JP3744202B2 - Magnetic steel wire with excellent iron loss characteristics and workability - Google Patents

Magnetic steel wire with excellent iron loss characteristics and workability Download PDF

Info

Publication number
JP3744202B2
JP3744202B2 JP14277798A JP14277798A JP3744202B2 JP 3744202 B2 JP3744202 B2 JP 3744202B2 JP 14277798 A JP14277798 A JP 14277798A JP 14277798 A JP14277798 A JP 14277798A JP 3744202 B2 JP3744202 B2 JP 3744202B2
Authority
JP
Japan
Prior art keywords
iron loss
steel wire
less
workability
loss characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14277798A
Other languages
Japanese (ja)
Other versions
JPH11335792A (en
Inventor
厚人 本田
俊幸 星野
宏一 戸沢
哲也 妻鹿
延行 森戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP14277798A priority Critical patent/JP3744202B2/en
Publication of JPH11335792A publication Critical patent/JPH11335792A/en
Application granted granted Critical
Publication of JP3744202B2 publication Critical patent/JP3744202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、変圧器やリアクトル等の鉄心に利用される、磁気特性とくに鉄損特性と加工性とに優れる電磁鋼線に関する。
【0002】
【従来の技術】
従来、変圧器やリアクトルなどの鉄心材料としては方向性あるいは無方向性の電磁鋼板が用いられてきた。これら鋼板を用いた鉄心には積層方法により積みタイプと巻タイプがあり、いずれのタイプとも、鋼板のスリット、剪断あるいは曲げなどの精密な加工を必要としている。
このため、とくに鉄心が比較的小型である場合には、加工自体が困難になるという問題があるほか、鉄心の全体積に占める加工による歪み部分の体積が相対的に大きくなって、これが鉄心の磁気特性を劣化するという問題があった。
【0003】
【発明が解決しようとする課題】
このような問題に対処するための鉄心材料として電磁鋼線が考えられる。ところで、かかる観点で従来技術を振り返ってみると、従来技術には本発明が対象とするような極細径ないし細径の鋼線を対象としたものは見当たらないものの、磁気特性の向上を目指した線棒材について、これまでにも幾つかの提案がある。
たとえば、特開昭59−215463号公報や特開平4−285143号公報においては、磁気特性と冷間伸線加工性とを向上させるため、低Si,低C成分とすること、極低C化することがそれぞれ提案されている。しかし、これらの方法では鉄損特性、特に高周波域での鉄損が高くなるという問題があった。
また、特開昭60−181234号公報では、引き抜き加工後の焼鈍を脱炭雰囲気中、かつ 750℃以上、A3 変態点以下の条件で行うことにより、集合組織を改善することを提案している。しかしこれも、磁束密度特性には優れるが、鉄損特性は満足のいくものではなかった。特開平3−75311 号公報は、熱延条件を規定することにより伸線加工性と磁気特性を改善しようとするものである。しかし、これも鉄損が高いという問題が残っていた。
さらに、特開昭56−167302号公報においては、誘導加熱炉の鉄心用として絶縁被膜を有する磁性金属線が提案されているが、これにも、加工時の歪みにより鉄損が劣化してしまうと言う問題があった。
【0004】
このように、従来技術においては、いずれも主として太径のもののみを指向して開発してきたこともあって、これらを伸線加工とくに1.0 mm以下といった細径の鋼線まで伸線加工したり、鉄心へ加工したりすると、集合組織が劣化し、そのため加工歪による磁気の特性劣化が大きいことも問題であった。しかも、従来の材料は、変圧器やリアクトル用としての開発を目指していなかったので、鉄損特性に関する検討・考察がまったく行われていないのが実情であった。
そこで、本発明は、従来技術が抱えている上記問題を有利に解決するためのものであり、伸線加工や鉄心加工といった加工性に優れるとともに、加工歪みによる鉄損の劣化が小さく、高周波鉄損特性に優れる電磁鋼線を提供することを目的とする。
また、本発明は、上記各特性を満たすことにより、変圧器やリアクトルなどの鉄心用に適した新規な電磁鋼線を提供することを目的とする。
【0005】
【課題を解決するための手段】
発明者らは、上記目的の実現に向けて、特に鋼組成について詳細な研究を行った。その結果、伸線加工性に優れるとともに、変圧器に加工したときの加工歪みによる鉄損の劣化が小さく、良好な鉄損を得るためには、鋼線中の特定不純物成分を極力低減すること、さらに鋼中に適正量のCrを添加することが極めて有効であることなどを見いだした。本発明は、このような知見に基づいて完成したものでり、その要旨構成は次のとおりである。
【0006】
(1) Crを0.1 〜10.0wt%、C、S、OおよびNをC+S+O+N<0.015 wt%の範囲で含み、残部はFeおよび不可避的不純物からなる鋼組成を有し、鋼線直径が0.01〜1.0 mmである鉄損特性および加工性に優れる電磁鋼線。
【0007】
(2) Crを0.1 〜10.0wt%、Siを0.2 〜8.0 wt%、C、S、OおよびNをC+S+O+N<0.015 wt%の範囲で含み、残部はFeおよび不可避的不純物からなる鋼組成を有し、鋼線直径が0.01〜1.0 mmである鉄損特性および加工性に優れる電磁鋼線。
【0008】
(3) 上記 (1)または (2)において、鋼組成がさらに、
Mn:2.0 wt%以下、 Al:2.0 wt%以下、
Cu:2.0 wt%以下、 Ni:2.0 wt%以下、
P:0.2 wt%以下
から選ばれる1種または2種以上を含む組成になる鉄損特性および加工性に優れる電磁鋼線。
【0009】
【発明の実施の形態】
以下に、本発明において、鋼の成分組成を上記範囲に限定した理由について、実験事実を含めて説明する。
Si:2.45wt%、Cr:5.1 wt%、Al:0.3 wt%、Mn:0.5 wt%、P:0.02wt%で、C+S+O+Nの量を0.0050〜0.0230wt%としたブルームを、熱間圧延により直径5mmの線材とした後、冷間にて0.3 mmに伸線加工した。これを 850℃の窒素雰囲気中で2分間焼鈍した。得られた鋼線を用いて平均直径10cmのリングコアを作製し、200 ターンの1次、2次巻線を施し磁気測定を行った。
図1に鉄損W1/10000 (w/kg)に及ぼすC+S+O+Nの影響を示す。図1より明らかなように、C+S+O+Nの量が0.0150wt%以下の範囲でCr添加により鉄損が著しく低下することがわかる。
【0010】
上述したように、C+S+O+Nの量が比較的多い従来材では、Cr添加による鉄損低減効果がないのに対し、C+S+O+Nの量を極限まで低減した発明材では鉄損低減効果が現われる。この理由は必ずしも明らかではないが、恐らく、これら微量元素とCrの化合物とが、伸線加工時の滑り変形挙動への影響をとおして集合組織形成に影響し、これが焼鈍後の磁気特性とくにヒステリシス損を変化させることにつながったと考えられる。つまり、Crが鋼の比抵抗を増加させることにより渦電流損を低減することが知られるにもかかわらず、常に鉄損の低減がもたらされるとは限らないのは、この集合組織形成機構に影響されるためであると思われる。また、伸線加工時の変形挙動、あるいは好適な集合組織形成の機構は、圧延の場合とは大きく異なっていることも関わって、従来の圧延による知見からはまったく予想されなかった成分範囲において好適条件が存在することが明らかになったものであると考えられる。
【0011】
なお、本発明における鋼線直径tは、0.01〜1.0 mmの範囲とする。というのは、0.01mm未満では伸線加工が困難になるとともに、実機トランス, リアクトルの加工性も劣化し、また、1.0 mmを超えると実機加工時に加工歪みによる鉄損劣化が大きくなるからである。
【0012】
次に、この発明における電磁鋼線の成分組成範囲について説明する。
C+S+O+N<0.015 wt%
C、S、OおよびNはいずれも鋼の延性を低下させる元素であり、冷間での伸線加工や鉄心への加工に支障をもたらす成分であるため低減する必要があるが、これら成分の合計含有量C+S+O+Nが0.015 wt%以上になると、図 1で示したようにCr添加による鉄損の低減効果が十分に発現されないことが初めて判明した。よって、これら成分の合計量は0.015 wt%未満とする。
【0013】
なお、C、S、OおよびNの各成分は、以下の範囲で含有するのが望ましい。
C:0.010 wt%以下
Cは、0.010 wt%を超えて含有すると鋼中に固溶し、加工時に歪み時効を起こして延性を劣化させるので、0.010 wt%以下とするのが望ましい。
【0014】
S:0.010 wt%以下
Sは、硫化物を形成して延性を劣化させ、また、微細に分散した場合には、結晶粒成長性および鉄損を低下させるので、0.010 wt%以下とするのが望ましい。
【0015】
O:0.0050wt%以下
Oは、酸化物を形成して、延性および結晶粒成長性を低下させるため0.0050wt%以下とするのが望ましい。
【0016】
N:0.0050wt%以下
Nは、Cと同様に加工時に歪み時効を起こして延性を劣化させるほか、多いと窒化物を形成して集合組織の形成を弱めるので、0.0050wt%以下とするのが望ましい。
【0017】
Cr:0.1 〜10.0wt%
Crは、比抵抗増加による渦電流損低減の効果を有し、とくにC+S+O+Nが0.015 wt%未満としてCr添加したときに効果が大きい。しかし、この効果はCr添加量が0.1 wt%未満では発揮されず、一方、10.0wt%を超えて添加すると、伸線加工性が劣化するので0.1 〜10.0wt%の範囲で添加する。
【0018】
また、Siを以下の含有範囲で添加することが望ましい。
Si:0.2 〜8.0 wt%
Siは、鋼線の電気抵抗を高めて、鉄損特性を向上させる有用な成分であるが、0.2 wt%未満の添加では電気抵抗が小さく渦電流損が増大するために良好な鉄損特性が得られない。一方8.0 wt%を超えると冷間圧延が困難となるので、0.2 〜8.0 wt%の範囲で添加する。
【0019】
上記成分のほかに、さらに、Mn、 Al 、Cu、NiおよびPのうちの1種以上を、以下の含有範囲で添加することが好ましい。ただし、これら成分は合計量で3.0 wt%以下に止めるのがよい。
Mn:2.0 wt%以下
Mnは、鋼線の電気抵抗を高めて鉄損特性を向上させる有用な成分ではあるが、2.0 wt%以上だと再結晶焼鈍時にα/γ変態することによって集合組織が劣化してしまう。なお、好ましい含有範囲は0.1 〜1.5 wt%である。
【0020】
Al:2.0 wt%以下
Alは、鋼線の電気抵抗を高めて鉄損特性を向上させる有用な成分ではあるが、2.0 wt%を超えると焼鈍時に窒化を促進することにより、鉄損特性を劣化させてしまう。
【0021】
Cu:2.0 wt%以下
Cuは、鋼線の電気抵抗を高めて鉄損特性を向上させる有用な成分ではあるが、2.0 wt%を超えると鋼が脆化し、冷間加工が困難となる。
【0022】
Ni:2.0 wt%以下
Niは、鋼線の電気抵抗を高めて鉄損特性を向上させる有用な成分ではあるが、2.0 wt%を超えると鋼が脆化し、冷間加工性が劣化する。
【0023】
P:0.2 wt%以下
Pは、鋼線の電気抵抗を高めて鉄損特性を向上させる有用な成分ではあるが、2.0 wt%を超えると鋼が脆化し、冷間加工が困難となる。
【0024】
なお、Ti、Zrの含有量は結晶粒成長性を確保するため、いずれも0,005 wt%以下に抑制するのが望ましい。
【0025】
本発明による電磁鋼線は、上記の好適成分組成に調整した溶鋼を、連続鋳造又は造塊/分魂法により、所定寸法のブルームとした後、熱間圧延により熱延線材とし、1回あるいは中間焼鈍を含む2回以上の焼鈍と伸線加工(冷間)を行って製造される。この鋼線は、その後、焼鈍するかあるいは鉄心に加工した後、仕上げ焼鈍を行って実用に供される。なお、電磁鋼線には、絶縁性を高めるため、絶縁被膜をコーティングしてもよい。
【0026】
【実施例】
以下、実施例に基づいて具体的に説明する。
表1に示す化学成分と残部実質的にFeからなる鋼を溶製し、ブルームとしたのち、直径5mmの熱延線材とし、1回の伸線加工により種々の線径の電磁鋼線を製造した。この電磁鋼線を900℃の窒素雰囲気中で2分間焼鈍した。この焼鈍鋼線を用いて平均直径10cmのリングコアを作製し、200ターンの1次2次巻線を施し磁気測定を行った。また、加工性を伸線加工中に一度でも破断したかどうかにより判定した。得られた結果を表1にまとめて示す。表1より明らかなように発明例の電磁鋼線は比較例に比べて良好な鉄損特性が得られ、しかも加工性(伸線加工、鉄心加工)も全く問題なかった。これに対し、比較例は鉄損特性と加工性がともに不良であった。
【0027】
【表1】

Figure 0003744202
【0028】
【発明の効果】
以上説明したように、本発明によれば、伸線加工および鉄心加工性に優れるとともに、鉄損特性に優れた電磁鋼線を提供することができる。したがって、本発明は、変圧器やリアクトルなどの特に小型の鉄心用に適した新しい電磁鋼線を提供可能とする。
【図面の簡単な説明】
【図1】C+S+O+Nの量とが鉄損に及ぼす影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic steel wire that is used in iron cores such as transformers and reactors and has excellent magnetic properties, particularly iron loss properties and workability.
[0002]
[Prior art]
Conventionally, directional or non-directional electrical steel sheets have been used as iron core materials such as transformers and reactors. Iron cores using these steel sheets are classified into a stacking type and a winding type depending on the lamination method, and both types require precise processing such as slitting, shearing or bending of the steel sheet.
For this reason, in particular, when the iron core is relatively small, there is a problem that machining itself becomes difficult, and the volume of the strained portion due to machining in the total volume of the iron core becomes relatively large. There was a problem of deteriorating magnetic properties.
[0003]
[Problems to be solved by the invention]
An electromagnetic steel wire is conceivable as an iron core material for dealing with such problems. By the way, looking back at the prior art from this point of view, although there is no target in the prior art for ultra-fine or small-diameter steel wires as the subject of the present invention, the aim was to improve the magnetic properties. There have been several proposals for wire rods.
For example, in Japanese Patent Application Laid-Open No. 59-215463 and Japanese Patent Application Laid-Open No. 4-285143, in order to improve magnetic properties and cold drawing workability, a low Si, low C component is used, and extremely low C is achieved. Each has been proposed. However, these methods have a problem that iron loss characteristics, particularly, iron loss in a high frequency region is increased.
Japanese Patent Laid-Open No. 60-181234 proposes to improve the texture by performing annealing after drawing in a decarburized atmosphere and at a temperature not lower than 750 ° C. and not higher than the A 3 transformation point. Yes. However, this is also excellent in magnetic flux density characteristics, but the iron loss characteristics are not satisfactory. Japanese Patent Application Laid-Open No. 3-75311 is intended to improve wire drawing workability and magnetic properties by defining hot rolling conditions. However, the problem of high iron loss still remained.
Furthermore, in Japanese Patent Application Laid-Open No. 56-167302, a magnetic metal wire having an insulating film is proposed for an iron core of an induction heating furnace. However, iron loss deteriorates due to distortion during processing. There was a problem.
[0004]
Thus, in the prior art, all of them have mainly been developed mainly for large diameters, and these are drawn to a steel wire with a small diameter of 1.0 mm or less. When processed into an iron core, the texture deteriorates, so that magnetic property deterioration due to processing strain is large. Moreover, since the conventional materials were not aimed at development for transformers and reactors, the actual situation was that no investigation and consideration on iron loss characteristics were conducted.
Therefore, the present invention is to advantageously solve the above-mentioned problems of the prior art, and is excellent in workability such as wire drawing and iron core processing, and is less deteriorated in iron loss due to processing distortion, and high-frequency iron. An object of the present invention is to provide an electromagnetic steel wire having excellent loss characteristics.
Moreover, an object of this invention is to provide the novel electromagnetic steel wire suitable for iron cores, such as a transformer and a reactor, by satisfy | filling said each characteristic.
[0005]
[Means for Solving the Problems]
The inventors have conducted detailed studies on the steel composition in particular to achieve the above object. As a result, in order to obtain excellent iron loss, the specific impurity component in the steel wire must be reduced as much as possible in order to obtain excellent iron loss, as well as excellent wire drawing workability and small deterioration of iron loss due to processing distortion when processed into a transformer. In addition, it was found that adding an appropriate amount of Cr to the steel is extremely effective. This invention is completed based on such knowledge, The summary structure is as follows.
[0006]
(1) 0.1 to 10.0 wt% of Cr, C, S, O and N in the range of C + S + O + N <0.015 wt%, with the balance having a steel composition consisting of Fe and inevitable impurities, with a steel wire diameter of 0.01 to An electromagnetic steel wire with excellent iron loss and workability of 1.0 mm.
[0007]
(2) Cr is 0.1 to 10.0 wt%, Si is 0.2 to 8.0 wt%, C, S, O and N are contained in the range of C + S + O + N <0.015 wt%, and the balance has a steel composition consisting of Fe and inevitable impurities. And a steel wire diameter of 0.01 to 1.0 mm and excellent in iron loss characteristics and workability.
[0008]
(3) In the above (1) or (2), the steel composition is further
Mn: 2.0 wt% or less, Al: 2.0 wt% or less,
Cu: 2.0 wt% or less, Ni: 2.0 wt% or less,
P: An electromagnetic steel wire excellent in iron loss characteristics and workability with a composition containing one or more selected from 0.2 wt% or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Below, in the present invention, the reason why the component composition of steel is limited to the above range will be described including experimental facts.
Bloom: Si: 2.45wt%, Cr: 5.1wt%, Al: 0.3wt%, Mn: 0.5wt%, P: 0.02wt%, C + S + O + N amount 0.0050-0.0230wt% After making it a 5 mm wire, it was cold-drawn to 0.3 mm. This was annealed in a nitrogen atmosphere at 850 ° C. for 2 minutes. Using the obtained steel wire, a ring core having an average diameter of 10 cm was prepared, and 200 turns of primary and secondary windings were applied to perform magnetic measurement.
FIG. 1 shows the effect of C + S + O + N on iron loss W1 / 10000 (w / kg). As is apparent from FIG. 1, it is understood that the iron loss is remarkably reduced by adding Cr when the amount of C + S + O + N is 0.0150 wt% or less.
[0010]
As described above, the conventional material having a relatively large amount of C + S + O + N does not have the effect of reducing iron loss by adding Cr, whereas the invention material in which the amount of C + S + O + N is reduced to the limit exhibits the effect of reducing iron loss. The reason for this is not necessarily clear, but it is likely that these trace elements and Cr compounds have an effect on the texture formation through the effect on the sliding deformation behavior during wire drawing. This is thought to have led to a change in loss. In other words, despite the fact that Cr is known to reduce eddy current loss by increasing the specific resistance of steel, it does not always lead to a reduction in iron loss. Seems to be. In addition, the deformation behavior during wire drawing or the preferred texture formation mechanism is significantly different from that in rolling, so it is suitable in the component range that was never expected from the knowledge of conventional rolling. It is considered that the conditions existed.
[0011]
In addition, the steel wire diameter t in this invention shall be the range of 0.01-1.0 mm. This is because if it is less than 0.01 mm, wire drawing becomes difficult, and the workability of the actual transformer and reactor deteriorates, and if it exceeds 1.0 mm, the iron loss deterioration due to processing strain increases during actual machine processing. .
[0012]
Next, the component composition range of the electromagnetic steel wire in the present invention will be described.
C + S + O + N <0.015 wt%
C, S, O, and N are all elements that lower the ductility of steel and are components that impede cold drawing and processing into iron cores. It was found for the first time that when the total content C + S + O + N is 0.015 wt% or more, as shown in FIG. Therefore, the total amount of these components is less than 0.015 wt%.
[0013]
In addition, as for each component of C, S, O, and N, it is desirable to contain in the following ranges.
C: 0.010 wt% or less If C is contained in excess of 0.010 wt%, it dissolves in the steel and causes strain aging during processing to deteriorate ductility. Therefore, C is preferably 0.010 wt% or less.
[0014]
S: 0.010 wt% or less S forms sulfides and deteriorates ductility, and when finely dispersed, crystal grain growth and iron loss are reduced, so 0.010 wt% or less is recommended. desirable.
[0015]
O: 0.0050 wt% or less O is desirably 0.0050 wt% or less in order to form an oxide and reduce ductility and grain growth.
[0016]
N: 0.0050 wt% or less N, like C, causes strain aging during processing and deteriorates ductility. If N is large, nitrides are formed and texture formation is weakened. Therefore, N should be 0.0050 wt% or less. desirable.
[0017]
Cr: 0.1-10.0wt%
Cr has an effect of reducing eddy current loss due to an increase in specific resistance, and is particularly effective when Cr is added with C + S + O + N being less than 0.015 wt%. However, this effect is not exhibited when the Cr addition amount is less than 0.1 wt%. On the other hand, if the addition amount exceeds 10.0 wt%, the wire drawing workability deteriorates, so the addition is made in the range of 0.1 to 10.0 wt%.
[0018]
Moreover, it is desirable to add Si in the following content range.
Si: 0.2 to 8.0 wt%
Si is a useful component that increases the electrical resistance of steel wires and improves the iron loss characteristics. However, the addition of less than 0.2 wt% reduces the electrical resistance and increases eddy current loss. I can't get it. On the other hand, if it exceeds 8.0 wt%, cold rolling becomes difficult, so add in the range of 0.2 to 8.0 wt%.
[0019]
In addition to the above components, it is preferable to add at least one of Mn, Al, Cu, Ni and P in the following content range. However, the total amount of these components should be limited to 3.0 wt% or less.
Mn: 2.0 wt% or less
Mn is a useful component that increases the electrical resistance of the steel wire and improves the iron loss characteristics, but if it is 2.0 wt% or more, the texture deteriorates due to α / γ transformation during recrystallization annealing. In addition, a preferable content range is 0.1-1.5 wt%.
[0020]
Al: 2.0 wt% or less
Al is a useful component that increases the electrical resistance of the steel wire and improves the iron loss characteristics. However, if it exceeds 2.0 wt%, it promotes nitriding during annealing, thereby deteriorating the iron loss characteristics.
[0021]
Cu: 2.0 wt% or less
Cu is a useful component that increases the electrical resistance of the steel wire and improves the iron loss characteristics, but if it exceeds 2.0 wt%, the steel becomes brittle and cold working becomes difficult.
[0022]
Ni: 2.0 wt% or less
Ni is a useful component that increases the electrical resistance of the steel wire and improves the iron loss characteristics, but if it exceeds 2.0 wt%, the steel becomes brittle and cold workability deteriorates.
[0023]
P: 0.2 wt% or less P is a useful component that increases the electrical resistance of the steel wire and improves the iron loss characteristics. However, if it exceeds 2.0 wt%, the steel becomes brittle and cold working becomes difficult.
[0024]
It should be noted that the contents of Ti and Zr are preferably suppressed to 0,005 wt% or less in order to ensure crystal grain growth.
[0025]
The electromagnetic steel wire according to the present invention, after the molten steel adjusted to the above-mentioned preferred component composition is made into a bloom of a predetermined size by continuous casting or ingot-making / separation method, is hot-rolled wire by hot rolling once or Manufactured by performing at least two annealing processes including intermediate annealing and wire drawing (cold). The steel wire is then annealed or processed into an iron core, and then subjected to finish annealing for practical use. The electromagnetic steel wire may be coated with an insulating film in order to improve insulation.
[0026]
【Example】
Hereinafter, specific description will be given based on examples.
After melting steel consisting of the chemical components shown in Table 1 and the balance substantially Fe to form a bloom, a hot-rolled wire with a diameter of 5 mm was produced, and electromagnetic steel wires with various wire diameters were produced by a single wire drawing process. did. This electromagnetic steel wire was annealed in a nitrogen atmosphere at 900 ° C. for 2 minutes. Using this annealed steel wire, a ring core with an average diameter of 10 cm was fabricated, and 200 turns of primary and secondary windings were applied to perform magnetic measurements. Further, the workability was judged by whether or not it was broken even once during wire drawing. The obtained results are summarized in Table 1. As is clear from Table 1, the magnetic steel wire of the inventive example had better iron loss characteristics than the comparative example, and there was no problem in workability (drawing process, iron core process) at all. On the other hand, the comparative example had both poor iron loss characteristics and workability.
[0027]
[Table 1]
Figure 0003744202
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an electromagnetic steel wire that is excellent in wire drawing and iron core workability and excellent in iron loss characteristics. Therefore, the present invention can provide a new electromagnetic steel wire suitable for a particularly small iron core such as a transformer or a reactor.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the amount of C + S + O + N on iron loss.

Claims (3)

Crを0.1 〜10.0wt%、C、S、OおよびNをC+S+O+N<0.015 wt%の範囲で含み、残部はFeおよび不可避的不純物からなる鋼組成を有し、鋼線直径が0.01〜1.0 mmである鉄損特性および加工性に優れる電磁鋼線。  Cr contains 0.1 to 10.0 wt%, C, S, O and N in the range of C + S + O + N <0.015 wt%, the balance has a steel composition consisting of Fe and inevitable impurities, and the steel wire diameter is 0.01 to 1.0 mm. An electromagnetic steel wire with excellent iron loss characteristics and workability. Crを0.1 〜10.0wt%、Siを0.2 〜8.0 wt%、C、S、OおよびNをC+S+O+N<0.015 wt%の範囲で含み、残部はFeおよび不可避的不純物からなる鋼組成を有し、鋼線直径が0.01〜1.0 mmである鉄損特性および加工性に優れる電磁鋼線。0.1 to 10.0 wt% of Cr, 0.2 to 8.0 wt% of Si, C, S, O and N are contained in the range of C + S + O + N <0.015 wt%, and the balance has a steel composition consisting of Fe and inevitable impurities, An electromagnetic steel wire having a wire diameter of 0.01 to 1.0 mm and excellent iron loss characteristics and workability. 請求項1または2において、鋼組成がさらに、
Mn:2.0 wt%以下、 Al:2.0 wt%以下、
Cu:2.0 wt%以下、 Ni:2.0 wt%以下、
P:0.2 wt%以下
から選ばれる1種または2種以上を含む組成になる鉄損特性および加工性に優れる電磁鋼線。
The steel composition according to claim 1 or 2, further comprising:
Mn: 2.0 wt% or less, Al: 2.0 wt% or less,
Cu: 2.0 wt% or less, Ni: 2.0 wt% or less,
P: An electromagnetic steel wire excellent in iron loss characteristics and workability with a composition containing one or more selected from 0.2 wt% or less.
JP14277798A 1998-05-25 1998-05-25 Magnetic steel wire with excellent iron loss characteristics and workability Expired - Fee Related JP3744202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14277798A JP3744202B2 (en) 1998-05-25 1998-05-25 Magnetic steel wire with excellent iron loss characteristics and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14277798A JP3744202B2 (en) 1998-05-25 1998-05-25 Magnetic steel wire with excellent iron loss characteristics and workability

Publications (2)

Publication Number Publication Date
JPH11335792A JPH11335792A (en) 1999-12-07
JP3744202B2 true JP3744202B2 (en) 2006-02-08

Family

ID=15323356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14277798A Expired - Fee Related JP3744202B2 (en) 1998-05-25 1998-05-25 Magnetic steel wire with excellent iron loss characteristics and workability

Country Status (1)

Country Link
JP (1) JP3744202B2 (en)

Also Published As

Publication number Publication date
JPH11335792A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP6665794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4207310B2 (en) Magnetic steel wire with excellent iron loss characteristics and workability
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP2760013B2 (en) Method for producing high permeability magnetic material
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3744202B2 (en) Magnetic steel wire with excellent iron loss characteristics and workability
JP6192291B2 (en) Non-oriented electrical steel sheet for spiral core and manufacturing method thereof
JP2004363512A (en) Electrical steel wire excellent in processability and high frequency magnetic characteristic
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS59157259A (en) Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JPH076046B2 (en) Method for producing Ni-Fe alloy plate having excellent magnetic properties
JPH09283316A (en) Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
JP2870818B2 (en) Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JP3220386B2 (en) Iron-based soft magnetic alloy
JP3019656B2 (en) Heat treatment method of high silicon steel sheet in magnetic field
JP3337117B2 (en) Semi-process non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same
JP3461604B2 (en) Method for producing steel wire with low power loss
JP3885480B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees