
(2) Patent Document 2 (Japanese Patent Laid-Open No. 2000-64015)
(3) Patent Document 3 (Japanese Patent Laid-Open No. 11-36046)
(4) Patent Document 4 (Japanese Patent Laid-Open No. 10-53850)
(5) Patent Document 5 (Japanese Patent Laid-Open No. 54-33234)
(6) Patent Document 6 (Japanese Patent Laid-Open No. 64-28354)
[0010]
[Problems to be solved by the invention]
However, the dross in the case of the above-mentioned patent document 1 is intended to float near the zinc surface in the molten zinc pot, and also takes a method in which molten zinc is poured into the weir and a method in which the velocity gradient flows greatly for the bath surface. Is adopted. Furthermore, the discharge speed from the pump is 2 to 5 m / s (120 to 300 m / min). Therefore, the present invention is not intended for the dross floating on the bath surface from the support roll intended by the present invention. Also, a flow rate different from the velocity gradient of the present invention is given, and a stirring flow is generated due to the high flow rate. As a result, there is a drawback that buoyant dross adheres to the steel plate.
[0011]
Moreover, in the case of patent document 2, in order to suppress floating substances other than a metal drifting to the steel plate which has passed the bath in a snout in Zn-Al-Mg system hot dipping, in a snout The flow rate of forced horizontal flow is 0.015 to 0.5 m / sec in the width direction of the steel sheet. The maximum flow rate is as low as 3 m / min, and a sufficient effect is obtained to completely prevent floating dross from adhering. I can't. Patent Documents 3 to 5 are all hot-dip plating baths in which molten metal near the molten metal surface flows from the center in the width direction to both ends in the width direction by electromagnetic force provided directly on the plating bath or on the surface of the plating bath. This is a top dross removal method. Furthermore, in the case of patent document 6, the complicated process called a filtration process is required.
[0012]
[Means for Solving the Problems]
In order to solve the problems as described above, the inventors have intensively developed, and as a result, the steel plate is within a depth of 100 mm from the plating bath surface where the plating bath exits, and within a range of 100 mm from the steel plate surface, Furthermore, the metal is discharged at an angle of 5 to 20 ° with respect to the steel plate, a predetermined flow of the metal is created, and the dross that floats in the plating bath is divided from the steel plate by the metal shearing force generated by this metal flow to the steel plate. Provided is a method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance that prevents adhesion.
[0013]
The gist of the invention is that
(1) In a continuous hot dip galvanizing line in which a steel plate annealed in a reducing atmosphere is introduced into a hot dip galvanizing bath through a snout and plated, the steel plate is Al: 0.08 to 0.50 mass%, Fe: 0.10 mass. %, Less than 100 mm from the plating bath surface on the steel sheet exit side of the hot dip galvanizing bath, and when the steel sheet is pulled up from the hot dip galvanizing bath, the steel plate In a plating bath within a range of 100 mm from the surface, a metal flow having a metal flow rate of 30 to 100 m / min is generated at an angle of 5 to 20 ° parallel to the steel plate width direction and follows the steel plate. A method for producing a hot dip galvanized steel sheet having a beautiful surface appearance, characterized by preventing adhesion of floating dross in a plating bath.
[0014]
( 2 ) In the method of said (1) description, the manufacturing method of the hot dip galvanized steel plate which has the beautiful surface appearance characterized by making the relationship between a steel plate speed (SV) and a metal flow velocity (MV) into the following range.
(1) In the case of 30 ≦ SV <140, 30 ≦ MV ≦ 100
(2) If 140 ≦ SV <180, 30 + 0.5 (SV−140) <MV ≦ 100
(3) In the case of 180 ≦ SV ≦ 200, 50 ≦ MV ≦ 100
( 3 ) A method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance, wherein the metal flow rate is 30 to 70 m / min as described in (1) or (2) above.
( 4 ) A method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance, wherein the metal flow layer thickness described in (1) to (3) is 30 to 95 mm.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
As described above, in continuous hot dip galvanization, dross generated by chemical reaction with molten oxygen and oxygen added to the atmosphere, molten zinc, and steel sheets is unavoidable in the molten zinc bath. Occurs. This dross can be roughly classified into solid dross or sludge dross caused by the inside of the snout and fine dross caused by the Fe-Zn, Fe-Al alloy, or top dross that is dust dross and oxidized dross.
[0016]
The generation of the dross is greatly influenced by the composition of the molten zinc bath. When the Al concentration in the bath is increased, the top dross having a relatively low specific gravity (Fe 2 Al 5 : specific gravity about 4, Fe 2 ZnAl 4 : specific gravity about) 5, ZnO, Al 2 O 3 ), and when the Al concentration is low, bottom dross (FeZn 7 : specific gravity 7.3) having a relatively high specific gravity is generated. Moreover, there exists a floating dross (Fe 2 ZnAl 4 + FeZn x : specific gravity 5 to 7.3) belonging to the middle. The present invention is particularly effective as a countermeasure against dross that floats in the plating bath and floats with little buoyancy of 5 mm or less.
[0017]
In the present invention, the reason for the hot dip galvanizing bath composed of Al: 0.08 to 0.50 mass%, Fe: 0.10 mass% or less, and the balance Zn is the case of hot dip galvanizing production and hot galvanizing. In consideration of the case of plating, in the case of alloying plating, the Al concentration is low, whereas in the case of the hot dip galvanizing bath composition, the Al concentration is higher than that of alloying. From the relationship of switching between these two during continuous operation using the same plating tank, including the Al concentration for producing both, the lower limit is 0.08% by mass considering the powdering properties of alloying plating. did. In consideration of the maximum value and adhesiveness of the hot dip galvanizing bath composition, the upper limit value is 0.50% by mass.
[0018]
As a countermeasure against dross generated from the plating bath composition, in particular, not the top dross and the bottom dross as described above, but the floating dross belonging to the middle is targeted. The size of the floating dross at that time is 5 mmφ, or the long diameter is 5 mm or less. In addition, since the size of one piece of 0.5 mmφ or less has not reached the surface appearance after plating, it was excluded from the scope of the present invention. The reason why Fe is 0.10% by mass or less is that Fe is inevitably introduced as an impurity from the steel plate during continuous hot dip galvanizing operation, and it is preferably as low as possible. However, if it exceeds 0.10 mass%, the plating adhesion deteriorates, so the upper limit was made 0.10 mass%. Moreover, it is preferable that the plating bath temperature at that time is normally operated in the range of 430-500 degreeC.
[0019]
FIG. 1 is a diagram showing a state of metal accompanying flow on the plating bath surface according to the present invention. FIG. 1A is a cross-sectional view, and FIG. 1B is an upper cross-sectional view. As shown in this figure, the metal accompanying flow to the plating bath surface 8 on the steel sheet exit side of the hot dip galvanizing bath produces a boundary layer 10 with the steel sheet 1 as a velocity gradient 9. If this boundary layer thickness is δ, this boundary layer thickness δ = √η / (ρUL) × L can be estimated. However, L = 300 mm, U = 100 mpm = 10000/60 [cm / s], η = 3.93 × 10 −2 [P], and ρ = 7 [g / cm 3 ]. From the calculation of the boundary layer thickness, the boundary layer thickness δ = 0.3 mm can be calculated.
[0020]
Further, the movement of the particles in the boundary layer has a velocity gradient in the fluid, and when the velocity of the particles is smaller than the velocity of the fluid, the force that moves the particles to the larger fluid velocity works. The particle speed up = (81.2 / 12π) × d / v 0.5 (up−up) √du / dy due to the Suffman force, but when up is the particle flying speed and the density is lower than the liquid, u <up Become. Therefore, up is negative, and the particles (the density of the dross is about 5 g / cm 3 ) are separated from the steel plate. Therefore, the particles (≦ 0.3 mm) in the boundary layer receive an outward force. However, there is a high possibility that particles having a size exceeding the boundary layer thickness of 0.3 mm will approach the steel plate before approaching the inertia force and receiving the outward force. Therefore, since the target dross according to the present invention is a floating dross of 0.5 to 5 mmφ, it has been found that the boundary layer flow around the steel plate may be ignored at this size. From this fact, it is a feature of the present invention that the particles flow in the lateral direction before the particles (dross) near the steel plate approach.
[0021]
FIG. 2 is a diagram showing the state of the metal flow in the vicinity of the boundary layer 10 with the steel strip. FIG. 2 (a) shows a conventional metal flow situation, and FIG. 2 (b) shows a metal flow situation according to the present invention. From the above, in the technique disclosed in Patent Document 1 which is a conventional technique, a large particle (top dross) can flow in the lateral direction because the metal flow velocity is extremely large, but the small particles adhere to the steel plate. It will be. That is, as shown in FIG. 2A, the lateral flow is turbulent, and the particles that are engulfed in the turbulent vortex approach and adhere to the steel plate 1 near the steel plate.
[0022]
On the other hand, since the flow of the present invention is supplied from the discharge port of the metal pump at an optimal position in the lateral direction and with an optimal metal flow velocity, as shown in FIG. ) Is separated from the steel plate 1, and the particles near the steel plate are attracted to the main flow 13 side by the resistance force u> up due to the above-described Suffman force principle. That is, the position (point A) of the metal discharge port from the steel plate 1 and the metal pump (not shown) needs to be separated from the steel plate 1 by about 5 mm (L 0 ). When the point A is separated by about 5 mm or more, a gap is formed between the steel plate and the cross current, and particles enter the molten zinc together from the outside. On the other hand, [B point] is preferably located within 100 mm (L 3 ). This is because when the diameter exceeds 100 mm, the velocity gradient 9 in the lateral direction is not reached, and the effect of attracting particles to the mainstream side is reduced.
[0023]
FIG. 3 is a schematic view of an apparatus for generating a metal flow layer on the plating bath surface according to the present invention. As shown in this figure, a metal discharge port 11 is installed at positions L 1 and L 2 from the plating bath surface 8 between the plating bath surface 8 and the support roll 12 on the steel sheet exit side from the hot dip galvanizing bath. The discharge port 11 is used to generate a metal flow having a metal flow rate of 30-100 m / min. That is, the position of L 2 is arranged at a depth within 100 mm from the plating bath surface 8, and even if a metal flow is generated at a deep position exceeding 100 mm, the shearing force of the metal acting on the steel plate is small and the floating dross The effect of separating the steel plate from the steel plate and preventing it from adhering to the steel plate is small, and the effect is large immediately before leaving the bath, so the maximum depth was set to 100 mm. In addition, the metal flow layer thickness used in the specification is a length of L 2 -L 1 . Further, it is desirable that L 1 is lowered by about 5 mm or more from the surface of the zinc bath. The reason for this is that when the metal flow layer comes out on the surface, the surface may be stirred and rolled up.
[0024]
In addition, the metal speed of 30 to 100 m / min was obtained when the plating speed was 30 to 100 mm / min. However, if it is less than 30 m / min, the shearing force of the metal cannot be obtained and the floating dross is separated from the steel plate, and the effect of preventing the floating dross from adhering to the steel plate is small, and a beautiful appearance cannot be obtained. Moreover, when it exceeds 100 m / min, the vortex | eddy by turbulent flow peeling will arise easily in the edge vicinity of the pipe | tube of a discharge outlet, the frequency which a dross will move to the steel plate side will go up, and a dross will adhere to a steel plate easily. Since it becomes dross adhesion to a steel plate, the upper limit was made into 100 m / min. Preferably, the speed is 30 to 70 m / min. The metal speed referred to here is the calculated value obtained by dividing the flow rate (m 3 / min) of the metal pump by the cross-sectional area (m 2 ) of the discharge port, that is, the average flow velocity of the metal coming out of the discharge port. is there.
[0025]
FIG. 4 is a top sectional view of an apparatus for generating a metal flow layer on the plating bath surface according to the present invention. As shown in this figure, the metal discharge port 11 is located at a position of L 3 from the steel plate 1 and the metal flow is generated with respect to the steel plate 1 at an angle θ of the metal discharge port 11 of 5 to 20 °. This prevents floating dross from adhering in the plating bath following the steel plate. In order to prevent floating dross from adhering, an angle is required to create an efficient flow around the steel plate. In other words, according to the Suffman force principle described above, in order to apply a force to pull the dross away from the steel plate, the direction of the flow and the velocity gradient around the steel plate become clearer and acts more strongly when the angle is applied. . However, when the angle exceeds 20 °, the effect decreases conversely, so the upper limit is set to 20 °.
[0026]
Next, the metal flow rate (MV) is related to the steel plate speed (SV), and it is necessary to increase the metal flow rate as the steel plate speed increases. The relationship is preferably performed within the following range.
(1) In the case of 30 ≦ SV <140, 30 ≦ MV ≦ 100
(2) If 140 ≦ SV <180, 30 + 0.5 (SV−140) <MV ≦ 100
(3) In the case of 180 ≦ SV ≦ 200, 50 ≦ MV ≦ 100
That is, it is desirable to control the metal flow rate in each case when the steel plate speed is 30 ≦ SV <140, 140 ≦ SV <180, and 180 ≦ SV ≦ 200.
[0027]
The metal flow is generated in the above-described range, and the metal flow layer thickness is 30 to 95 mm. If it is less than 30 mm, sufficient metal shearing force cannot be obtained and a beautiful appearance cannot be obtained. Moreover, since the shear force is saturated in the metal flow in the layer exceeding 95 mm, and forming a metal layer of more than that is expensive in terms of equipment and increases the cost, the upper limit is set to 95 mm. As a device for generating a metal flow with respect to the steel plate, a metal pump is generally used. However, the present invention is not limited to this, and an electromagnetic linear motor or the like can also be used. .
[0028]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. A low carbon steel plate having a thickness of 0.7 mm and a width of 1200 mm was used as a raw material, and immersed in a continuous hot dip galvanizing line at a plating bath composition and a steel plate speed shown in Table 1. Table 1 shows the conditions of the metal flow velocity, the metal pump position, and the metal discharge port angle θ at that time. The result was evaluated by plating appearance. As shown in Table 1, no. 1 to 12 are examples of the present invention. 13 to 20 are comparative examples. No. Since the metal speeds of Nos. 13 to 15 were slow, the surface appearance was poor. No. Since the metal speed of No. 16 was high, the surface appearance was poor. No. In Nos. 17 to 20, the metal discharge port is located away from the steel plate. No. 17 is located deep in the plating bath. Since 20 is located deep from the plating bath surface, it can be seen that the surface appearance is poor. On the other hand, the present invention No. Any of 1 to 12 was able to obtain a hot-dip galvanized steel sheet having an excellent surface appearance.
[0029]
[Table 1]
Figure 0003745730
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a hot dip galvanized steel sheet having a beautiful surface appearance, which can suppress the adhesion of floating dross, and can improve the plating quality and the product yield. It is effective.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state of metal accompanying flow on a plating bath surface according to the present invention.
FIG. 2 is a view showing a state of a metal flow in the vicinity of a boundary layer with a steel strip.
FIG. 3 is a schematic view of an apparatus for generating a metal flow layer on a plating bath surface according to the present invention.
FIG. 4 is a top sectional view of an apparatus for generating a metal flow layer on the plating bath surface according to the present invention.
FIG. 5 is a schematic view of a general continuous molten metal plating apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Hot dipping bath 3 Snout 4 Turn Dunn roll 5 Plating bath 6 Sink roll 7 Gas wiping nozzle 8 Plating bath surface 9 Speed gradient 10 Boundary layer 11 Metal discharge port 12 Support roll 13 Mainstream

Claims (4)

還元性雰囲気中で焼鈍した鋼板をスナウトを経て溶融亜鉛浴中に導きめっきする連続溶融亜鉛めっきラインにおいて、鋼板をAl:0.08〜0.50質量%、Fe:0.10質量%以下、残部Znからなる溶融亜鉛めっき浴に浸漬した後、該溶融亜鉛めっき浴から引き上げるに際し、溶融亜鉛めっき浴槽の鋼板出側のめっき浴面から100mm以内の深さであって、かつ、鋼板表面から100mm以内の範囲でのめっき浴中に、鋼板板幅方向に平行、かつ鋼板に対し5〜20°の角度にてメタル流速30〜100m/分を有するメタル流を生じさせ、鋼板に追従するめっき浴中の浮遊ドロスの付着を防止することを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。In a continuous hot dip galvanizing line in which a steel plate annealed in a reducing atmosphere is led into a hot dip galvanizing bath through a snout, the steel plate is made of Al: 0.08 to 0.50 mass%, Fe: 0.10 mass% or less, After being immersed in the hot dip galvanizing bath composed of the remaining Zn, when being pulled up from the hot dip galvanizing bath, the depth is within 100 mm from the plating bath surface on the steel sheet exit side of the hot dip galvanizing bath, and 100 mm from the steel plate surface. A plating bath that follows a steel plate by generating a metal flow having a metal flow rate of 30 to 100 m / min at an angle of 5 to 20 ° with respect to the steel plate in a plating bath within the range of A method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance, characterized by preventing adhesion of floating dross inside. 請求項1記載の方法において、鋼板速度(SV)とメタル流速(MV)との関係を下記範囲とすることを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。The method according to claim 1, wherein the relationship between the steel plate speed (SV) and the metal flow rate (MV) is in the following range.
(1)30≦SV<140の場合、30≦MV≦100(1) In the case of 30 ≦ SV <140, 30 ≦ MV ≦ 100
(2)140≦SV<180の場合、30+0.5(SV−140)<MV≦100(2) When 140 ≦ SV <180, 30 + 0.5 (SV−140) <MV ≦ 100
(3)180≦SV≦200の場合、50≦MV≦100(3) When 180 ≦ SV ≦ 200, 50 ≦ MV ≦ 100
請求項1または2に記載のメタル流速30〜70m/分とすることを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。A method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance, wherein the metal flow rate is 30 to 70 m / min according to claim 1 or 2. 請求項1〜3に記載のメタル流層厚を30〜95mmとすることを特徴とする美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法。A method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance, wherein the metal flow layer thickness according to claim 1 is 30 to 95 mm .
JP2002333533A 2002-11-18 2002-11-18 Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance Expired - Fee Related JP3745730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333533A JP3745730B2 (en) 2002-11-18 2002-11-18 Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333533A JP3745730B2 (en) 2002-11-18 2002-11-18 Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance

Publications (2)

Publication Number Publication Date
JP2004169068A JP2004169068A (en) 2004-06-17
JP3745730B2 true JP3745730B2 (en) 2006-02-15

Family

ID=32698219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333533A Expired - Fee Related JP3745730B2 (en) 2002-11-18 2002-11-18 Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance

Country Status (1)

Country Link
JP (1) JP3745730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894326B2 (en) * 2006-03-31 2012-03-14 Jfeスチール株式会社 Molten metal plating equipment for steel sheet
JP5228653B2 (en) * 2008-07-04 2013-07-03 Jfeスチール株式会社 Control apparatus for molten metal bath and method for producing hot-dip metal strip

Also Published As

Publication number Publication date
JP2004169068A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
EP3608436A1 (en) Method and device for controlling flow of liquid zinc in zinc pot for hot-dip galvanization
JP3745730B2 (en) Method for producing hot-dip galvanized steel sheet having a beautiful surface appearance
JP3580241B2 (en) Hot dip galvanized steel sheet manufacturing equipment
JPH09228016A (en) Method for plating molten metal and device therefor
JPH0797669A (en) Method and apparatus for producing hot dip metal coated steel sheet
JP3017513B2 (en) Continuous strip metal plating equipment for steel strip
JP4238457B2 (en) Method for removing dross in molten metal plating bath and molten metal plating apparatus
JP2001164349A (en) Method and device for reducing dross in galvanizing bath
JP2842204B2 (en) Continuous hot-dip plating method and apparatus
JPH10226864A (en) Production of hot dip galvanized steel sheet
JPH09316620A (en) Device for producing hot dip galvanized steel strip
JPH07268578A (en) Continuous hot dip metal coating device
JP5228653B2 (en) Control apparatus for molten metal bath and method for producing hot-dip metal strip
JPH04247861A (en) Continuous galvanizing method and device
JP3264846B2 (en) Hot metal plating method
KR100356687B1 (en) Impurity removal method of alloying hot dip galvanizing bath
JP4691821B2 (en) Hot dip galvanizing method and apparatus
JP2003231958A (en) Hot-dipping steel plate manufacturing apparatus
JP3497353B2 (en) Hot-dip metal plating method and hot-dip metal plating apparatus
JPH07113154A (en) Method and device for hot-dipping
JP2002004021A (en) Method for producing hot-dip galvanized steel sheet
JP2897583B2 (en) Method and apparatus for removing dross from hot dip galvanizing bath
JP2962754B2 (en) Continuous hot-dip galvanizing method and apparatus
JPH0959752A (en) Method and device for removing dross in continuous hot-dip galvanizing bath
JPH05209258A (en) Method for removing foreign matter in hot-dipping bath and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R151 Written notification of patent or utility model registration

Ref document number: 3745730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees