JP3745526B2 - Roughing intermediate shape model generator for NC data creation - Google Patents

Roughing intermediate shape model generator for NC data creation Download PDF

Info

Publication number
JP3745526B2
JP3745526B2 JP04946798A JP4946798A JP3745526B2 JP 3745526 B2 JP3745526 B2 JP 3745526B2 JP 04946798 A JP04946798 A JP 04946798A JP 4946798 A JP4946798 A JP 4946798A JP 3745526 B2 JP3745526 B2 JP 3745526B2
Authority
JP
Japan
Prior art keywords
intermediate shape
partial
partial intermediate
shape
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04946798A
Other languages
Japanese (ja)
Other versions
JPH11249722A (en
Inventor
正人 本多
穣 森
浩章 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04946798A priority Critical patent/JP3745526B2/en
Publication of JPH11249722A publication Critical patent/JPH11249722A/en
Application granted granted Critical
Publication of JP3745526B2 publication Critical patent/JP3745526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、CAM(コンピュータ支援加工)システムでの荒加工に使用するNC(数値制御)データを作成する際に用いて好適な荒加工中間形状モデルを生成する装置に関するものである。
【0002】
【従来の技術】
ブロック状の鋼材からの削り出しを行う、鍛造型等の金型の製作の際には、一般に、その当初のブロック状の素材形状から荒加工によって金型最終形状に近い素材形状を削り出した後に仕上げ加工を行う。なお、この明細書では、「素材」とは工具による切削加工の対象物をいい、従って、切削加工対象物の当初のブロック状の形状のみならず加工途中の形状も全て「素材形状」とする。
【0003】
上記荒加工では、一回の工具移動当たりの切削量を多くするためにスクエアエンドミルを使用するとともに、切削負荷の変動を抑えるためにZ値(CAMシステムを構成するNC工作機械の高さ方向であるZ軸方向における工具先端の座標値)の移動のない等高線加工を行うことが多いが、その加工用のNCデータを作成する際に現状では、NCデータ作成者が、図11(a)に示す如き当初の素材Mの形状を図面等から把握してCAMシステムに指示している。そして荒加工の加工工程が進むと、図11(b)および図11(c)に示すように、スクエアエンドミルTで削り取られて素材Mの形状が変化してゆくが、これに対してはNCデータ作成者が、その変化してゆく素材形状(中間形状)を逐次把握して、荒加工の中間工程での、工具径路間を空中で連結する工具早送り径路における工具Tと素材Mの形状との干渉の防止や、削り残しの防止を図っている。
【0004】
すなわち、金型の最終形状は図面やモデリングによって定義されているが、当初の素材形状から形状が変化している中間工程については、素材の中間形状をNCデータ作成者が把握しながら、加工検討を進めなければならない。そしてその際、NCデータ作成者は、工具早送り径路において工具と素材形状との干渉が生じず、しかも削り残しが生じないように、素材の中間形状を考慮してNCデータの作成を行わなければならない。
【0005】
【発明が解決しようとする課題】
これがため従来、NCデータ作成者は、荒加工用のNCデータの作成時に、加工シミュレーションや手作業による編集等に多大な工数を費やしており、それゆえ、NCデータ作成工数が嵩んでしまうとともに、NCデータ作成者が中間形状の把握に不慣れな場合は作成したNCデータの品質が充分高くならない場合があるという不都合があった。
【0006】
ところで本願発明者は、Z値一定の等高線加工を行った後の素材形状について考察した結果、その素材形状が本質的に掃引体に対応する形状の組み合わせとなることに想い到った。
【0007】
【課題を解決するための手段およびその作用・効果】
この発明は、上述の点に鑑みて前記従来技術の課題を有利に解決した装置を提供するものであり、この発明のNCデータ作成用荒加工中間形状モデル生成装置は、図1の概念図に示すように、各々Z値一定の点列をZ軸方向へ掃引した掃引体からなる複数の部分中間形状を木構造により相互に関連づけ、それらの部分中間形状の集合によって素材の中間形状モデルを定義する中間形状モデル定義手段1と、前記部分中間形状の集合中からZ値一定の加工平面上の加工範囲に対して包含関係または交差関係にある部分中間形状を求め、その求めた部分中間形状を前記加工平面で分割して二つの部分中間形状とし、それらの部分中間形状のうちの上層側の部分中間形状を前記加工範囲に基づいて変形させるとともに、前記木構造上で、前記求めた部分中間形状の上層に位置する部分中間形状のうち前記加工平面上に投影して前記加工範囲と包含関係または交差関係にある部分中間形状を求め、その求めた部分中間形状を前記加工範囲に基づいて変形させて前記中間形状モデルを更新し、前記部分中間形状の変形に伴って前記木構造を組み替える中間形状モデル更新手段2と、を具えてなるものである。
【0008】
かかる装置にあっては、中間形状モデル定義手段1が、各々Z値一定の点列をZ軸方向へ掃引した掃引体からなる複数の部分中間形状を木構造により相互に関連づけ、それらの部分中間形状の集合によって素材の中間形状モデルを定義し、そして中間形状モデル更新手段2が、前記部分中間形状の集合中からZ値一定の加工平面上の加工範囲に対して包含関係または交差関係にある部分中間形状を求め、その求めた部分中間形状を前記加工平面で分割して二つの部分中間形状とし、それらの部分中間形状のうちの上層側の部分中間形状を前記加工範囲に基づいて変形させるとともに、前記木構造上で、前記求めた部分中間形状の上層に位置する部分中間形状のうち前記加工平面上に投影して前記加工範囲と包含関係または交差関係にある部分中間形状を求め、その求めた部分中間形状を前記加工範囲に基づいて変形させて前記中間形状モデルを更新し、前記部分中間形状の変形に伴って前記木構造を組み替える。
【0009】
従ってこの装置によれば、中間形状モデル定義手段1が木構造により相互に関連づけて定義した、各々掃引体からなる複数の部分中間形状の集合である素材の中間形状モデルを、Z値一定の等高線加工を行う度に中間形状モデル更新手段2が、その等高線加工の加工範囲に基づいて木構造を組み替えつつ更新するので、荒加工の加工途中の逐次的に変化する素材中間形状を的確かつ効率的に表現し得て、NCデータ作成者が荒加工用のNCデータの作成時に加工途中の素材中間形状を容易に把握することができ、それゆえ、NCデータ作成工数を低減させることができるとともに、NCデータ作成品質を向上させることができる。
【0010】
しかもこの発明のNCデータ作成用荒加工中間形状モデル生成装置によれば、前記中間形状モデル更新手段2は、前記部分中間形状の集合中から求めた、Z値一定の加工平面上の加工範囲に対して包含関係または交差関係にある部分中間形状を、前記加工平面で分割して二つの部分中間形状とし、それらの部分中間形状のうちの上層側の部分中間形状を前記加工範囲に基づいて変形させるので、簡易な処理で部分中間形状を変形させることができる。
【0011】
なお、この発明のNCデータ作成用荒加工中間形状モデル生成装置において、前記中間形状モデル定義手段1は、前記点列の進む方向に対し何れの側に位置するかによって物体の内部か外部かを区別するものであっても良く、このようにすれば、簡易なデータ構造で中間形状モデルを定義することができる。
【0012】
【発明の実施の形態】
以下に、この発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図2は、この発明のNCデータ作成用荒加工中間形状モデル生成装置の一実施例を示す構成図、また図3(a)は、その実施例のNCデータ作成用荒加工中間形状モデル生成装置が対象とする荒加工の加工途中の素材形状を例示する斜視図、そして図3(b)は、その実施例の装置がその素材形状における部分中間形状間の関係を表現する木構造を示す説明図である。
【0013】
この実施例の荒加工中間形状モデル生成装置は、図2に示すように、通常のCAMシステムを構成するNCデータ作成用コンピュータを使用してNCデータ作成者が金型加工における荒加工用のNCデータを作成する際、加工途中の素材形状を容易に把握できるように、そのNCデータ作成用コンピュータ3の作動プログラムを改変することにて構成され、機能的には、中間形状モデル定義手段1としての中間形状モデル定義部4と、中間形状モデル更新手段2としての、中間形状モデル更新部5とを具えている。
【0014】
ここで、上記中間形状モデル定義部4は、CAMシステムを構成するNC工作機械のZ軸方向(高さ方向)の座標値であるZ値が一定の等高線加工を前提として、図3(a)に示す如き素材中間形状を、Z値が減少する方向へZ値一定の輪郭点列を掃引して各々形成した掃引体からなる部分中間形状A〜Eの集合として定義して、その部分中間形状A〜Eの集合からなる中間形状モデルで表現するとともに、それらの部分中間形状A〜E間の関係を、図3(b)に示す如く木構造で表現する。ここで、部分中間形状B,Cは、部分中間形状Aの上層(木構造上では下側に繋がって表現される)にあるので部分中間形状Aに含まれ、部分中間形状Aは部分中間形状B,Cの親となり、部分中間形状B,Cは部分中間形状Aの子となる。同様に、部分中間形状D,Eは、部分中間形状Cの上層にあるので部分中間形状Cに含まれ、部分中間形状Cは部分中間形状D,Eの親となり、部分中間形状D,Eは部分中間形状Cの子となる。そして部分中間形状B,Cは、互いに同一のZ値の層に属する(木構造上では左右に並べて表現される)ので、互いに含まれない兄弟関係となり、部分中間形状D,Eも、互いに同一のZ値の層に属するので、同様に互いに含まれない兄弟関係となる。
【0015】
以下に、かかる部分中間形状の定義について、より詳細に説明する。図4は、中間形状モデル定義部4が定義する他の素材中間形状の例を示しており、ここでは、図4(a)に示す中間形状を、部分中間形状A〜Cの集合として定義するとともに、部分中間形状Aは、例えばZ値が一定のaである点列ALをそのa分だけZ軸方向へ掃引したものとして表現し、部分中間形状Bは、Z値が一定のa+bである点列BLをその部分中間形状Bの高さb分だけZ軸方向へ掃引したものとして表現し、そして部分中間形状Bと同じ高さの部分中間形状Cは、Z値が一定のa+bである点列CLをその部分中間形状Cの高さb分だけZ軸方向へ掃引したものとして表現する。
【0016】
図5は、中間形状モデル定義部4が定義する部分中間形状の内部と外部の定義方法を示しており、ここでは掃引体頂面を形成するZ値一定の点列の進行方向に対して何れの側かで部分中間形状の内部と外部とを区別し、例えば図示例では、点列の進行方向右側を形状内部、進行方向左側を形状外部としている。従って、右回りの点列(「外ループ」と呼ぶ)を掃引した部分中間形状A,B,Cは凸形状、左回りの点列(「内ループ」と呼ぶ)を掃引した部分中間形状Dは凹形状となる。これら部分中間形状A〜Dの集合が素材全体の中間形状となる。これに対し部分中間形状A,B,C,Dの各々は、一本の閉じたZ値一定の点列の掃引体である。
【0017】
必ず実体を持つという素材形状の特性から、図6に示すように、内ループの部分中間形状(図では部分中間形状F,G,H)は必ず、外ループの部分中間形状(図では部分中間形状J)に含まれる。そして、外ループの部分中間形状は、内ループの部分中間形状を全く含まない場合も、一個だけ含む場合も、あるいは図示例のように二個以上含む場合もある。
【0018】
各部分中間形状は、図7に示すように、上下左右の関係を木構造で持つ。例えば図7(a)に示す部分中間形状A,B,Cについてみると、上下関係については、図7(b)に示すように、部分中間形状B,Cは部分中間形状Aに含まれ、部分中間形状Aは部分中間形状B,Cの親となり、逆に部分中間形状B,Cは部分中間形状Aの子となる。また左右関係については、Z値毎の層で持つので、図7(b)に示すように、部分中間形状AのZ値の層はその部分中間形状Aのみ存在し、兄弟関係にある他の部分中間形状は存在しないが、部分中間形状BのZ値の層は部分中間形状Cも存在し、それゆえ部分中間形状B,Cは、互いに含まれない兄弟関係となる。
【0019】
但し、同じZ値の層に存在していても、図8(a)に示すように、外ループの部分中間形状Bに含まれている内ループの部分中間形状Dは、図8(b)に示すように、部分中間形状Bの子となる。
【0020】
またここで、上記中間形状モデル更新部5は、加工途中の素材形状を表現するために、ある程度の加工範囲をNCデータ作成者が設定する度毎に、上記中間形状モデル定義部4が定義した中間形状モデルを変形させることによって、その中間形状モデルを更新する。この更新は、設定した加工範囲を表す所定Z値の層データと中間形状モデルとの包含関係および交差関係に基づいて行う。その際、ここでは木構造を用いて、加工範囲と包含または交差関係にある部分中間形状のみを選択的に変形させるので、効率的な処理が可能となる。
【0021】
図9は、上記中間形状モデル更新部5が行う中間形状モデルの更新の一例を示すものであり、この例では、図9(a)に示す如く、部分中間形状A,B,Cの集合からなる中間形状モデルについて、部分中間形状Aの中間の高さのZ値の層に等高線加工の加工平面Pを設定するとともに、その加工平面Pの一部に加工範囲Wを設定し、その加工範囲Wの加工後の状態に、中間形状モデルを更新している。
【0022】
図9(a)に示す元の中間形状モデルの木構造においては、図9(b)に示すように、部分中間形状Aの上層には部分中間形状B,Cが存在するが、それらのうちで加工平面P上に投影して加工範囲Wと包含関係または交差関係にあるのは部分中間形状Bのみである。それゆえここでは、図9(a)に示すように、加工平面P上の加工範囲Wに対して交差関係にある部分中間形状Aを加工平面Pで分割して二つの部分中間形状Ad, Dとし、それらの部分中間形状のうちの上層側の部分中間形状Dから加工範囲Wと交差関係にある部分を削除してその部分中間形状Dを変形させることにより部分中間形状Ddとし、さらに上記部分中間形状Bからも投影した部分が加工範囲Wと交差関係にある部分を削除してその部分中間形状Bを変形させることにより部分中間形状Bdとする。これにより更新後の中間形状モデルの木構造は元の木構造から組み替えられて、図9(d)に示すように、部分中間形状Ddが追加されるとともに部分中間形状A,Bがそれぞれ部分中間形状Ad,Bdに変更されたものとなる。
【0023】
図10は、上記中間形状モデル更新部5が行う中間形状モデルの更新の処理手順を示すフローチャートであり、ここでは、先ずステップ11で、中間形状モデルをオープンし(コンピュータ内の記憶装置から読み出し)、次いでステップ12で、更新する加工範囲のZ値すなわちその加工範囲が位置する加工平面のZ値より、中間形状モデルの対象Z値層を得る。
【0024】
次いでここでは、ステップ13で、対象層の部分中間形状と加工範囲との交差、包含関係を検査し、続くステップ14で、その検査結果から加工範囲と交差するかまたは加工範囲に含まれる部分中間形状があるか否かを判断して、ない場合には後述するステップ20へ進むが、ある場合にはステップ15へ進む。そしてステップ15では、加工範囲と交差した、または加工範囲に含まれた部分中間形状(例えば図9に示す例では部分中間形状A)を変形して更新する。
【0025】
その後はステップ16で、その更新した部分中間形状に対して上下関係にある上層の部分中間形状を上記木構造により検索し、続くステップ17で、その検索結果から上層に部分中間形状があるか否かを判断して、ない場合には後述するステップ20へ進むが、ある場合にはステップ18へ進む。そしてステップ18では、その上層の部分中間形状(例えば図9に示す例では部分中間形状B,C)の上記加工平面上への投影と加工範囲との交差、包含関係を検査し、続くステップ19では、その検査結果から上記投影のうちに加工範囲と交差するかまたは加工範囲に含まれるものがあるか否かを判断して、ある場合には上記ステップ15へ戻り、その上層の部分中間形状(例えば図9に示す例では部分中間形状B)を更新した後、さらに上層を検索するが、ない場合にはステップ20へ進んで、中間形状モデルをクローズする(コンピュータ内の記憶装置に保存する)。
【0026】
かくしてこの実施例の荒加工中間形状モデル生成装置によれば、上記のようにして中間形状モデルを更新する度毎に上記コンピュータがその更新した中間形状モデルを画面表示装置の画面上に表示することにより、荒加工の加工途中の逐次的に変化する素材中間形状を的確かつ効率的に表現し得て、NCデータ作成者が荒加工用のNCデータの作成時に加工途中の素材中間形状を容易に把握することができ、それゆえ、NCデータ作成工数を低減させることができるとともに、NCデータ作成品質を向上させることができる。
【0027】
しかもこの実施例の荒加工中間形状モデル生成装置によれば、中間形状モデル定義部3が、点列の進む方向に対し何れの側に位置するかによって物体の内部か外部かを区別するので、簡易なデータ構造で中間形状モデルを定義することができる。
【0028】
さらにこの実施例の荒加工中間形状モデル生成装置によれば、中間形状モデル更新部5が、部分中間形状の集合中から求めた、Z値一定の加工平面上の加工範囲に対して包含関係または交差関係にある部分中間形状を、その加工平面で分割して二つの部分中間形状とし、それらの部分中間形状のうちの上層側の部分中間形状をその加工範囲に基づいて変形させるので、簡易な処理で部分中間形状を変形させることができる。
【0029】
以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、この発明の荒加工中間形状モデル生成装置は、NCデータ作成用コンピュータとは別個のコンピュータによって構成しても良い。
【図面の簡単な説明】
【図1】この発明のNCデータ作成用荒加工中間形状モデル生成装置の構成を示す概念図である。
【図2】この発明のNCデータ作成用荒加工中間形状モデル生成装置の一実施例を示す構成図である。
【図3】(a)は、上記実施例のNCデータ作成用荒加工中間形状モデル生成装置が対象とする荒加工の加工途中の素材形状を例示する斜視図、そして(b)は、その実施例の装置がその素材形状における部分中間形形状間の関係を表現する木構造を示す説明図である。
【図4】上記実施例の装置の中間形状モデル定義部が定義する他の素材中間形状の例を示す説明図である。
【図5】上記実施例の装置の中間形状モデル定義部が定義する部分中間形状の内部と外部の定義方法を示す説明図である。
【図6】上記実施例の装置の中間形状モデル定義部が定義する部分中間形状の性質を示す説明図である。
【図7】上記実施例の装置の中間形状モデル定義部が定義する部分中間形状同士の関係を表す木構造の一例を示す説明図である。
【図8】上記実施例の装置の中間形状モデル定義部が定義する部分中間形状同士の関係を表す木構造の他の一例を示す説明図である。
【図9】上記実施例の装置の中間形状モデル更新部が部分中間形状を更新する方法を示す説明図である。
【図10】上記実施例の装置の中間形状モデル更新部が部分中間形状を更新する手順を示すフローチャートである。
【図11】等高線加工での荒加工における素材形状の変化状態を示す説明図である。
【符号の説明】
1 中間形状モデル定義手段
2 中間形状モデル更新手段
3 NCデータ作成用コンピュータ
4 中間形状モデル定義部
5 中間形状モデル更新部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for generating a rough machining intermediate shape model suitable for use in creating NC (numerical control) data used for rough machining in a CAM (computer-aided machining) system.
[0002]
[Prior art]
When manufacturing a die such as a forging die that cuts out from a block-shaped steel material, a material shape close to the final shape of the die is generally cut from the original block-shaped material shape by roughing. Finishing is performed later. In this specification, “material” refers to an object to be cut by a tool, and therefore, not only the original block shape of the cutting object but also the shape in the middle of processing is all “material shape”. .
[0003]
In the above roughing process, a square end mill is used to increase the amount of cutting per tool movement, and a Z value (in the height direction of the NC machine tool constituting the CAM system) is used to suppress fluctuations in the cutting load. In many cases, contour processing without movement of the coordinate value of the tool tip in a certain Z-axis direction is performed, but when creating NC data for the machining, at present, the NC data creator has shown in FIG. The initial shape of the material M as shown is grasped from a drawing or the like to instruct the CAM system. Then, as the roughing process proceeds, as shown in FIGS. 11B and 11C, the shape of the material M is changed by being scraped off by the square end mill T. The data creator sequentially grasps the changing material shape (intermediate shape), and the shape of the tool T and the material M in the tool fast-forward path connecting the tool paths in the air in the intermediate process of roughing The prevention of interference and prevention of uncut parts.
[0004]
In other words, the final shape of the mold is defined by drawing and modeling, but for intermediate processes where the shape has changed from the original material shape, the NC data creator grasps the intermediate shape of the material and examines the processing. Must proceed. At that time, the NC data creator must create NC data in consideration of the intermediate shape of the material so that there is no interference between the tool and the material shape in the tool rapid feed path, and there is no uncut material. Don't be.
[0005]
[Problems to be solved by the invention]
For this reason, conventionally, NC data creators have spent a great deal of man-hours for machining simulation and manual editing when creating NC data for rough machining. If the NC data creator is not accustomed to grasping the intermediate shape, the quality of the created NC data may not be sufficiently high.
[0006]
By the way, as a result of considering the material shape after the contour processing with a constant Z value, the inventor of the present application has come up with the idea that the material shape essentially becomes a combination of shapes corresponding to the sweep body.
[0007]
[Means for solving the problems and their functions and effects]
The present invention provides an apparatus that advantageously solves the problems of the prior art in view of the above points, and the rough machining intermediate shape model generation apparatus for NC data creation of the present invention is shown in the conceptual diagram of FIG. As shown in the figure, a plurality of partial intermediate shapes consisting of sweep bodies obtained by sweeping a sequence of points each having a constant Z value in the Z-axis direction are related to each other by a tree structure, and an intermediate shape model of the material is defined by a set of these partial intermediate shapes Intermediate shape model defining means 1 for determining a partial intermediate shape in an inclusive relationship or an intersecting relationship with respect to a machining range on a machining plane having a constant Z value from the set of partial intermediate shapes, and obtaining the obtained partial intermediate shape the two partial intermediate shape is divided by the processing plane, Rutotomoni not the upper side of the partial intermediate shapes of those portions intermediate shape is deformed on the basis of the machining range, on the above tree structure, said determined Seeking partial intermediate shape in the inclusion relation or cross relationship between the machining area by projecting onto the machining plane of the partial intermediate shape which is located in the upper layer of the partial intermediate shape, based on the obtained partial intermediate shape to the machining area The intermediate shape model is updated to update the intermediate shape model, and the intermediate shape model updating means 2 recombines the tree structure with the deformation of the partial intermediate shape.
[0008]
In such an apparatus, the intermediate shape model defining means 1 associates a plurality of partial intermediate shapes, each of which is a sweep body obtained by sweeping a point sequence having a constant Z value in the Z-axis direction, with a tree structure. An intermediate shape model of the material is defined by a set of shapes, and the intermediate shape model update unit 2 is in an inclusive relationship or a cross relationship with respect to a processing range on a processing plane having a constant Z value from the set of partial intermediate shapes. A partial intermediate shape is obtained , and the obtained partial intermediate shape is divided into two partial intermediate shapes by the machining plane, and the partial intermediate shape on the upper layer side of the partial intermediate shapes is deformed based on the processing range. Rutotomoni, wherein on the tree structure, the portion projecting to the machining plane in inclusion relation or cross relation with the working range of the partial intermediate shape which is located in an upper layer of the obtained partial intermediate shape Calculated between shape and the determined partial intermediate shape is deformed on the basis of the machining area updates the intermediate shape model, it rearranges the tree structure with the deformation of the partial intermediate shape.
[0009]
Therefore, according to this apparatus, the intermediate shape model of the material, which is a set of a plurality of partial intermediate shapes each consisting of sweep bodies, defined by the intermediate shape model defining means 1 in association with each other by the tree structure , Since the intermediate shape model updating means 2 updates the tree structure based on the contour processing range every time the processing is performed, the intermediate material shape that sequentially changes during the roughing processing is accurately and efficiently used. The NC data creator can easily grasp the intermediate shape of the material in the middle of machining when creating NC data for rough machining. Therefore, the NC data creation man-hour can be reduced. NC data creation quality can be improved.
[0010]
Moreover, according to the rough machining intermediate shape model generating apparatus for NC data creation of the present invention, the intermediate shape model updating means 2 is within the machining range on the machining plane having a constant Z value obtained from the set of partial intermediate shapes. On the other hand, the partial intermediate shape in an inclusive relationship or cross relationship is divided into two partial intermediate shapes by the processing plane, and the partial intermediate shape on the upper layer side of the partial intermediate shapes is deformed based on the processing range. Therefore, the partial intermediate shape can be deformed by a simple process.
[0011]
In the rough machining intermediate shape model generating apparatus for NC data creation according to the present invention, the intermediate shape model defining means 1 determines whether the object is inside or outside depending on which side it is positioned with respect to the direction in which the point sequence advances. The intermediate shape model can be defined with a simple data structure.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a block diagram showing an embodiment of the rough machining intermediate shape model generation apparatus for NC data creation according to the present invention, and FIG. 3A shows the rough machining intermediate shape for NC data creation of the embodiment. FIG. 3B is a perspective view illustrating a raw material shape in the middle of roughing that is a target of the model generation device, and FIG. 3B is a tree structure in which the device of the embodiment expresses a relationship between partial intermediate shapes in the raw material shape. It is explanatory drawing which shows.
[0013]
As shown in FIG. 2, the rough machining intermediate shape model generation apparatus of this embodiment uses an NC data creation computer that constitutes a normal CAM system so that the NC data creator can perform NC for rough machining in die machining. When creating data, it is configured by modifying the operation program of the NC data creation computer 3 so that the material shape in the middle of processing can be easily grasped. Intermediate shape model definition unit 4 and intermediate shape model update unit 5 as intermediate shape model update means 2.
[0014]
Here, the intermediate shape model definition unit 4 assumes that contour machining with a constant Z value, which is a coordinate value in the Z-axis direction (height direction) of the NC machine tool constituting the CAM system, is performed as shown in FIG. Is defined as a set of partial intermediate shapes A to E each of which is formed by sweeping a contour point sequence having a constant Z value in the direction in which the Z value decreases. The intermediate shape model composed of a set of A to E is expressed, and the relationship between the partial intermediate shapes A to E is expressed as a tree structure as shown in FIG. Here, the partial intermediate shapes B and C are included in the partial intermediate shape A because they are in the upper layer of the partial intermediate shape A (represented by being connected to the lower side on the tree structure). The partial intermediate shapes B and C are children of the partial intermediate shape A. Similarly, the partial intermediate shapes D and E are included in the partial intermediate shape C because they are in the upper layer of the partial intermediate shape C. The partial intermediate shape C is the parent of the partial intermediate shapes D and E, and the partial intermediate shapes D and E are It becomes a child of the partial intermediate shape C. Since the partial intermediate shapes B and C belong to the same Z value layer (represented side by side on the tree structure), they are not included in each other, and the partial intermediate shapes D and E are also the same. Since they belong to the Z value layer, they are siblings that are not included in each other.
[0015]
Hereinafter, the definition of the partial intermediate shape will be described in more detail. FIG. 4 shows an example of another material intermediate shape defined by the intermediate shape model defining unit 4. Here, the intermediate shape shown in FIG. 4A is defined as a set of partial intermediate shapes A to C. At the same time, the partial intermediate shape A is expressed as, for example, a point sequence AL having a constant Z value swept in the Z-axis direction by the amount a, and the partial intermediate shape B is a + b with a constant Z value. The point sequence BL is expressed as the partial intermediate shape B swept in the Z-axis direction by the height b of the partial intermediate shape B, and the partial intermediate shape C having the same height as the partial intermediate shape B is a + b with a constant Z value. The point sequence CL is expressed as a sweep of the partial intermediate shape C by the height b in the Z-axis direction.
[0016]
FIG. 5 shows a method of defining the inside and the outside of the partial intermediate shape defined by the intermediate shape model definition unit 4. Here, any of the moving directions of the point sequence having a constant Z value forming the top surface of the sweep body is shown. For example, in the illustrated example, the right side of the point sequence in the traveling direction is the inside of the shape, and the left side of the traveling direction is the outside of the shape. Therefore, the partial intermediate shapes A, B, and C obtained by sweeping a clockwise point sequence (referred to as “outer loop”) are convex, and the partial intermediate shape D obtained by sweeping a counterclockwise point sequence (referred to as “inner loop”). Becomes concave. A set of these partial intermediate shapes A to D becomes an intermediate shape of the entire material. On the other hand, each of the partial intermediate shapes A, B, C, and D is a single swept element with a closed Z value constant.
[0017]
As shown in FIG. 6, the partial intermediate shape of the inner loop (partial intermediate shapes F, G, and H in the figure) is always the partial intermediate shape of the outer loop (partial intermediate in the figure). Included in shape J). The partial intermediate shape of the outer loop may not include the partial intermediate shape of the inner loop, may include only one, or may include two or more as shown in the illustrated example.
[0018]
As shown in FIG. 7, each partial intermediate shape has a vertical, horizontal, and horizontal relationship in a tree structure. For example, regarding the partial intermediate shapes A, B, and C shown in FIG. 7A, as shown in FIG. 7B, the partial intermediate shapes B and C are included in the partial intermediate shape A, as shown in FIG. The partial intermediate shape A is a parent of the partial intermediate shapes B and C, and conversely, the partial intermediate shapes B and C are children of the partial intermediate shape A. In addition, since the left-right relationship is in each Z value layer, as shown in FIG. 7B, the Z value layer of the partial intermediate shape A exists only in the partial intermediate shape A, and other sibling relationships Although the partial intermediate shape does not exist, the Z-value layer of the partial intermediate shape B also has the partial intermediate shape C. Therefore, the partial intermediate shapes B and C have a sibling relationship that is not included in each other.
[0019]
However, as shown in FIG. 8A, the partial intermediate shape D of the inner loop included in the partial intermediate shape B of the outer loop is the same as that of FIG. As shown in FIG.
[0020]
Here, the intermediate shape model update unit 5 defines the intermediate shape model definition unit 4 every time the NC data creator sets a certain processing range in order to express the material shape during the processing. The intermediate shape model is updated by deforming the intermediate shape model. This update is performed based on the inclusion relationship and the cross relationship between the layer data having a predetermined Z value representing the set machining range and the intermediate shape model. At this time, since only a partial intermediate shape that is included or intersected with the processing range is selectively deformed using a tree structure, efficient processing is possible.
[0021]
FIG. 9 shows an example of the update of the intermediate shape model performed by the intermediate shape model update unit 5. In this example, as shown in FIG. 9A, from the set of partial intermediate shapes A, B, and C. For the intermediate shape model, a contour processing plane P is set in a Z-value layer having an intermediate height of the partial intermediate shape A, and a processing range W is set in a part of the processing plane P. The intermediate shape model is updated to the state after processing of W.
[0022]
In the original intermediate shape model tree structure shown in FIG. 9 (a), as shown in FIG. 9 (b), partial intermediate shapes B and C exist in the upper layer of the partial intermediate shape A. Thus, only the partial intermediate shape B is projected onto the processing plane P and has an inclusion relationship or an intersecting relationship with the processing range W. Therefore, here, as shown in FIG. 9A, the partial intermediate shape A that intersects the processing range W on the processing plane P is divided by the processing plane P to obtain two partial intermediate shapes Ad, D. Of the partial intermediate shapes, the portion intermediate shape Dd is obtained by deleting the portion that intersects with the processing range W from the partial intermediate shape D on the upper layer side and deforming the partial intermediate shape D, and further A portion where the projected portion from the intermediate shape B also intersects the machining range W is deleted, and the partial intermediate shape B is deformed to obtain a partial intermediate shape Bd. As a result, the updated intermediate shape model tree structure is rearranged from the original tree structure, and as shown in FIG. 9 (d), the partial intermediate shape Dd is added and the partial intermediate shapes A and B are respectively set to the partial intermediate structure. Changed to shapes Ad and Bd.
[0023]
FIG. 10 is a flowchart showing the processing procedure for updating the intermediate shape model performed by the intermediate shape model updating unit 5. Here, first, in step 11, the intermediate shape model is opened (read out from the storage device in the computer). Then, in step 12, a target Z value layer of the intermediate shape model is obtained from the Z value of the machining range to be updated, that is, the Z value of the machining plane where the machining range is located.
[0024]
Next, in step 13, the intersection between the partial intermediate shape of the target layer and the processing range and the inclusion relation are inspected, and in step 14 the partial intermediate that intersects the processing range or is included in the processing range from the inspection result. It is determined whether or not there is a shape. If there is no shape, the process proceeds to step 20 described later, but if there is, the process proceeds to step 15. In step 15, the partial intermediate shape that intersects or is included in the processing range (for example, the partial intermediate shape A in the example shown in FIG. 9) is modified and updated.
[0025]
After that, in step 16, the upper partial intermediate shape that is in a vertical relationship with the updated partial intermediate shape is searched by the above tree structure, and in step 17 whether there is a partial intermediate shape in the upper layer from the search result. If not, the process proceeds to step 20 described later. If there is, the process proceeds to step 18. Then, in step 18, the intersection of the upper partial intermediate shape (for example, partial intermediate shapes B and C in the example shown in FIG. 9) onto the processing plane and the processing range are inspected, and the following step 19 is inspected. Then, from the inspection result, it is determined whether there is any of the projections that intersects or is included in the processing range. If there is, the process returns to step 15 and the partial intermediate shape of the upper layer is determined. (For example, the partial intermediate shape B in the example shown in FIG. 9) is updated, and further upper layers are searched. If not, the process proceeds to step 20 to close the intermediate shape model (stored in a storage device in the computer) ).
[0026]
Thus, according to the rough machining intermediate shape model generation apparatus of this embodiment, every time the intermediate shape model is updated as described above, the computer displays the updated intermediate shape model on the screen of the screen display device. This makes it possible to accurately and efficiently represent the intermediate shape of the material that changes sequentially during the roughing process, making it easy for the NC data creator to create the intermediate shape of the material during the machining process when creating NC data for roughing. Therefore, the number of man-hours for creating NC data can be reduced, and the quality of creating NC data can be improved.
[0027]
Moreover, according to the rough machining intermediate shape model generation device of this embodiment, the intermediate shape model definition unit 3 distinguishes between the inside and the outside of the object depending on which side it is located with respect to the direction in which the point sequence proceeds. Intermediate shape models can be defined with a simple data structure.
[0028]
Further, according to the rough machining intermediate shape model generation device of this embodiment, the intermediate shape model update unit 5 determines the inclusion relation with respect to the machining range on the machining plane with a constant Z value obtained from the set of partial intermediate shapes. The partial intermediate shape in an intersecting relationship is divided into two partial intermediate shapes by the processing plane, and the partial intermediate shape on the upper layer side of the partial intermediate shapes is deformed based on the processing range. The partial intermediate shape can be deformed by processing.
[0029]
Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described example. For example, the rough machining intermediate shape model generation apparatus of the present invention is configured by a computer separate from the NC data generation computer. You may do it.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a configuration of a rough machining intermediate shape model generation apparatus for NC data creation according to the present invention.
FIG. 2 is a block diagram showing an embodiment of a rough machining intermediate shape model generation apparatus for NC data creation according to the present invention.
FIG. 3A is a perspective view illustrating a raw material shape in the middle of rough machining targeted by the rough machining intermediate shape model generation apparatus for NC data creation of the above embodiment, and FIG. It is explanatory drawing which shows the tree structure in which the apparatus of an example expresses the relationship between the partial intermediate shape in the raw material shape.
FIG. 4 is an explanatory diagram illustrating an example of another material intermediate shape defined by the intermediate shape model definition unit of the apparatus according to the embodiment.
FIG. 5 is an explanatory diagram showing an internal and external definition method of a partial intermediate shape defined by an intermediate shape model definition unit of the apparatus according to the embodiment.
FIG. 6 is an explanatory diagram showing properties of a partial intermediate shape defined by an intermediate shape model definition unit of the apparatus according to the embodiment.
FIG. 7 is an explanatory diagram illustrating an example of a tree structure representing a relationship between partial intermediate shapes defined by an intermediate shape model definition unit of the apparatus according to the embodiment.
FIG. 8 is an explanatory diagram showing another example of a tree structure representing a relationship between partial intermediate shapes defined by the intermediate shape model defining unit of the apparatus according to the embodiment.
FIG. 9 is an explanatory diagram illustrating a method in which the intermediate shape model update unit of the apparatus according to the embodiment updates the partial intermediate shape.
FIG. 10 is a flowchart illustrating a procedure in which an intermediate shape model update unit of the apparatus according to the embodiment updates a partial intermediate shape.
FIG. 11 is an explanatory view showing a change state of a material shape in roughing in contour line machining.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intermediate shape model definition means 2 Intermediate shape model update means 3 NC data creation computer 4 Intermediate shape model definition portion 5 Intermediate shape model update portion

Claims (2)

各々Z値一定の点列をZ軸方向へ掃引した掃引体からなる複数の部分中間形状を木構造により相互に関連づけ、それらの部分中間形状の集合によって素材の中間形状モデルを定義する中間形状モデル定義手段(1)と、
前記部分中間形状の集合中からZ値一定の加工平面上の加工範囲に対して包含関係または交差関係にある部分中間形状を求め、その求めた部分中間形状を前記加工平面で分割して二つの部分中間形状とし、それらの部分中間形状のうちの上層側の部分中間形状を前記加工範囲に基づいて変形させるとともに、前記木構造上で、前記求めた部分中間形状の上層に位置する部分中間形状のうち前記加工平面上に投影して前記加工範囲と包含関係または交差関係にある部分中間形状を求め、その求めた部分中間形状を前記加工範囲に基づいて変形させて前記中間形状モデルを更新し、前記部分中間形状の変形に伴って前記木構造を組み替える中間形状モデル更新手段(2)と、
を具えてなる、NCデータ作成用荒加工中間形状モデル生成装置。
An intermediate shape model in which a plurality of partial intermediate shapes composed of sweep bodies each obtained by sweeping a point sequence having a constant Z value in the Z-axis direction are related to each other by a tree structure, and an intermediate shape model of a material is defined by a set of these partial intermediate shapes Defining means (1);
From the set of partial intermediate shapes, a partial intermediate shape that is inclusive or intersecting with a machining range on a machining plane having a constant Z value is obtained , and the obtained partial intermediate shape is divided by the machining plane to obtain two a partial intermediate shape, Rutotomoni deform based on the upper layer side of the partial intermediate shapes of those portions intermediate shape to the machining area, on the above tree structure, partial intermediate which is located on an upper layer of the obtained partial intermediate shape and projected onto the machining plane seek partial intermediate shape in the inclusion relation or cross relation with the working range of the shape, updating said intermediate shape model the obtained partial intermediate shape is deformed on the basis of said machining area and the intermediate shape model updating means for rearranging said tree structure with the deformation of the partial intermediate shape and (2),
A rough machining intermediate shape model generation device for NC data creation comprising:
前記中間形状モデル定義手段は、前記点列の進む方向に対し何れの側に位置するかによって物体の内部か外部かを区別するものである、請求項1記載のNCデータ作成用荒加工中間形状モデル生成装置。  2. The rough machining intermediate shape for creating NC data according to claim 1, wherein the intermediate shape model defining means distinguishes between the inside and the outside of the object depending on which side it is positioned with respect to the direction in which the point sequence advances. Model generator.
JP04946798A 1998-03-02 1998-03-02 Roughing intermediate shape model generator for NC data creation Expired - Fee Related JP3745526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04946798A JP3745526B2 (en) 1998-03-02 1998-03-02 Roughing intermediate shape model generator for NC data creation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04946798A JP3745526B2 (en) 1998-03-02 1998-03-02 Roughing intermediate shape model generator for NC data creation

Publications (2)

Publication Number Publication Date
JPH11249722A JPH11249722A (en) 1999-09-17
JP3745526B2 true JP3745526B2 (en) 2006-02-15

Family

ID=12831956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04946798A Expired - Fee Related JP3745526B2 (en) 1998-03-02 1998-03-02 Roughing intermediate shape model generator for NC data creation

Country Status (1)

Country Link
JP (1) JP3745526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189878B2 (en) 2002-06-21 2008-12-03 トヨタ自動車株式会社 Manufacturing method of bevel gear forging die
EP2515193B1 (en) 2011-04-18 2014-04-02 Siemens Aktiengesellschaft Method for avoiding an unwanted collision between a tool and a workpiece with a machine tool

Also Published As

Publication number Publication date
JPH11249722A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
Requicha et al. Solid modeling and beyond
EP1302904B1 (en) Object modeling
US7099804B2 (en) Automated horizontally structured manufacturing process design modeling
CN110059332B (en) Design of 3D finite element mesh comprising 3D components of lattice structure
US20020133252A1 (en) Horizontally structured manufacturing process modeling for fixtures and tooling
JP2001076029A (en) Generating method for three-dimenisonal mesh for finite element analysis
EP1241548A2 (en) Horizontally-structured CAD/CAM modeling for virtual fixture and tooling processes
JP2616882B2 (en) Numerical control machining simulation system and method based on non-manifold data structure
JPH10207523A (en) Automatic programming device and method therefor
JP2019114266A (en) Design of 3d finite element mesh of 3d part including lattice structure
US6862560B1 (en) Machining simulation method and apparatus
JP2962369B2 (en) Method of operating graphics display system and method of storing data
US20020133266A1 (en) Horizontally structured manufacturing process modeling for alternate operations, large parts and charted parts
US20020133265A1 (en) Horizontally structured manufacturing process modeling for concurrent product and process design
US20020133267A1 (en) Enhancement to horizontally structured manufacturing process modeling
EP1241550A9 (en) Enhancement to horizontally-structured CAD/CAM modeling
JP3745526B2 (en) Roughing intermediate shape model generator for NC data creation
JP2003022285A (en) Computer-aided product designing device
JP3019398B2 (en) Free-form surface machining data creation method
US7069094B2 (en) Computer-aided product design system
CN115366568A (en) Self-adaptive olive pit shape following carving method and system
JP2660490B2 (en) Drawing candidate line segment extracting device, drawing candidate line segment extracting method, solid model synthesizing device, and solid model synthesizing method
JPS62251965A (en) Solid model form defining system in cad/cam system
JP2751206B2 (en) Numerical control processing method
JP3766857B2 (en) 3D model development support system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041221

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees