JP3743218B2 - Hot water storage type electric water heater - Google Patents

Hot water storage type electric water heater Download PDF

Info

Publication number
JP3743218B2
JP3743218B2 JP23931499A JP23931499A JP3743218B2 JP 3743218 B2 JP3743218 B2 JP 3743218B2 JP 23931499 A JP23931499 A JP 23931499A JP 23931499 A JP23931499 A JP 23931499A JP 3743218 B2 JP3743218 B2 JP 3743218B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
heater
water tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23931499A
Other languages
Japanese (ja)
Other versions
JP2001065987A (en
Inventor
竹司 渡辺
祐 福田
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23931499A priority Critical patent/JP3743218B2/en
Publication of JP2001065987A publication Critical patent/JP2001065987A/en
Application granted granted Critical
Publication of JP3743218B2 publication Critical patent/JP3743218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は貯湯式電気温水器に関するものである。
【0002】
【従来の技術】
従来、この種の貯湯式電気温水器は特開平2−169958号公報等に開示されているものが知られている。以下、従来の技術について、図面に基づき説明する。図8において、深夜時間帯は貯湯槽1の下部発熱体2を通電して貯湯槽内の水を沸き上げる。また、追いだき時は上部発熱体3を通電して上部発熱体3より上部の水を沸き上げる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のような構成では、下部発熱体2の位置より下部の貯湯槽内の水を加熱することができないため、貯湯槽1の容量全体を沸き上げることができず、貯湯槽1が大型となる。また、追いだき用ヒーターが必要となり、上下部にそれぞれヒーターを設けて切換えて運転しなければならない。
【0004】
本発明は上記課題を解決するものであり、1つのヒーターで追いだきができるとともに貯湯槽の容量全体に加熱した湯を貯湯できるようにしたものである。
【0005】
【課題を解決するための手段】
前記課題を解決するため、本発明は、下部から給水され、上部から出湯される貯湯槽と、貯湯槽の内部上部に設けたヒーターと、ヒーターより上部の貯湯槽位置と貯湯槽の最下部近傍位置を連結する水回路に設けた循環ポンプとを備えた構成としてある。
【0006】
以上の構成により、貯湯槽全体の水を沸き上げる場合には、ヒーターで沸き上げた湯を貯湯槽上部から下部へ循環しながら貯湯槽全体を沸き上げ、あるいは、貯湯槽の最下部近傍の水をヒーターより上部の貯湯槽位置へ循環して沸き上げ、貯湯槽上部から湯を貯湯して貯湯槽全体に貯湯する。また、追い焚き時においては、循環ポンプを停止してヒーターより上部の水を沸き上げて給湯に利用する。従って、1箇所のヒーターで追い焚き加熱と貯湯槽全量沸き上げの両機能が実現できる。また、ヒーターを通電しながら貯湯槽上部の水を貯湯槽下部へ循環して沸き上げる場合には、ヒーターで加熱される水は貯湯槽下部から順送りされる低温水であるため、ヒーターの表面温度は低温となり、水硬度の高いスケール水あるいは腐食を引き起こし易い酸性水に対するヒーターの耐久性が向上するといった効果がある。一方、ヒーターを通電しながら貯湯槽の最下部近傍の水をヒーター上部の貯湯槽位置へ循環して沸き上げる場合には、貯湯槽の下部から上部へ循環する水は給水された低温水であるため、循環回路からの放熱量も低減して省エネとなる。
【0009】
【発明の実施の形態】
本発明の請求項に記載の発明は、下部から給水され、上部から出湯される貯湯槽と、前記貯湯槽の内部上部に設けたヒーターと、前記ヒーターより上部の前記貯湯槽位置と前記貯湯槽の最下部近傍位置を連結する水回路に設けた循環ポンプと、前記ヒーターより上部の貯湯槽の湯温を検出する第1の温度検出手段と、前記貯湯槽の下部の湯温を検出する第2の温度検出手段と、前記第2の温度検出手段の温度信号が設定温度A(40〜65℃)に達した時に前記循環ポンプを停止し、その後、前記第1の温度検出手段の温度信号が設定温度B(85〜90℃)に達した時に前記循環ポンプを運転し、設定温度C(所定温度AとBの中間温度)に低下した時に前記循環ポンプを運転停止する運転制御手段とを備え、ヒーターで加熱された貯湯槽上部の湯を貯湯槽の下部に循環して設定温度Aまで貯湯槽全量の水を均一湯温に沸き上げ、あるいは、貯湯槽の最下部近傍の水をヒーター上部の貯湯槽位置へ循環して沸き上げ、貯湯槽上部から湯を貯湯して貯湯槽全量の水を設定温度Aまで均一湯温に貯湯する。そして、循環ポンプを停止して、ヒーター上部の水が昇温して設定温度Bに達するとヒーターを通電したまま循環ポンプを運転して貯湯槽の上部の湯を下部へ循環する、あるいは、貯湯槽の最下部近傍の水をヒーター上部の貯湯槽位置へ循環する。従って、給湯可能温度40〜65℃の設定温度Aを有することにより、貯湯槽全量を短時間で給湯に利用できる。また、中温の設定温度Aで貯湯する時間が長いため、貯湯槽からの放熱ロスも少なくなり、省エネとなる。
【0010】
また、請求項に記載の発明は、下部から給水され、上部から出湯される貯湯槽と、前記貯湯槽の内部上部に設けたヒーターと、前記ヒーターより上部の前記貯湯槽位置と前記貯湯槽の最下部近傍位置を連結する水回路に設けた循環ポンプと、前記ヒーターより上部の貯湯槽の湯温を検出する第1の温度検出手段と、前記貯湯槽の下部の湯温を検出する第2の温度検出手段と、前記第2の温度検出手段の温度信号が設定温度Aに達した時に前記循環ポンプを停止し、その後、前記第1の温度検出手段の温度信号が設定温度B(設定温度Aより高温)に達した時に前記循環ポンプを運転し、設定温度C(所定温度AとBの中間温度)に低下した時に前記循環ポンプを運転停止する運転制御手段と、前記貯湯槽内部の上下方向の水温を検出する複数の温度検出手段と、前記温度検出手段の信号を検出して前記貯湯槽内部の湯量を演算する湯量演算手段と、前記湯量演算手段の信号を検出して、残湯量が多い場合には前記設定温度Bの設定値を下げる信号を前記運転制御手段へ送信する湯温制御手段とを備え、運転開始時に貯湯槽内の上下方向の残湯温度から残湯量を演算する。そして、残湯量が多い場合には、貯湯槽全量の水を設定温度Aまで均一湯温に沸き上げた後に、設定温度Bの設定を下げて沸き上げる。従って、沸き上げ完了後の貯湯槽からの放熱ロスを低減して、かつ給湯負荷に追随した沸き上げができる。
【0011】
また、請求項に記載の発明は、手動の追焚き設定手段と、追焚き設定手段の信号を検出して、ヒーターを通電して循環ポンプだけ非通電する運転停止手段を備え、循環ポンプの運転中、あるいは停止中において、手動スイッチからの追焚き信号を検出すると、ヒーターを通電して循環ポンプだけ非通電する。そして、ヒーターから上部の貯湯槽内部の水を沸き上げる。従って、緊急に湯が必要な時に短時間で湯が沸く。
【0012】
また、請求項に記載の発明は、水回路から流路切換手段を介して貯湯槽の容量の中間近傍へ接続する第二の回路を備え、夏季など給湯負荷が少ない場合において、ヒーターで加熱された湯を貯湯槽の上部から循環ポンプ、流路切換手段を介して循環回路Bを通り、貯湯槽の容量の中間近傍へ戻す。これを繰り返しながら、貯湯槽の容量の中間近傍から上部へ貯湯する。あるいは、貯湯槽の容量の中間近傍の低温水を流路切換手段、循環ポンプを介して貯湯槽の上部へ流してヒーターで加熱する。これを繰り返しながら、貯湯槽の容量の中間近傍から上部へ貯湯する。従って、沸き上げ湯量を可変できるため、夏季など給湯負荷が少ない場合には、さらに省エネとなる。
【0013】
【実施例】
以下本発明の実施例を図を参照して説明する。なお、従来例および各実施例において、同じ構成、同じ動作をするものについては同一符号を付し、説明を一部省略する。
【0014】
(実施例1)
図1、図2は本発明の実施例1の貯湯式電気温水器の構成図である。図1において、1は貯湯槽であり、給水管2の水が下部から給水され、上部から出湯管3を通じて出湯する。4はヒーターであり、貯湯槽1の中の上部に設けられている。5は循環ポンプであり、ヒーター4上部の貯湯槽1の水を貯湯槽1の最下部近傍位置へ循環する、あるいは図2に示す如く貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1の位置へ循環する。図1、図2の矢印は水循環方向を表わす。
【0015】
つぎに、上記構成の第1の実施例の動作について説明する。最初に貯湯槽1に給水された水から貯湯槽全量を湯に沸き上げる運転について述べる。
【0016】
ヒーター4を通電しながら貯湯槽1上部の水を貯湯槽1下部へ循環して、この繰り返しによって貯湯槽1全量を湯に沸き上げる。あるいは、ヒーター4を通電しながら貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1位置へ循環して沸き上げ、貯湯槽1上部から湯を貯湯して貯湯槽1全量に貯湯する。また、湯切れ時あるいは追い焚き時において、循環ポンプ5を停止した状態でヒーター4上部の水を沸き上げて給湯に利用する。従って、1箇所のヒーターで追い焚き加熱と貯湯槽全量沸き上げの両機能が実現できる。
【0017】
また、ヒーター4を通電しながら貯湯槽1上部の水を貯湯槽1下部へ循環して、貯湯槽1全量を湯に沸き上げる場合には、ヒーター4で加熱される水は貯湯槽1の下部から順送りされる低温水であるため、ヒーター4の表面温度は低温となり、水硬度の高いスケール水あるいは腐食を引き起こし易い酸性水に対するヒーター4の耐久性が向上するといった効果がある。
【0018】
一方、ヒーター4を通電しながら貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1位置へ循環して沸き上げる場合には、貯湯槽1の下部から上部へ循環する水は給水された低温水であるため、循環回路からの放熱量も低減して省エネとなる。
【0019】
(実施例2)
図3は本発明の実施例2の貯湯式電気温水器の構成図である。図3において、6は温度検出手段であり、ヒーター4より上部の貯湯槽1の内部の湯温を検出する。7はクロックであり、時刻を計測する。8は運転制御手段Aであり、クロック7の信号が深夜時間帯の信号の場合にヒーター4および循環ポンプ5を連続運転する。9は運転制御手段Bであり、クロック7の信号が昼間時間帯の信号の場合に温度検出手段6の温度信号が設定温度Aに上昇した時に循環ポンプ5を運転し、温度検出手段6の温度信号が設定温度B(設定温度Aより低温)に低下した時に循環ポンプ5の運転を停止する。
【0020】
つぎに、上記構成の実施例の動作について説明する。最初に深夜時間帯の沸き上げについて述べる。クロック7の信号が深夜時間帯を発信してヒーター4および循環ポンプ5が連続運転される。そして、ヒーター4で加熱された貯湯槽1上部の湯を貯湯槽1の下部に循環して、この繰り返しによって貯湯槽1全量を湯に沸き上げる。あるいは、貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1位置へ循環して沸き上げ、貯湯槽1上部から湯を貯湯して貯湯槽1全量に貯湯する。
【0021】
次に、昼間時間帯の沸き上げについて述べる。循環ポンプ5が停止した状態でヒーター4が通電される。このようにして、ヒーター4上部の水が昇温して設定温度Aに達するとヒーター4を通電したまま循環ポンプ5を運転して貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1位置へ循環する。そして、ヒーター4上部の湯温が低下して設定温度B(設定温度Aより低温)に低下した時に循環ポンプ5の運転を停止して、再度、ヒーター4上部の水を設定温度Aまで沸き上げる。この繰り返しで、設定温度Aの湯は徐々に貯湯槽1の下方へ押し下げられる。従って、まず深夜時間帯の8〜9時間かけて貯湯槽1全量の水を沸き上げることができるため、低ランニングコストとなる。また、昼間時間帯には、貯湯槽1上部だけ湯をつくる沸き増し運転ができるため、湯切れ時、緊急時の利便性が向上する。
【0022】
(実施例3)
図4は本発明の実施例3の貯湯式電気温水器の構成図である。図4において、10は第1の温度検出手段であり、ヒーター4より上部の貯湯槽1の湯温を検出する。11は第2の温度検出手段であり、貯湯槽1の下部の湯温を検出する。12は運転制御手段であり、第2の温度検出手段11の温度信号が設定温度Aに達した時に循環ポンプ5を停止して、その後、第1の温度検出手段10の温度信号が設定温度B(所定温度Aより高温)に達した時に循環ポンプ5を運転し、設定温度C(所定温度AとBの中間温度)に低下した時に循環ポンプ5を運転停止する。
【0023】
つぎに、上記構成の実施例の動作について説明する。ヒーター4で加熱された貯湯槽1上部の湯を貯湯槽1の下部に循環して、この繰り返しによって設定温度Aまで貯湯槽1全量の水を均一湯温に沸き上げる。あるいは、貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1位置へ循環して沸き上げ、貯湯槽1上部から湯を貯湯して貯湯槽1全量の水を設定温度Aまで均一湯温に貯湯する。そして、循環ポンプ5を停止して、ヒーター4上部の水が昇温して設定温度Bに達するとヒーター4を通電したまま循環ポンプ5を運転して貯湯槽1の上部の湯を下部へ循環する。あるいは、貯湯槽1の最下部近傍の水をヒーター4上部の貯湯槽1位置へ循環する。従って、設定温度Aを給湯可能温度40〜65℃に設定して、設定温度Bを85〜90℃に設定することにより、貯湯槽全量を短時間で給湯に利用できる。また、中温の設定温度Aで貯湯する時間が長いため、貯湯槽からの放熱ロスも少なくなり、省エネとなる。
【0024】
(実施例4)
図5は本発明の実施例4の貯湯式電気温水器の構成図である。図5において、13は温度検出手段であり、貯湯槽1の内部の上下方向の水温を検出するため複数ある。14は湯量演算手段であり、温度検出手段13の信号を検出して貯湯槽1の内部の湯量を演算する。15は湯温制御手段であり、湯量演算手段14の信号を検出して設定温度Bの設定値を変更して、その信号を運転制御手段12へ送信する。
【0025】
つぎに、上記構成の実施例の動作について説明する。運転開始時に貯湯槽内の上下方向の残湯温度から残湯量を演算する。そして、残湯量が多い場合には、貯湯槽1全量の水を設定温度Aまで均一湯温に沸き上げた後に、設定温度Bの設定を下げて沸き上げる。従って、沸き上げ完了後の貯湯槽からの放熱ロスを低減して、かつ給湯負荷に追随した沸き上げができる。
【0026】
(実施例5)
図6は本発明の実施例5の貯湯式電気温水器の構成図である。図6において、16は追焚き設定手段であり、貯湯槽1の追焚きをおこなう手動スイッチである。17は運転停止手段であり、追焚き設定手段16の信号を検出して、ヒーター3を通電して循環ポンプ5だけ非通電する。
【0027】
つぎに、上記構成の実施例の動作について説明する。循環ポンプ5の運転中、あるいは停止中において、手動スイッチからの追焚き信号を検出すると、ヒーター4を通電して循環ポンプ5だけ非通電する。そして、ヒーター4から上部の貯湯槽1内部の水を沸き上げる。従って、緊急に湯が必要な時に短時間で湯が沸く。
【0028】
(実施例6)
図7は本発明の実施例6の貯湯式電気温水器の構成図である。図7において、18は流路切換手段であり、循環ポンプ5と貯湯槽1の下部へ接続する循環回路A19と貯湯槽1の容量の中間近傍へ接続する循環回路B20に切換る。
【0029】
つぎに、上記構成の実施例の動作について説明する。夏季など給湯負荷が少ない場合において、ヒーター4で加熱された湯を貯湯槽1の上部から循環ポンプ5、流路切換手段18を介して循環回路B20を介し、貯湯槽1の容量の中間近傍へ戻す。これを繰り返しながら、貯湯槽1の容量の中間近傍から上部へ貯湯する。あるいは、貯湯槽1の容量の中間近傍の低温水を流路切換手段18、循環ポンプ5を介して貯湯槽1の上部へ流してヒーター4で加熱する。これを繰り返しながら、貯湯槽1の容量の中間近傍から上部へ貯湯する。従って、沸き上げ湯量を可変できるため、夏季など給湯負荷が少ない場合には、さらに省エネとなる。
【0032】
【発明の効果】
請求項記載の発明によれば、給湯可能温度40〜65℃の設定温度Aを有することにより、貯湯槽全量を短時間で給湯に利用できる。また、中温の設定温度Aで貯湯する時間が長いため、貯湯槽からの放熱ロスも少なくなり、省エネとなる。
【0033】
また、請求項記載の発明によれば、沸き上げ完了後の貯湯槽からの放熱ロスを低減して、かつ給湯負荷に追随した沸き上げができる。
【0034】
また、請求項記載の発明によれば、循環ポンプの運転中、あるいは停止中において、手動スイッチからの追焚き信号を検出すると、ヒーターを通電して循環ポンプだけ非通電する。そして、ヒーターから上部の貯湯槽内部の水を沸き上げる。従って、緊急に湯が必要な時に短時間で湯が沸く。
【0035】
また、請求項記載の発明によれば、循環ポンプと貯湯槽の下部を接続する循環回路Aと貯湯槽の容量の中間近傍を接続する循環回路Bに切換る流路切換手段を備え、沸き上げ湯量を可変して、夏季など給湯負荷が少ない場合のさらなる省エネ化をはかることができる。
【図面の簡単な説明】
【図1】本発明の実施例1における貯湯式電気温水器の構成図
【図2】同実施例1における他方式の貯湯式電気温水器の構成図
【図3】本発明の実施例2における貯湯式電気温水器の構成図
【図4】本発明の実施例3における貯湯式電気温水器の構成図
【図5】本発明の実施例4における貯湯式電気温水器の構成図
【図6】本発明の実施例5における貯湯式電気温水器の構成図
【図7】本発明の実施例6における貯湯式電気温水器の構成図
【図8】従来の貯湯式電気温水器の構成図
【符号の説明】
1 貯湯槽
2 給水管
3 出湯管
4 ヒーター
5 循環ポンプ
6 温度検出手段
7 クロック
8 運転制御手段A
9 運転制御手段B
10 第1の温度検出手段
11 第2の温度検出手段
12 運転制御手段
13 温度検出手段
14 湯量演算手段
15 湯温制御手段
16 追焚き設定手段
17 運転停止手段
18 流路切換手段
19 循環回路A
20 循環回路B
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water storage type electric water heater.
[0002]
[Prior art]
Conventionally, this kind of hot water storage type electric water heater is disclosed in Japanese Patent Application Laid-Open No. 2-169958. Hereinafter, conventional techniques will be described with reference to the drawings. In FIG. 8, during the midnight hours, the lower heating element 2 of the hot water tank 1 is energized to boil the water in the hot water tank. Further, when chasing, the upper heating element 3 is energized to boil water above the upper heating element 3.
[0003]
[Problems to be solved by the invention]
However, in the configuration as described above, since the water in the hot water storage tank below the position of the lower heating element 2 cannot be heated, the entire capacity of the hot water storage tank 1 cannot be raised, and the hot water storage tank 1 is large. It becomes. In addition, a heater for chasing is required, and it is necessary to switch the operation by providing heaters on the upper and lower parts respectively.
[0004]
The present invention solves the above-mentioned problems, and is capable of chasing with one heater and storing hot water heated in the entire capacity of the hot water tank.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a hot water tank that is supplied with water from the lower part and discharged from the upper part, a heater provided in the upper part of the hot water tank, a hot water tank position above the heater, and the vicinity of the lowermost part of the hot water tank. It is set as the structure provided with the circulation pump provided in the water circuit which connects a position.
[0006]
With the above configuration, when boiling the water in the entire hot water tank, the hot water heated by the heater is circulated from the upper part to the lower part of the hot water tank, or the entire hot water tank is boiled, or the water near the bottom of the hot water tank The water is circulated to the hot water tank position above the heater and heated up. Hot water is stored from the upper part of the hot water tank and stored in the entire hot water tank. At the time of reheating, the circulation pump is stopped and water above the heater is boiled and used for hot water supply. Therefore, both the functions of reheating and boiling the whole amount of hot water storage tank can be realized with one heater. In addition, when the water in the upper part of the hot water tank is circulated to the lower part of the hot water tank while it is energized, the water heated by the heater is low-temperature water that is fed forward from the lower part of the hot water tank. Has an effect of improving the durability of the heater against scale water having high water hardness or acidic water that easily causes corrosion. On the other hand, when the heater is energized and the water near the bottom of the hot water tank is circulated to the hot water tank position above the heater and boiled, the water circulating from the lower part of the hot water tank to the upper part is the low-temperature water supplied. Therefore, the amount of heat released from the circulation circuit is also reduced, resulting in energy saving.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention is water from the lower, the hot water storage tank which is tapped from the top, and a heater provided inside the upper portion of the hot water storage tank, and the hot water storage tank located at the top than the heater hot-water A circulation pump provided in a water circuit connecting positions near the bottom of the tank, first temperature detecting means for detecting the hot water temperature in the hot water tank above the heater, and detecting the hot water temperature in the lower part of the hot water tank. When the temperature signal of the second temperature detection means and the second temperature detection means reaches a set temperature A (40 to 65 ° C.), the circulation pump is stopped, and then the temperature of the first temperature detection means An operation control means for operating the circulating pump when the signal reaches a set temperature B (85 to 90 ° C.) and stopping the circulating pump when the signal falls to a set temperature C (intermediate temperature between predetermined temperatures A and B); comprising a was heated at the heater hot-water storage Circulate the hot water in the upper part of the hot water tank to the set temperature A and boil all the water in the hot water to a uniform hot water temperature, or circulate the water near the bottom of the hot water tank to the hot water tank position above the heater. Boiling, hot water is stored from the upper part of the hot water tank, and the entire amount of hot water is stored up to a set temperature A at a constant hot water temperature. Then, the circulation pump is stopped, and when the temperature of the water in the upper part of the heater reaches a set temperature B, the circulation pump is operated while the heater is energized to circulate the hot water in the upper part of the hot water tank to the lower part or Circulates water near the bottom of the tank to the hot water tank position above the heater. Therefore, by having the set temperature A of the hot water supply possible temperature of 40 to 65 ° C., the entire amount of the hot water storage tank can be used for hot water supply in a short time. Further, since the time for storing hot water at the intermediate set temperature A is long, the heat dissipation loss from the hot water tank is reduced, resulting in energy saving.
[0010]
The invention according to claim 2 is a hot water storage tank which is supplied with water from the lower part and discharged from the upper part, a heater provided in the upper part of the hot water storage tank, the hot water storage tank position above the heater and the hot water storage tank. A circulation pump provided in a water circuit connecting positions near the lowermost part of the water heater, a first temperature detecting means for detecting the hot water temperature in the hot water tank above the heater, and a first temperature detecting means for detecting the hot water temperature in the lower part of the hot water tank. When the temperature signals of the second temperature detection means and the second temperature detection means reach the set temperature A, the circulating pump is stopped, and then the temperature signal of the first temperature detection means becomes the set temperature B (set An operation control means for operating the circulating pump when the temperature reaches a set temperature C (intermediate temperature between the predetermined temperatures A and B); Duplicate detection of water temperature in the vertical direction Temperature detecting means, a hot water amount calculating means for calculating the amount of hot water inside the hot water tank by detecting a signal of the temperature detecting means, and a signal of the hot water amount calculating means to detect the amount of remaining hot water, the setting There is provided hot water temperature control means for transmitting a signal for lowering the set value of the temperature B to the operation control means, and the remaining hot water amount is calculated from the remaining hot water temperature in the hot water storage tank at the start of operation. When the amount of remaining hot water is large, the water in the entire hot water tank is boiled up to a set temperature A to a uniform hot water temperature, and then the set temperature B is lowered and boiled up. Therefore, it is possible to reduce the heat dissipation loss from the hot water storage tank after the completion of boiling and to follow the hot water supply load.
[0011]
Further, the invention according to claim 3 is provided with a manual replenishment setting means, and an operation stop means for detecting a signal from the replenishment setting means, energizing the heater and de-energizing only the circulation pump. When a chasing signal from the manual switch is detected during operation or stop, the heater is energized and only the circulation pump is de-energized. Then, the water in the upper hot water tank is boiled from the heater. Therefore, hot water is boiled in a short time when hot water is urgently needed.
[0012]
The invention according to claim 4 includes a second circuit connected from the water circuit to the vicinity of the middle of the capacity of the hot water tank via the flow path switching means, and is heated by the heater when the hot water supply load is small such as in summer. The hot water is returned from the upper part of the hot water storage tank to the middle of the capacity of the hot water tank through the circulation circuit B and the flow path switching means. While repeating this, hot water is stored from the middle of the hot water storage tank to the upper part. Alternatively, low temperature water near the middle of the capacity of the hot water tank is made to flow to the upper part of the hot water tank via the flow path switching means and the circulation pump and heated by the heater. While repeating this, hot water is stored from the middle of the hot water storage tank to the upper part. Therefore, since the amount of boiling water can be varied, energy saving is further achieved when the hot water supply load is small, such as in summer.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In addition, in a prior art example and each Example, the same code | symbol is attached | subjected about what has the same structure and the same operation | movement, and description is partially abbreviate | omitted.
[0014]
Example 1
1 and 2 are configuration diagrams of a hot water storage type electric water heater according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a hot water storage tank, in which water in the water supply pipe 2 is supplied from the lower part, and hot water is discharged from the upper part through the hot water outlet pipe 3. Reference numeral 4 denotes a heater, which is provided in the upper part of the hot water tank 1. A circulation pump 5 circulates the water in the hot water tank 1 above the heater 4 to a position near the lowermost part of the hot water tank 1, or uses the water near the lowermost part of the hot water tank 1 as shown in FIG. Circulate to tank 1 position. The arrows in FIGS. 1 and 2 indicate the water circulation direction.
[0015]
Next, the operation of the first embodiment having the above configuration will be described. First, the operation of boiling the entire amount of hot water storage tank from the water supplied to the hot water storage tank 1 will be described.
[0016]
While the heater 4 is energized, the water in the upper part of the hot water tank 1 is circulated to the lower part of the hot water tank 1, and the entire amount of the hot water tank 1 is heated to hot water by repeating this process. Alternatively, while energizing the heater 4, water near the lowermost part of the hot water tank 1 is circulated and heated to the hot water tank 1 position above the heater 4, hot water is stored from the upper part of the hot water tank 1, and stored in the entire hot water tank 1. . In addition, when the hot water runs out or when it is replenished, the water above the heater 4 is boiled and used for hot water supply with the circulation pump 5 stopped. Therefore, both the functions of reheating and boiling the whole amount of hot water storage tank can be realized with one heater.
[0017]
In addition, when the water in the upper part of the hot water tank 1 is circulated to the lower part of the hot water tank 1 while the heater 4 is energized, and the entire amount of the hot water tank 1 is heated to hot water, the water heated by the heater 4 is lower in the hot water tank 1. Therefore, the surface temperature of the heater 4 is low, and the durability of the heater 4 with respect to high-hardness scale water or acidic water that is likely to cause corrosion is improved.
[0018]
On the other hand, when the water in the vicinity of the lowermost part of the hot water tank 1 is circulated to the position of the hot water tank 1 above the heater 4 while the heater 4 is energized, the water circulating from the lower part to the upper part of the hot water tank 1 is supplied. Because it is low-temperature water, the amount of heat released from the circulation circuit is reduced and energy is saved.
[0019]
(Example 2)
FIG. 3 is a configuration diagram of a hot water storage type electric water heater according to Embodiment 2 of the present invention. In FIG. 3, reference numeral 6 denotes a temperature detecting means for detecting the hot water temperature inside the hot water tank 1 above the heater 4. Reference numeral 7 denotes a clock, which measures time. Reference numeral 8 denotes operation control means A, which continuously operates the heater 4 and the circulation pump 5 when the signal of the clock 7 is a signal in the midnight time zone. Reference numeral 9 denotes operation control means B, which operates the circulation pump 5 when the temperature signal of the temperature detection means 6 rises to the set temperature A when the signal of the clock 7 is a signal in the daytime time zone, and the temperature of the temperature detection means 6 When the signal falls to the set temperature B (lower temperature than the set temperature A), the operation of the circulation pump 5 is stopped.
[0020]
Next, the operation of the embodiment having the above configuration will be described. First of all, I will discuss the heating up of the midnight hours. The signal of the clock 7 transmits the midnight time zone, and the heater 4 and the circulation pump 5 are continuously operated. Then, the hot water in the upper part of the hot water tank 1 heated by the heater 4 is circulated to the lower part of the hot water tank 1, and the entire amount of the hot water tank 1 is heated to hot water by repeating this process. Alternatively, water in the vicinity of the lowermost part of the hot water tank 1 is circulated and heated to the hot water tank 1 position above the heater 4, hot water is stored from the upper part of the hot water tank 1, and stored in the entire hot water tank 1.
[0021]
Next, we will discuss the heating of daytime hours. The heater 4 is energized with the circulation pump 5 stopped. In this way, when the water in the upper part of the heater 4 rises and reaches the set temperature A, the circulating pump 5 is operated while the heater 4 is energized, and the water in the vicinity of the lowermost part of the hot water tank 1 is used as the hot water tank in the upper part of the heater 4. Circulate to 1 position. Then, when the hot water temperature in the upper part of the heater 4 is lowered to a set temperature B (lower than the set temperature A), the operation of the circulation pump 5 is stopped and the water in the upper part of the heater 4 is again boiled up to the set temperature A. . By repeating this operation, the hot water at the set temperature A is gradually pushed down below the hot water tank 1. Therefore, first, the total amount of water in the hot water tank 1 can be boiled over 8 to 9 hours in the midnight time zone, so that the running cost is low. In addition, during the daytime hours, only the upper part of the hot water storage tank 1 can be heated to make hot water, which improves convenience in the event of running out of hot water or an emergency.
[0022]
Example 3
FIG. 4 is a configuration diagram of a hot water storage type electric water heater according to Embodiment 3 of the present invention. In FIG. 4, reference numeral 10 denotes first temperature detection means for detecting the hot water temperature of the hot water tank 1 above the heater 4. 11 is a 2nd temperature detection means, and detects the hot water temperature of the lower part of the hot water storage tank 1. FIG. An operation control unit 12 stops the circulation pump 5 when the temperature signal of the second temperature detection unit 11 reaches the set temperature A, and then the temperature signal of the first temperature detection unit 10 changes to the set temperature B. The circulating pump 5 is operated when it reaches (higher than the predetermined temperature A), and the circulating pump 5 is stopped when it falls to the set temperature C (intermediate temperature between the predetermined temperatures A and B).
[0023]
Next, the operation of the embodiment having the above configuration will be described. The hot water in the upper part of the hot water tank 1 heated by the heater 4 is circulated to the lower part of the hot water tank 1, and by repeating this, the entire amount of water in the hot water tank 1 is boiled up to a set temperature A to a uniform hot water temperature. Alternatively, the water near the bottom of the hot water tank 1 is circulated and heated to the hot water tank 1 position above the heater 4, hot water is stored from the upper part of the hot water tank 1, and the entire amount of water in the hot water tank 1 is uniformly heated to the set temperature A. Store hot water. Then, when the circulation pump 5 is stopped and the water in the upper part of the heater 4 rises in temperature and reaches the set temperature B, the circulation pump 5 is operated while the heater 4 is energized to circulate the hot water in the upper part of the hot water tank 1 downward. To do. Alternatively, water near the lowermost part of the hot water tank 1 is circulated to the hot water tank 1 position above the heater 4. Therefore, by setting the set temperature A to a hot water supply possible temperature of 40 to 65 ° C. and the set temperature B to 85 to 90 ° C., the entire amount of the hot water tank can be used for hot water supply in a short time. Further, since the time for storing hot water at the intermediate set temperature A is long, the heat dissipation loss from the hot water tank is reduced, resulting in energy saving.
[0024]
(Example 4)
FIG. 5 is a configuration diagram of a hot water storage type electric water heater according to Embodiment 4 of the present invention. In FIG. 5, reference numeral 13 denotes temperature detection means, and there are a plurality of temperature detection means for detecting the water temperature in the vertical direction inside the hot water tank 1. 14 is a hot water amount calculating means, which detects a signal from the temperature detecting means 13 and calculates the hot water amount inside the hot water tank 1. A hot water temperature control means 15 detects the signal of the hot water amount calculation means 14, changes the set value of the set temperature B, and transmits the signal to the operation control means 12.
[0025]
Next, the operation of the embodiment having the above configuration will be described. At the start of operation, the amount of hot water is calculated from the hot water temperature in the vertical direction in the hot water tank. When the amount of remaining hot water is large, the water in the entire hot water storage tank 1 is boiled up to a set temperature A to a uniform hot water temperature, and then the set temperature B is lowered and boiled up. Therefore, it is possible to reduce the heat dissipation loss from the hot water storage tank after the completion of boiling and to follow the hot water supply load.
[0026]
(Example 5)
FIG. 6 is a configuration diagram of a hot water storage type electric water heater according to a fifth embodiment of the present invention. In FIG. 6, reference numeral 16 denotes a reheating setting means, which is a manual switch for reheating the hot water tank 1. Reference numeral 17 denotes an operation stop means, which detects a signal from the tracking setting means 16 and energizes the heater 3 so that only the circulation pump 5 is de-energized.
[0027]
Next, the operation of the embodiment having the above configuration will be described. When the recirculation signal from the manual switch is detected while the circulation pump 5 is operating or stopped, the heater 4 is energized and only the circulation pump 5 is de-energized. Then, the water in the upper hot water tank 1 is boiled from the heater 4. Therefore, hot water is boiled in a short time when hot water is urgently needed.
[0028]
(Example 6)
FIG. 7 is a configuration diagram of a hot water storage type electric water heater according to Embodiment 6 of the present invention. In FIG. 7, reference numeral 18 denotes a flow path switching means that switches to a circulation circuit A 19 connected to the lower part of the circulation pump 5 and the hot water tank 1 and a circulation circuit B 20 connected to the vicinity of the middle of the capacity of the hot water tank 1.
[0029]
Next, the operation of the embodiment having the above configuration will be described. When the hot water supply load is small, such as in summer, the hot water heated by the heater 4 is moved from the upper part of the hot water tank 1 to the middle of the capacity of the hot water tank 1 through the circulation pump 5 and the flow path switching means 18 through the circulation circuit B20. return. While repeating this, hot water is stored from near the middle of the capacity of the hot water tank 1 to the upper part. Alternatively, low-temperature water near the middle of the capacity of the hot water tank 1 is flowed to the upper part of the hot water tank 1 via the flow path switching means 18 and the circulation pump 5 and heated by the heater 4. While repeating this, hot water is stored from near the middle of the capacity of the hot water tank 1 to the upper part. Therefore, since the amount of boiling water can be varied, energy saving is further achieved when the hot water supply load is small, such as in summer.
[0032]
【The invention's effect】
According to invention of Claim 1 , having the preset temperature A of the hot water supply possible temperature of 40-65 degreeC, the hot water storage tank whole quantity can be utilized for hot water supply in a short time. Further, since the time for storing hot water at the intermediate set temperature A is long, the heat dissipation loss from the hot water tank is reduced, resulting in energy saving.
[0033]
Further, according to the invention described in claim 2 , it is possible to reduce the heat dissipation loss from the hot water storage tank after the completion of boiling and to boil up following the hot water supply load.
[0034]
According to the third aspect of the present invention, when a reheating signal from the manual switch is detected during operation or stop of the circulation pump, the heater is energized and only the circulation pump is de-energized. Then, the water in the upper hot water tank is boiled from the heater. Therefore, hot water is boiled in a short time when hot water is urgently needed.
[0035]
According to the invention described in claim 4 , the flow path switching means for switching between the circulation circuit A connecting the circulation pump and the lower part of the hot water storage tank and the circulation circuit B connecting the vicinity of the middle of the hot water storage tank is provided. By changing the amount of hot water, energy saving can be achieved when the hot water supply load is small, such as in summer.
[Brief description of the drawings]
FIG. 1 is a block diagram of a hot water storage type electric water heater according to a first embodiment of the present invention. FIG. 2 is a block diagram of another type of hot water storage type electric water heater according to the first embodiment. Fig. 4 is a block diagram of a hot water type electric water heater in Embodiment 3 of the present invention. Fig. 5 is a block diagram of a hot water type electric water heater in Embodiment 4 of the present invention. Fig. 7 is a block diagram of a hot water storage type electric water heater in Embodiment 5 of the present invention. Fig. 7 is a block diagram of a hot water storage type electric water heater in Embodiment 6 of the present invention. Fig. 8 is a block diagram of a conventional hot water storage type electric water heater. Explanation of]
DESCRIPTION OF SYMBOLS 1 Hot water tank 2 Water supply pipe 3 Hot water discharge pipe 4 Heater 5 Circulation pump 6 Temperature detection means 7 Clock 8 Operation control means A
9 Operation control means B
DESCRIPTION OF SYMBOLS 10 1st temperature detection means 11 2nd temperature detection means 12 Operation control means 13 Temperature detection means 14 Hot water amount calculation means 15 Hot water temperature control means 16 Reheating setting means 17 Operation stop means 18 Flow path switching means 19 Circulation circuit A
20 Circulation circuit B

Claims (4)

下部から給水され、上部から出湯される貯湯槽と、前記貯湯槽の内部上部に設けたヒーターと、前記ヒーターより上部の前記貯湯槽位置と前記貯湯槽の最下部近傍位置を連結する水回路に設けた循環ポンプと、前記ヒーターより上部の貯湯槽の湯温を検出する第1の温度検出手段と、前記貯湯槽の下部の湯温を検出する第2の温度検出手段と、前記第2の温度検出手段の温度信号が設定温度A(40〜65℃)に達した時に前記循環ポンプを停止し、その後、前記第1の温度検出手段の温度信号が設定温度B(85〜90℃)に達した時に前記循環ポンプを運転し、設定温度C(所定温度AとBの中間温度)に低下した時に前記循環ポンプを運転停止する運転制御手段とからなる貯湯式電気温水器。 A hot water tank supplied with water from the lower part and discharged from the upper part, a heater provided in the upper part of the hot water tank, and a water circuit connecting the hot water tank position above the heater and the position near the lowermost part of the hot water tank. A circulating pump provided; a first temperature detecting means for detecting a hot water temperature in a hot water tank above the heater; a second temperature detecting means for detecting a hot water temperature in a lower part of the hot water tank; The circulating pump is stopped when the temperature signal of the temperature detecting means reaches the set temperature A (40 to 65 ° C.), and then the temperature signal of the first temperature detecting means is set to the set temperature B (85 to 90 ° C.). A hot water storage type electric water heater comprising operation control means for operating the circulation pump when the temperature reaches the set temperature and stopping the operation of the circulation pump when the temperature drops to a set temperature C (intermediate temperature between predetermined temperatures A and B). 下部から給水され、上部から出湯される貯湯槽と、前記貯湯槽の内部上部に設けたヒーターと、前記ヒーターより上部の前記貯湯槽位置と前記貯湯槽の最下部近傍位置を連結する水回路に設けた循環ポンプと、前記ヒーターより上部の貯湯槽の湯温を検出する第1の温度検出手段と、前記貯湯槽の下部の湯温を検出する第2の温度検出手段と、前記第2の温度検出手段の温度信号が設定温度Aに達した時に前記循環ポンプを停止し、その後、前記第1の温度検出手段の温度信号が設定温度B(設定温度Aより高温)に達した時に前記循環ポンプを運転し、設定温度C(所定温度AとBの中間温度)に低下した時に前記循環ポンプを運転停止する運転制御手段と、前記貯湯槽内部の上下方向の水温を検出する複数の温度検出手段と、前記温度検出手段の信号を検出して前記貯湯槽内部の湯量を演算する湯量演算手段と、前記湯量演算手段の信号を検出して、残湯量が多い場合には前記設定温度Bの設定値を下げる信号を前記運転制御手段へ送信する湯温制御手段とからなる貯湯式電気温水器。 A hot water tank supplied with water from the lower part and discharged from the upper part, a heater provided in the upper part of the hot water tank, and a water circuit connecting the hot water tank position above the heater and the position near the lowermost part of the hot water tank. A circulating pump provided; a first temperature detecting means for detecting a hot water temperature in a hot water tank above the heater; a second temperature detecting means for detecting a hot water temperature in a lower part of the hot water tank; The circulating pump is stopped when the temperature signal of the temperature detecting means reaches the set temperature A, and then the circulation is performed when the temperature signal of the first temperature detecting means reaches the set temperature B (higher than the set temperature A). Operation control means for operating the pump and stopping the circulation pump when the temperature drops to a set temperature C (intermediate temperature between predetermined temperatures A and B), and a plurality of temperature detections for detecting the water temperature in the vertical direction inside the hot water tank Means and the temperature detection Detecting the signal of the means and calculating the amount of hot water inside the hot water tank, and detecting the signal of the hot water amount calculating means, and if the amount of remaining hot water is large, a signal for lowering the set value of the set temperature B A hot water storage type electric water heater comprising hot water temperature control means for transmitting to the operation control means. 手動の追焚き設定手段と、前記追焚き設定手段の信号を検出して、ヒーターを通電して循環ポンプだけ非通電する運転停止手段を設けた請求項1または記載の貯湯式電気温水器。The hot water storage type electric water heater according to claim 1 or 2 , further comprising: a manual reheating setting unit; and an operation stopping unit that detects a signal from the reheating setting unit and energizes the heater to de-energize only the circulation pump. 前記水回路から流路切換手段を介して前記貯湯槽の容量の中間近傍へ接続する第二の回路を有することを特徴とする請求項1または2記載の貯湯式電気温水器。3. The hot water storage type electric water heater according to claim 1, further comprising a second circuit connected from the water circuit to an intermediate vicinity of a capacity of the hot water storage tank through a flow path switching unit.
JP23931499A 1999-08-26 1999-08-26 Hot water storage type electric water heater Expired - Fee Related JP3743218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23931499A JP3743218B2 (en) 1999-08-26 1999-08-26 Hot water storage type electric water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23931499A JP3743218B2 (en) 1999-08-26 1999-08-26 Hot water storage type electric water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005288108A Division JP2006029780A (en) 2005-09-30 2005-09-30 Storage type electric water heater

Publications (2)

Publication Number Publication Date
JP2001065987A JP2001065987A (en) 2001-03-16
JP3743218B2 true JP3743218B2 (en) 2006-02-08

Family

ID=17042883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23931499A Expired - Fee Related JP3743218B2 (en) 1999-08-26 1999-08-26 Hot water storage type electric water heater

Country Status (1)

Country Link
JP (1) JP3743218B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505233A (en) * 2012-08-23 2014-02-26 Thermal Integration Ltd Fluid heating and storage system

Also Published As

Publication number Publication date
JP2001065987A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP4324154B2 (en) Hot water storage water heater
JP4780206B2 (en) Water heater
JP2006029780A (en) Storage type electric water heater
JP3849518B2 (en) Heat pump type water heater
JP4389378B2 (en) Hot water storage type heat pump water heater
JP3743218B2 (en) Hot water storage type electric water heater
JP2010112680A (en) Storage type hot water supply device
JP2005106440A (en) Hot water storing type hot water supply device
JP2010007891A (en) Heat pump storage type hot water supplying/heating device
JP3868909B2 (en) Hot water storage water heater
JP4779878B2 (en) Hot water storage water heater
JP5087417B2 (en) Hot water storage water heater
JP3840574B2 (en) Water heater
JP3868908B2 (en) Hot water storage water heater
JP3857951B2 (en) Bath equipment
JP5979042B2 (en) Water heater
JP3589118B2 (en) Hot water storage type electric water heater
JP2006105546A (en) Hot water storage type hot water supply device using photovoltaic power generation panel
JPH1151499A (en) Solar heat utilizing hot water supply system
JP3906408B2 (en) Water heater
JP2006308123A (en) Storage water heater
JP2011226664A (en) Storage type hot water supply system
JP2888677B2 (en) Electric water heater
JPH0674564A (en) Electric water heater
JP2006105528A (en) Hot water storage type water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees