JP3857951B2 - Bath equipment - Google Patents

Bath equipment Download PDF

Info

Publication number
JP3857951B2
JP3857951B2 JP2002125150A JP2002125150A JP3857951B2 JP 3857951 B2 JP3857951 B2 JP 3857951B2 JP 2002125150 A JP2002125150 A JP 2002125150A JP 2002125150 A JP2002125150 A JP 2002125150A JP 3857951 B2 JP3857951 B2 JP 3857951B2
Authority
JP
Japan
Prior art keywords
hot water
water
heat exchanger
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125150A
Other languages
Japanese (ja)
Other versions
JP2003322402A (en
Inventor
好夫 武藤
卓幸 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002125150A priority Critical patent/JP3857951B2/en
Publication of JP2003322402A publication Critical patent/JP2003322402A/en
Application granted granted Critical
Publication of JP3857951B2 publication Critical patent/JP3857951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒の凝縮熱を利用したヒートポンプユニット等の加熱用熱源により加熱した高温水を貯湯槽に供給すると共に、この貯湯槽から給湯する風呂装置に関する。詳述すれば、風呂水を追焚きする熱交換器を備えた風呂装置に関する。
【0002】
【従来の技術】
従来、ヒートポンプユニット、燃料電池などを加熱用熱源とし、循環ポンプを使用して貯湯槽内の水を加熱用熱源との間で循環させ、給湯用の温水を生成して貯湯槽内に貯湯し、この貯湯槽から風呂へ給湯する風呂装置においては、風呂の浴槽に給湯した後、浴槽内の湯温が低下すると、貯湯槽内の温水と浴槽内の温水とを熱交換器にて熱交換して浴槽の水を加熱、すなわち追焚きして入浴できるようにしている。
【0003】
【発明が解決しようとする課題】
しかし、上記風呂装置では、追焚きの熱源に貯湯槽内の湯を使用するため、給湯などにより貯湯槽内の湯の温度が低下して低くなると、貯湯槽内の湯を追焚きに利用できなくなる。このため、追焚き時には、上記加熱用熱源を運転して加熱された高温水を貯湯槽内に供給することにより貯湯槽内の湯の温度を上昇させ、追焚きに利用できるようにしていたので、貯湯槽内の湯を加熱して温度上昇させる分、追焚き時の効率が非常に悪く、電力消費も多くなり不経済であるという問題が発生する。
【0004】
また、追焚きを開始してから貯湯槽内の湯の温度が上昇し、この温度上昇した湯を利用した追焚きにより浴槽の湯の温度が上昇始めるまでに時間が掛かり、即ち追焚き時のレスポンスが悪いという問題が発生する。
【0005】
特に、貯湯槽を備えた給湯機では、電力料金が安い夜間(例えば午後11時から午前7時まで)の間に熱源を運転し、貯湯槽内の水を加熱して温度を上昇させて貯湯しておき、貯湯槽内の温水を電力料金が高い夜間以外の昼間に使用することで、使用者が負担する電力料金を抑えている。
【0006】
しかしながら、昼間に加熱用熱源を運転して風呂の追焚きを行うと、電力料金が高い昼間の電力を消費することになり、使用者の電力料金の負担が大幅に増加するという問題が発生する。
【0007】
そこで本発明は、電力消費の上昇を極力抑え、効率よく追焚きを行い、また、追焚き時間を短縮することを目的とする。
【0008】
【課題を解決するための手段】
このため本発明は、少なくとも圧縮機、冷媒対水熱交換器、膨張装置及び蒸発器を備えたヒートポンプ冷媒回路、循環ポンプにより貯湯槽下部の水が前記冷媒対水熱交換器に供給されて加熱された高温水を前記貯湯槽上部に戻して該貯湯槽内に貯留し該貯湯槽から出湯可能とする給湯回路と、風呂水を追焚きする追焚き用熱交換器とを備えた風呂装置において、前記ヒートポンプ冷媒回路の前記冷媒対水熱交換器で加熱された高温の水を前記貯湯槽上部に戻すか前記追焚き用熱交換器に供給するかに切り替え可能な第1の三方弁と、前記冷媒対水熱交換器に前記貯湯槽下部の水を供給するか前記追焚き用熱交換器で追焚きされた温水を供給するかに切り替え可能な第2の三方弁とを備え、風呂水の追焚き運転時には、前記第1及び三方弁を切り替えて前記ヒートポンプ冷媒回路の前記冷媒対水熱交換器で加熱された高温の水を前記追焚き用熱交換器に供給すると共に前記追焚き用熱交換器で追焚きされた温水を前記冷媒対水熱交換器に供給するようにしたことを特徴とする
【0011】
【発明の実施の形態】
本発明の実施の形態を図を参照して、以下説明する。図1は本発明が適用される貯湯式給湯機としてのヒートポンプ給湯機を浴槽と配管接続した風呂装置の回路説明図で、風呂装置は圧縮機にて圧縮された冷媒と水とを加熱用熱交換器により熱交換させる冷媒回路を備えた加熱用熱源としてのヒートポンプユニット100と、ヒートポンプユニット100にて温度上昇した高温水を貯留する貯湯槽などを備えた貯湯槽ユニット200と、循環ポンプにより水を貯湯槽と前記加熱用熱交換器との間を循環させると共に前記貯湯槽から出湯可能とする給湯回路300と、浴槽の湯の追焚き回路400とを主要構成としている。
【0012】
前記ヒートポンプユニット100に設けられた冷媒回路は、冷媒を吸入圧縮し高温高圧にする圧縮機1、冷媒と水とを熱交換させる加熱用の冷媒対水熱交換器2、電動式の膨張弁3、外気と冷媒との熱交換を行う室外側熱交換器としての蒸発器4、アキュムレータ5等を有している。
【0013】
前記貯湯槽ユニット200は、台所で操作される台所リモコン(リモートコントローラ)7及び風呂場で操作される風呂リモコン(リモートコントローラ)8が接続された貯湯槽側の制御基板9及びお湯を貯湯する貯湯槽10を備え、制御基板9には風呂装置を制御する制御手段としてマイクロコンピュータ(以下「マイコン」という)等が搭載される。尚、台所リモコン7及び風呂リモコン8には時刻表示装置等が設けられている。
【0014】
前記給湯回路300は、前記貯湯槽10に水道水を供給する逆止弁付き水道減圧弁11、貯湯槽10からお湯を取出す出湯管12、水道減圧弁11の出口側から出湯管12に接続された混合弁13に至るバイパス管14、出湯管12から分岐したお湯張り管15、該お湯張り管15に接続された逆止弁15a及び流量調整弁16、前記混合弁13より上流側の出湯管12に接続される圧力逃がし弁17、貯湯槽10の下端部と前記冷媒対水熱交換器2の入口側との間に接続された往き管18、この往き管18の途中に接続されて貯湯槽10から前記冷媒対水熱交換器2に水を供給するための第1の循環ポンプ19、この第1の循環ポンプ19の上流側に接続された切替弁又は混合弁であり冷媒対水熱交換器2の入口側切替弁としての第1の三方弁20、冷媒対水熱交換器2の出口側と貯湯槽10の上端部との間に接続された戻り管21、この戻り管21の途中に接続された流量調整手段としての流量調整弁22及び切替弁又は混合弁であり冷媒対水熱交換器2の出口側切替弁としての第2の三方弁23を配管接続して構成されている。
【0015】
前記第1の三方弁20は入口側を貯湯槽10の底部側或いは後述する追焚き用熱交換器側にするかを切り替えるか、または貯湯槽10の底部10bからの低温水と追焚き用熱交換器からの温水とを混合して冷媒対水熱交換器2へ流出する。前記第2の三方弁23は冷媒対水熱交換器2からの高温水が流入し、出口側を後述する追焚き用熱交換器24或いは貯湯槽10の上部10aにするかを切り替えるか、または流入した高温水を貯湯槽10の上部10a側と冷媒対水熱交換器2側とに配分する。
【0016】
また、追焚き回路400は追焚き用熱交換器24、第2の三方弁23から追焚き用熱交換器24に至る往き管25、追焚き用温水温度センサ38を途中に備えた追焚き用温水往き管26、追焚き用熱交換器24から第1の三方弁20に至る第1の追焚き用温水戻り管27、この第1の追焚き用温水戻り管27の途中に設けられた第2の循環ポンプ28、第2の循環ポンプ28の下流側の第1の追焚き用温水戻り管27の途中から分岐して貯湯槽10の中間部10cに至り逆止弁29aを途中に接続した第2の追焚き用温水戻り管29、追焚き用熱交換器24と浴槽30との間に接続された追焚き往き管31及び追焚き戻り管32、追焚き往き管31の途中に設けられた第3の循環ポンプ33を配管接続して構成されている。そして、第3の循環ポンプ33の入口側の追焚き往き管31の途中に風呂温度センサ34が設けられ、出口側の追焚き往き管31の途中にお湯張り管15が接続されている。
【0017】
また、冷媒対水熱交換器2の入口側及び出口側には温度センサ(以下、「熱源入口温度センサ」という)35及び温度センサ(以下、「熱源出口温度センサ」という)36が設けられ、冷媒対水熱交換器2の入口側の貯湯槽ユニット200内に外気温度センサ37が設けられ、更に前記貯湯槽10に水道水を供給する水温を検出する給水温度センサ39が設けられている。
【0018】
次に図2の制御ブロック図に基づいて説明する。貯湯槽ユニット200側の制御基板9に設けられたマイコン40は、本風呂装置の貯湯槽ユニット200、給湯回路300及び追焚き回路400に係る動作を統括制御するCPU(セントラル・プロセッシング・ユニット)41、各種データを記憶する記憶装置としてのRAM(ランダム・アクセス・メモリ)42、給湯動作及び追焚き運転の動作に係るプログラムを格納するROM(リ−ド・オンリー・メモリ)43から構成されている。ROM43には図3に示したテーブルのような、貯湯槽10内の例えば深夜電力を使用して深夜に沸き上げるときの最大貯湯量である最大沸上量、沸き増しを開始する最低貯湯量及び沸き増しを停止する貯湯量である沸き増し終了の貯湯量が沸き上げ(沸き増し)制御のモードとしてモード1からモード7まで格納され、また、これらのモードを貯湯量の変化に基づいて変更するプログラムが設定されている。そして、CPU21は前記RAM42に記憶されたデータに基づき、前記ROM43に格納されたプログラム及び上記モードに従い、本風呂装置の給湯及び追焚きに係る動作を統括制御する。そして、通常は貯湯槽10内の容量全てを所定の温度に沸き上げるようにマイコン40は給湯機を制御する。
【0019】
また、台所リモコンCPU7aがマイコン40に信号線にて接続され、台所リモコンCPU7aには浴槽30への給湯時にお湯張りの量を設定するための沸き上げ量設定スイッチ7b及び上記モードを切り替えるためのモード切替スイッチ7cが接続されている。
【0020】
また、風呂リモコン8がマイコン40に信号線にて接続され、風呂リモコン8には浴槽30の追焚きを開始或いは停止する時に使用者が操作する追焚きスイッチ8aが設けられている。
【0021】
また、ヒートポンプユニット100側のマイクロコンピュータ(以下、「マイコン」という)50は、ヒートポンプユニット100に係る動作を統括制御するCPU51、各種データを記憶する記憶する記憶装置としてのRAM52、ヒートポンプユニット100の動作に係るプログラムを格納するROM53から構成されている。そして、圧縮機1、膨張弁3、熱源入口温度センサ35及び熱源出口温度センサ36がマイコン50に信号線にて接続されている。
【0022】
マイコン40とマイコン50とは信号線55にて接続され、前記入口温度センサ35及び出口温度センサ36の検出温度はマイコン50及び信号線55を介してマイコン40に送信され、RAM42に随時記憶される。また、RAM42には、後述する貯湯槽10への高温水の供給時の冷媒対水熱交換器2の出口側設定温度である第1の設定温度(例えば85℃)及び追焚き時の冷媒対水熱交換器2の出口側設定温度である第2の設定温度(例えば90℃)、追焚き時の冷媒対水熱交換器2の入口側設定温度である第3の設定温度が記憶されている。ここで、追焚き時の第3の設定温度は、例えば上記第2の設定温度を90℃とした場合に、この90℃の温水を冷媒対水熱交換器2から吐出するための冷媒対水熱交換器2の出力、即ち音冷媒対水熱交換器2の加熱能力が40degであるときは、90−40=50℃である。
【0023】
そして、前記貯湯槽10の容量が、例えば370リットルであり、貯湯槽10には、湯温検出センサTS1、TS2、TS3、TS4、TS5、TS6及びTS7が貯湯槽10の下部から上部まで上下間隔を存して設けられ、本給湯機がその沸き上げ可能温度が55℃までのため、前記各センサの検出湯温が55℃以上の場合には貯湯槽10内の上端からその位置までは貯湯されており残湯ありと判断する。このとき、検出センサTS1の配置箇所は残湯量が350リットル、TS2が同じく300リットル、TS3が250リットル、TS4が200リットル、TS5が150リットル、TS6が100リットル、TS7が50リットルの位置である。
【0024】
ここで、外気温度センサ37による外気温度(例えば25℃)、ヒートポンプユニット100の能力(例えば5.0kW)、沸き上げ温度(例えば75℃)、給水温度センサ39により検出された逆止弁付き水道減圧弁11を介して貯湯槽10に供給する水道水の給水温度(例えば20℃)、湯温検出センサTS3の検出温度(例えば63℃)、湯温検出センサTS1及びTS2の検出温度(例えば50℃)等のデータは、前記マイコン40のRAM42に格納され、これらのデータに基づいてマイコン40が貯湯槽10内の貯湯量を判断する。
【0025】
即ち、初めに7個の湯温検出センサの中から沸き上げ湯温55℃を2個の検出センサ間に含む検出センサの組み合わせをマイコン40が探索し、55℃より高い温度を検出している検出センサの検出温度をThi、その残湯量をLhiとし、低い温度を検出している検出センサの検出温度をTlo、その残湯量をLloとして、55℃に到達している前記貯湯槽10内の貯湯量(残湯量)Lzを、Lz=(Thi−55)/(Thi−Tlo)×(Llo−Lhi)+Lhiからマイコン40が算出する。
【0026】
従って、55℃に到達している残湯量Lzは(63−55)/(63−50)×(300−250)+250から約286リットルであると、マイコン40は判断する。
【0027】
次に循環流量(1分間当りの沸き上げ量)を、ヒートポンプによる1分間当りの加熱量を沸き上げ温度から水温を引いた温度で割り算して算出するが、具体的には循環流量=(ヒートポンプ能力P×860(Kcal)/60(分間)/(沸き上げ温度Tp−(外気温度Tt×0.8+3))からマイコン40が算出する。即ち、所定能力が一定に出る給水温度(冷媒対水熱交換器2に入る水温)は、外気温度値を用いて、各種性能試験で得られた換算式より算出している。
【0028】
従って、循環流量は、(5×860/60/(75−(25×0.8+3)から約1.38リットル/分と、マイコン40は判断する。即ち、ヒートポンプの特性上(特に冷媒がCO2の場合)、沸き上げ温度を固定で、給水温度(冷媒対水熱交換器2に入る水温)が上昇すると圧縮機1の周波数を一定に保っていても徐々に加熱能力が低下し、また水温の上昇と能力の低下のカーブは完全にはリニアにはならないため、本給湯機で圧縮機1の保護も含め、入口水温に合わせて圧縮機1の周波数を段階的に下げる動作を行い、結果的に入口水温が変動しても同じ外気温度条件なら略一定の循環流量を維持する運転を行なうように制御することとなる。
【0029】
以上のようにマイコン40により、貯湯槽10内の貯湯量が判断されると共に、沸き上げ時(沸き増し時)の循環量が算出される。
【0030】
以下、貯湯槽10からの給湯時の制御について説明する。
【0031】
図4の(a)に示したような貯湯槽10内の貯湯状態(ハッチングされた部分が全体の容量の内の貯湯量を表す。)から給湯され、湯使用された時には、貯湯槽10に水が一杯になるように逆止弁付き水道減圧弁11から水が給水される。湯が使用され貯湯量が次第に少なくなり(b)に示した貯湯状態になる。さらに、給湯され貯湯量が少なくなり(c)に示したように最低貯湯量(例えばモード4の場合においては150リットル)より少なくなり、検出センサTS6の検出温度が貯湯状態と判断する温度である55℃より低下すると、マイコン40は貯湯量が検出センサの位置より少なくなったと判断し、ヒートポンプユニット100側のマイコン50に運転信号を出力し、ヒートポンプユニット100に沸き増し運転を開始させる。
【0032】
即ち、圧縮機1が運転を開始し、圧縮機1で圧縮されて高温になった冷媒が冷媒対水熱交換器2に供給される。そして、第1の三方弁20及び第2の三方弁23は共に図1に実線矢印にて示したような流路に切り替わっており、循環ポンプ19が起動されて貯湯槽10の底部10bの水が冷媒対水熱交換器2に給水されて、冷媒と水との熱交換が開始される。これにより、冷媒は熱を失って凝縮し、また水は冷媒の凝縮熱により温度が上昇して、高温水すなわち湯となって貯湯槽10(その上部10a)に戻る。
【0033】
このとき、熱源出口温度センサ36の検出温度に基づいてマイコン40が動作し、流量調整弁22の開度を制御することにより、ほぼ設定温度(例えば85℃)まで温度上昇した湯が戻り管21から貯湯槽10の上部10aへ供給される。これにより貯湯槽10内の上層は湯で下層は水となり、時間の経過と共にお湯の層と水の層とが混じることなく、湯の層が増え水の層が少なくなる。そして、通常の運転状態(モード7のときに相当)では、最終的に貯湯槽10が湯で満たされるが、例えば沸き上げ制御のモードがモード4の場合には、図4の(c)に示したように貯湯量が設定された沸き増し終了の量である200リットルまで上昇し、検出センサTS5の検出温度が55℃以上になると、CPU41が動作しマイコン40が第1の循環ポンプ19へ停止信号を出力すると共に、マイコン50を介して圧縮機1へ停止信号を出力し、沸き増し運転が終了する。
【0034】
上記のように沸き増し運転時には図3に示した沸き上げ制御のモードに従い、沸き増し運転が制御されるが、以下、沸き上げ制御のモードを変更するときの制御について、図5のフローチャートに基づいて説明する。
【0035】
まず、沸き上げ制御のモード(運転モード)が手動か自動かが判断され、手動の場合には、前記沸き上げ量設定スイッチ7bの操作に基づいて、沸き上げ制御のモードがモード1乃至3までの間にて設定される。即ち、沸き上げ量を例えば多い、中間、少ない場合の3段階に分け、多い場合にはモード3、中間の場合にはモード2、少ない場合にはモード1が設定され、その後、沸き上げ運転時には設定されたモードに従って風呂装置の特にヒートポンプユニット100、貯湯槽ユニット200及び給湯回路300が制御される。
【0036】
沸き上げ制御のモード(運転モード)が自動の場合には、例えば貯湯槽ユニット100及びヒートポンプユニット200への電源投入時に標準モードである沸き上げ制御のモード3が自動的に設定される。このため、貯湯槽10からの給湯により貯湯量が減少し、検出センサTS6の検出温度が55℃より低くなり、貯湯量が100リットルをより少なくなったとマイコン40が判断する(判断A)。この判断に伴いマイコン40に設けられた図示しないタイマが動作を開始する。そして、その後、貯湯量が50リットル以下にならず、即ち検出センサTS7が55℃以上の温度を検出し続けた場合には、沸き上げ制御のモード3がタイマに予め設定されている所定時間(例えば3日間)維持される。
【0037】
尚、所定時間が経過する前に貯湯量が減少し、検出センサTS7の検出温度が55℃より低くなった場合には、貯湯量が50リットルより少なくなったとマイコン40が判断し(判断B)、沸き上げ制御のモードを一ランク上のモード、即ち、モード番号の大きいモードであるモード4へ移行する。このため、沸き増し開始の最低貯湯量が100リットルから150リットルへ増加し、かつ沸き増し運転の終了貯湯量が150リットルから200リットルに増加する。
【0038】
また、検出センサTS6の検出温度に基づいて貯湯槽10に100リットル以上の貯湯量があるとマイコン40が判断した(判断C)場合には、図示しないタイマが動作する。そして、100リットル以上の貯湯量が予め設定されていた所定期間(例えば3日間)維持された場合には、タイマがカウントアップし、マイコン40が動作し、一ランク下のモード、即ち、モード番号が小さいモードであるモード2へ移行する。この結果、最大沸上量が370リットルから300リットルへ減少する。
【0039】
各沸き上げ制御のモードにおいて、上記モード3と同様の判断が行われ、例えばモード5においては、100リットル以上の貯湯量が所定期間維持された場合には、タイマがカウントアップし、マイコン40が動作し、一ランク下のモード、即ち、モード番号が小さいモードであるモード4へ移行する。この結果、沸き増し開始の最低貯湯量が200リットルから150リットルへ減少し、かつ沸き増し運転の終了貯湯量が250リットルから200リットルに減少する。同様に、モード4からモード7においては、100リットル以上の貯湯量が所定期間維持された場合には、タイマがカウントアップし、マイコン40が動作し、一ランク下のモード、即ち、モード番号が小さいモードであるモードへ移行する。この結果、沸き増し開始の最低貯湯量と沸き増し運転の終了貯湯量との双方が50リットルずつ減少する。
【0040】
この結果、給湯量が多いとき、即ち使用負荷が多いときにはモード番号を大きい方へ移行させ、負荷に適切に対応することが可能であることはもちろん、給湯量が少なく使用負荷が少ないときには、モード番号を小さい方へ移行させ、深夜の最大沸上量を減少させ、また、沸き増し開始の最低貯湯量と沸き増し運転の終了貯湯量との双方を減少させることにより、1つの貯湯槽10の容量で使用負荷に対応した幅広い運転、即ち、貯湯量或いは沸き増し量の制御が可能であり、放熱よる熱ロスを極力少なくし、ヒートポンプ給湯機の運転効率、即ち湯の供給効率が向上する。
【0041】
以下、上記のように給湯運転が制御される本風呂装置の追焚き時の動作について説明する。
【0042】
使用者が入浴中に浴槽30の湯の温度が低下し、風呂リモコン8の追焚きスイッチ8aを操作すると、風呂リモコン8は追焚き運転信号を制御基板9に出力する。制御基板9は追焚き運転信号を受信すると、マイコン40が動作して第1の三方弁20及び第2の三方弁23を図1に破線矢印にて示したように追焚き用熱交換器24側の流路に切り替え、その後、流量調整弁22を全開状態にすると共に第1の循環ポンプ19及び第2の循環ポンプ28の運転を開始させる。このため、冷媒対水熱交換器2にて温度上昇した高温水は戻り管21、往き管25を経て追焚き用熱交換器24へ流れ、浴槽30からの温水と熱交換して追焚きを行い温度低下した水は第2の循環ポンプ28、第1の三方弁20及び第1の循環ポンプ19を経て冷媒対水熱交換器2へ循環する。また、マイコン40は第3の循環ポンプ33の運転を開始させ、第3の循環ポンプ33の運転により浴槽30の湯は追焚き用熱交換器24に流れ、冷媒対水熱交換器2からの高温水と熱交換して温度上昇し、浴槽30へ戻り、追焚きが行われる。このため、ヒートポンプユニット100を熱源とした追焚き運転が行われ、追焚き運転には貯湯槽100内の高温水を使用しないので、追焚き運転時の貯湯槽ユニット200及び給湯回路300からの放熱を極力少なくし、追焚き運転の効率を向上することができる。また、追焚き時間を短縮し、ヒートポンプユニット100での消費電力を削減することができる。
【0043】
また、マイコン40は冷媒対水熱交換器2の吐出温度を追焚き温度の設定温度である第2の設定温度まで上昇させるために効率が良い冷媒対水熱交換器2の入口側の温度になるように、第1の三方弁20の入口側の開度を制御する。例えば、追焚き時の冷媒対水熱交換器2の吐出温度である第2の設定温度を90℃とした場合に、上記のように冷媒対水熱交換器2の入口側の温度が第3の設定温度になるように第1の三方弁20の貯湯槽10側の開度及び追焚き用熱交換器側の開度を制御する。このとき、追焚き用熱交換器24から流出した湯のうちの一部が上記開度に応じて第2の追焚き用温水戻り管29を介して貯湯槽10の中間部10cに戻される。
【0044】
このため、追焚き時の冷媒対水熱交換器2での加熱効率を良好に保ち、追焚き運転の効率を一層向上することができ、また、追焚き用熱交換器24の吐出温度を適温に保つことも可能になる。
【0045】
次に、追焚きを行っているときに、給湯を同時に行う動作について説明する。
【0046】
上記のように追焚きを行っているときに、貯湯槽10に設けられている、例えば湯温検出線センサTS4が設定温度である例えば60℃を検出すると、マイコン40が動作し、流量調整弁22の開度を制御し、冷媒対水熱交換器2の流量を調節しヒートポンプユニット100から貯湯槽10に供給する高温水の温度を第1の設定温度(85℃)に制御する。冷媒対水熱交換器2から流出した高温水は第2の三方弁23にて、例えば貯湯槽10からの高温水の供給量に応じて追焚き熱交換器24と貯湯槽10とに適宜配分される。このため、追焚き運転を行いつつ、貯湯槽10に給湯用の高温水を供給して給湯用の温水を貯留することができ、使用者は風呂の追焚きをしながら、貯湯槽10からの湯を使用することができる。
【0047】
また、追焚き用熱交換器24からの戻り水を貯湯槽10に極力送らずに冷媒対水熱交換器2に戻して加熱するように、第1の三方弁20の入口側の開度を制御することにより、貯湯槽10での放熱ロスを極力少なくし、追焚き時の熱効率を向上することができ、また追焚き時間の短縮により消費電力を低減することができる。
【0048】
また、第2の三方弁23を冷媒対水熱交換器2にて加熱された高温水と、貯湯槽10に貯留され追焚き用温水往き管26を介して流れてきた高温水とを混合して追焚き用熱交換器24へ送る混合弁とした場合には、冷媒対水熱交換器2からの高温水の温度と、追焚き用温水温度センサ38の検出温度である貯湯槽10からの高温水の温度とのうち何れか高い温度の高温水を主に利用して追焚きすることが可能になり、追焚き時間を一層短縮し、消費電力を大幅に低減でき、しかも使用者にとって大変使い勝手が良い風呂装置を提供することができる。
【0049】
尚、上記実施の形態において、加熱用熱源としてヒートポンプユニットについて説明したが、加熱用熱源に燃料電池などを用いた場合にも、同様の作用効果を得ることができる。
【0050】
以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。
【0051】
【発明の効果】
従来は、追焚きの熱源に貯湯槽内の湯を使用するため、給湯などにより貯湯槽内の湯の温度が低下して低くなると、貯湯槽内の湯を追焚きに利用できなくなることがあったので、追焚き時には上記加熱用熱源を運転して加熱された高温水を貯湯槽内に供給することにより貯湯槽内の湯の温度を上昇させ、追焚きに利用していたので、貯湯槽内の湯を加熱して温度上昇させる分、追焚き時の効率が非常に悪く、電力消費も多くなり不経済であるという問題があったが、本発明によれば、電力消費の上昇を極力抑え、効率よく追焚きを行い、また追焚き時間を短縮することができる。
【図面の簡単な説明】
【図1】ヒートポンプ給湯機の回路説明図である。
【図2】制御ブロック図である。
【図3】各モード毎の最大沸上量、沸き増し開始時の最低貯湯量及び沸き増し終了時の貯湯量のテーブルを示す図である。
【図4】沸き増し運転時の貯湯量の変化を説明する図である。
【図5】フローチャートを示す図である。
【符号の説明】
1 圧縮機
2 冷媒対水熱交換器(加熱用熱交換器)
10 貯湯槽
18 往き管
20 第1の切替弁(混合弁)
21 戻り管
23 第2の切替弁(混合弁)
24 追焚き用熱交換器
25 第2の戻り管
30 浴槽
40 マイコン
41 CPU
42 RAM
43 ROM
50 マイコン
100 ヒートポンプユニット
200 貯湯槽ユニット
300 給湯回路
400 追焚き回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bath apparatus that supplies high-temperature water heated by a heat source for heating such as a heat pump unit using the heat of condensation of a refrigerant to a hot water storage tank and supplies hot water from the hot water storage tank. More specifically, the present invention relates to a bath apparatus provided with a heat exchanger for pursuing bath water.
[0002]
[Prior art]
Conventionally, heat pump units, fuel cells, etc. have been used as heating heat sources, and circulation pumps are used to circulate the water in the hot water storage tanks with the heating heat source to generate hot water for hot water supply and store the hot water in the hot water storage tanks. In the bath device that supplies hot water from the hot water tank to the bath, when the hot water temperature in the bathtub drops after the hot water is supplied to the bath tub, heat is exchanged between the hot water in the hot water tank and the hot water in the bathtub with a heat exchanger. The water in the bathtub is heated, that is, it can be used for bathing.
[0003]
[Problems to be solved by the invention]
However, in the above bath equipment, the hot water in the hot water tank is used as a heat source for reheating. Therefore, when the temperature of the hot water in the hot water tank decreases due to hot water supply or the like, the hot water in the hot water tank can be used for reheating. Disappear. For this reason, at the time of reheating, the temperature of the hot water in the hot water tank is raised by operating the heating heat source and supplying the heated hot water into the hot water tank so that it can be used for reheating. Since the hot water in the hot water tank is heated to raise the temperature, there is a problem that the efficiency at the time of reheating is very poor and the power consumption is increased, which is uneconomical.
[0004]
In addition, the temperature of the hot water in the hot water tank rises after the start of reheating, and it takes time until the temperature of the hot water in the bathtub starts to rise due to reheating using the hot water whose temperature has increased. The problem of poor response occurs.
[0005]
In particular, in a water heater equipped with a hot water tank, the heat source is operated during the night when the electricity rate is low (for example, from 11:00 pm to 7:00 am), and the water in the hot water tank is heated to raise the temperature. In addition, by using the hot water in the hot water tank in the daytime other than the nighttime when the electricity rate is high, the electricity rate burdened by the user is suppressed.
[0006]
However, if a heating heat source is operated during the daytime to replenish the bath, it will consume daytime power, which has a high power charge, and the burden of the user's power charge will increase significantly. .
[0007]
Therefore, an object of the present invention is to suppress an increase in power consumption as much as possible, perform an efficient tracking, and shorten a tracking time.
[0008]
[Means for Solving the Problems]
Therefore, the present invention provides a heat pump refrigerant circuit including at least a compressor, a refrigerant-to-water heat exchanger, an expansion device, and an evaporator, and water in the lower part of the hot water tank is supplied to the refrigerant-to-water heat exchanger by a circulation pump and heated. In a bath apparatus comprising a hot water supply circuit for returning the hot water to the upper part of the hot water tank and storing the hot water in the hot water tank so that the hot water can be discharged from the hot water tank, and a heat exchanger for reheating the bath water A first three-way valve that can be switched to return the hot water heated by the refrigerant-to-water heat exchanger of the heat pump refrigerant circuit to the upper part of the hot water tank or to supply the reheating heat exchanger; A second three-way valve that can be switched between supplying water below the hot water tank to the refrigerant-to-water heat exchanger or supplying hot water reheated by the reheating heat exchanger, During the follow-up operation, turn off the first and three-way valves. Instead, the hot water heated by the refrigerant-to-water heat exchanger of the heat pump refrigerant circuit is supplied to the reheating heat exchanger and the hot water reheated by the reheating heat exchanger is supplied to the refrigerant pair. It is characterized in that it is supplied to the water heat exchanger .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a bath apparatus in which a heat pump water heater as a hot water storage type hot water heater to which the present invention is applied is connected to a bathtub by piping, and the bath apparatus heats the refrigerant and water compressed by the compressor. A heat pump unit 100 as a heat source for heating provided with a refrigerant circuit for exchanging heat by an exchanger, a hot water tank unit 200 provided with a hot water tank for storing high-temperature water whose temperature has risen in the heat pump unit 100, and water by a circulation pump The main components are a hot water supply circuit 300 that circulates between the hot water storage tank and the heat exchanger for heating, and enables hot water to be discharged from the hot water storage tank, and a hot water replenishment circuit 400 for the bathtub.
[0012]
The refrigerant circuit provided in the heat pump unit 100 includes a compressor 1 that sucks and compresses refrigerant to generate high temperature and pressure, a refrigerant-to-water heat exchanger 2 that heat-exchanges refrigerant and water, and an electric expansion valve 3. And an evaporator 4 as an outdoor heat exchanger that performs heat exchange between the outside air and the refrigerant, an accumulator 5, and the like.
[0013]
The hot water tank unit 200 includes a hot water tank for storing hot water and a control board 9 on the hot water tank side to which a remote controller (remote controller) 7 operated in the kitchen and a remote controller (remote controller) 8 operated in the bathroom are connected. A tank 10 is provided, and a microcomputer (hereinafter referred to as “microcomputer”) or the like is mounted on the control board 9 as control means for controlling the bath apparatus. The kitchen remote controller 7 and the bath remote controller 8 are provided with a time display device and the like.
[0014]
The hot water supply circuit 300 is connected to a hot water pressure reducing valve 11 with a check valve for supplying tap water to the hot water storage tank 10, a hot water discharge pipe 12 for taking out hot water from the hot water storage tank 10, and a hot water discharge pipe 12 from the outlet side of the water pressure reducing valve 11. A bypass pipe 14 leading to the mixing valve 13, a hot water filling pipe 15 branched from the hot water feeding pipe 12, a check valve 15 a and a flow rate adjustment valve 16 connected to the hot water filling pipe 15, and a hot water discharge pipe upstream of the mixing valve 13. 12, a pressure relief valve 17 connected to 12, a forward pipe 18 connected between the lower end of the hot water storage tank 10 and the inlet side of the refrigerant-to-water heat exchanger 2, and hot water connected to the middle of the forward pipe 18. A first circulation pump 19 for supplying water from the tank 10 to the refrigerant-to-water heat exchanger 2, a switching valve or a mixing valve connected to the upstream side of the first circulation pump 19, and refrigerant-to-water heat The first three as the inlet side switching valve of the exchanger 2 A return pipe 21 connected between the valve 20, the outlet side of the refrigerant-to-water heat exchanger 2 and the upper end of the hot water tank 10, and a flow rate adjusting valve 22 as a flow rate adjusting means connected in the middle of the return pipe 21. The second three-way valve 23 serving as a switching valve or a mixing valve and serving as an outlet side switching valve of the refrigerant-to-water heat exchanger 2 is connected by piping.
[0015]
The first three-way valve 20 switches the inlet side to the bottom side of the hot water tank 10 or the side of the heat exchanger for reheating described later, or low temperature water and heat for reheating from the bottom 10b of the hot water tank 10. The hot water from the exchanger is mixed and flows out to the refrigerant-to-water heat exchanger 2. The second three-way valve 23 switches between whether the high-temperature water from the refrigerant-to-water heat exchanger 2 flows in and the outlet side is to be a reheating heat exchanger 24 to be described later or the upper part 10a of the hot water tank 10, or The flowing high temperature water is distributed to the upper part 10a side of the hot water tank 10 and the refrigerant-to-water heat exchanger 2 side.
[0016]
Further, the reheating circuit 400 includes a reheating heat exchanger 24, an outgoing pipe 25 that leads from the second three-way valve 23 to the reheating heat exchanger 24, A hot water outlet pipe 26 provided with a hot water temperature sensor 38 in the middle, A first reheating hot water return pipe 27 from the reheating heat exchanger 24 to the first three-way valve 20, and a second circulation pump 28 provided in the middle of the first reheating hot water return pipe 27. The second recirculation which branches off from the middle of the first reheating hot water return pipe 27 on the downstream side of the second circulation pump 28 and reaches the intermediate portion 10c of the hot water tank 10 and which is connected to the check valve 29a. The hot water return pipe 29, the reheating pipe 31 connected between the reheating heat exchanger 24 and the bathtub 30, the reheating return pipe 32, and a third circulation provided in the middle of the retreating pipe 31 The pump 33 is connected by piping. A bath temperature sensor 34 is provided in the middle of the retreating pipe 31 on the inlet side of the third circulation pump 33, and the hot water filling pipe 15 is connected in the middle of the retreating pipe 31 on the outlet side.
[0017]
Further, a temperature sensor (hereinafter referred to as “heat source inlet temperature sensor”) 35 and a temperature sensor (hereinafter referred to as “heat source outlet temperature sensor”) 36 are provided on the inlet side and the outlet side of the refrigerant-to-water heat exchanger 2, An outside air temperature sensor 37 is provided in the hot water storage tank unit 200 on the inlet side of the refrigerant-to-water heat exchanger 2, and a water supply temperature sensor 39 for detecting a water temperature for supplying tap water to the hot water storage tank 10 is provided.
[0018]
Next, description will be made based on the control block diagram of FIG. A microcomputer 40 provided on the control board 9 on the side of the hot water tank unit 200 is a CPU (Central Processing Unit) 41 that performs overall control of operations related to the hot water tank unit 200, the hot water supply circuit 300, and the reheating circuit 400 of the bath device. A RAM (Random Access Memory) 42 as a storage device for storing various data, and a ROM (Read Only Memory) 43 for storing a program relating to hot water supply operation and follow-up operation. . In the ROM 43, as shown in the table of FIG. 3, for example, the maximum amount of hot water, which is the maximum amount of hot water when boiling in the middle of the night using electric power in the hot water tank 10, and the minimum amount of hot water to start boiling, The amount of hot water at the end of reheating, which is the amount of hot water that stops boiling, is stored from mode 1 to mode 7 as the mode of boiling (increase) control, and these modes are changed based on changes in the amount of hot water stored. The program is set. Then, based on the data stored in the RAM 42, the CPU 21 comprehensively controls operations related to hot water supply and reheating of the bath device in accordance with the program stored in the ROM 43 and the mode. In general, the microcomputer 40 controls the water heater so that the entire capacity of the hot water tank 10 is heated to a predetermined temperature.
[0019]
A kitchen remote controller CPU 7a is connected to the microcomputer 40 via a signal line. The kitchen remote controller CPU 7a has a boiling amount setting switch 7b for setting the amount of hot water when hot water is supplied to the bathtub 30, and a mode for switching the mode. A changeover switch 7c is connected.
[0020]
A bath remote controller 8 is connected to the microcomputer 40 via a signal line, and the bath remote controller 8 is provided with a chasing switch 8a operated by a user when starting or stopping chasing the bathtub 30.
[0021]
Further, a microcomputer (hereinafter referred to as “microcomputer”) 50 on the heat pump unit 100 side includes a CPU 51 that performs overall control of operations related to the heat pump unit 100, a RAM 52 as a storage device that stores various data, and operations of the heat pump unit 100. It is comprised from ROM53 which stores the program concerning. The compressor 1, the expansion valve 3, the heat source inlet temperature sensor 35, and the heat source outlet temperature sensor 36 are connected to the microcomputer 50 through signal lines.
[0022]
The microcomputer 40 and the microcomputer 50 are connected by a signal line 55, and the detected temperatures of the inlet temperature sensor 35 and the outlet temperature sensor 36 are transmitted to the microcomputer 40 via the microcomputer 50 and the signal line 55, and stored in the RAM 42 as needed. . Further, the RAM 42 has a first set temperature (for example, 85 ° C.) which is a set temperature on the outlet side of the refrigerant heat exchanger 2 when supplying high-temperature water to the hot water tank 10 to be described later and a refrigerant pair at the time of reheating. A second set temperature (for example, 90 ° C.) that is a set temperature on the outlet side of the water heat exchanger 2 and a third set temperature that is a set temperature on the inlet side of the refrigerant-to-water heat exchanger 2 during reheating are stored. Yes. Here, the third set temperature at the time of reheating is, for example, the coolant to water for discharging the 90 ° C. warm water from the coolant to water heat exchanger 2 when the second set temperature is 90 ° C. When the output of the heat exchanger 2, that is, the heating capacity of the sound refrigerant to water heat exchanger 2 is 40 deg, 90−40 = 50 ° C.
[0023]
And the capacity | capacitance of the said hot water tank 10 is 370 liters, for example, and hot water temperature detection sensors TS1, TS2, TS3, TS4, TS5, TS6 and TS7 are vertically spaced from the lower part to the upper part of the hot water tank 10 in the hot water tank 10. Since the water heater can be heated up to 55 ° C., when the detected hot water temperature of each sensor is 55 ° C. or higher, the hot water storage from the upper end of the hot water storage tank 10 to the position is provided. It is judged that there is remaining hot water. At this time, the detection sensor TS1 is disposed at a position where the remaining hot water amount is 350 liters, TS2 is also 300 liters, TS3 is 250 liters, TS4 is 200 liters, TS5 is 150 liters, TS6 is 100 liters, and TS7 is 50 liters. .
[0024]
Here, the outside air temperature by the outside air temperature sensor 37 (for example, 25 ° C.), the capacity of the heat pump unit 100 (for example, 5.0 kW), the boiling temperature (for example, 75 ° C.), and the tap water with a check valve detected by the feed water temperature sensor 39. Supply temperature (for example, 20 ° C.) of tap water supplied to the hot water tank 10 via the pressure reducing valve 11, detection temperature (for example, 63 ° C.) of the hot water temperature detection sensor TS3, detection temperatures (for example, 50) of the hot water temperature detection sensors TS1 and TS2. Data) is stored in the RAM 42 of the microcomputer 40, and the microcomputer 40 determines the amount of hot water stored in the hot water tank 10 based on these data.
[0025]
That is, first, the microcomputer 40 searches for a combination of detection sensors including the boiling water temperature 55 ° C. between the two detection sensors from the seven hot water temperature detection sensors, and detects a temperature higher than 55 ° C. The detection temperature of the detection sensor is Thi, the amount of remaining hot water is Lhi, the detection temperature of the detection sensor detecting a low temperature is Tlo, and the amount of remaining hot water is Llo. The microcomputer 40 calculates the amount of stored hot water (the amount of remaining hot water) Lz from Lz = (Thi−55) / (Thi−Tlo) × (Llo−Lhi) + Lhi.
[0026]
Therefore, the microcomputer 40 determines that the remaining hot water amount Lz reaching 55 ° C. is about 286 liters from (63−55) / (63−50) × (300−250) +250.
[0027]
Next, the circulation flow rate (boiling amount per minute) is calculated by dividing the heating amount per minute by the heat pump by the temperature obtained by subtracting the water temperature from the boiling temperature. Specifically, the circulation flow rate = (heat pump The microcomputer 40 calculates from the capacity P × 860 (Kcal) / 60 (minutes) / (boiling temperature Tp− (outside air temperature Tt × 0.8 + 3)), that is, the feed water temperature at which the predetermined capacity is constant (refrigerant vs. water). The water temperature entering the heat exchanger 2) is calculated from conversion formulas obtained in various performance tests using the outside air temperature value.
[0028]
Therefore, the microcomputer 40 determines that the circulation flow rate is about 1.38 liters / minute from (5 × 860/60 / (75− (25 × 0.8 + 3)). 2 In this case, when the boiling temperature is fixed and the feed water temperature (water temperature entering the refrigerant-to-water heat exchanger 2) rises, the heating capacity gradually decreases even if the frequency of the compressor 1 is kept constant, and the water temperature Since the curve of the rise and the decline in capacity is not completely linear, the operation of lowering the frequency of the compressor 1 step by step according to the inlet water temperature, including the protection of the compressor 1 with this water heater, is the result. Therefore, even if the inlet water temperature fluctuates, control is performed so as to perform an operation for maintaining a substantially constant circulation flow rate under the same outside air temperature condition.
[0029]
As described above, the microcomputer 40 determines the amount of hot water stored in the hot water storage tank 10 and calculates the circulation amount at the time of boiling (when boiling).
[0030]
Hereinafter, control during hot water supply from the hot water tank 10 will be described.
[0031]
When hot water is supplied from the hot water storage state (the hatched portion indicates the amount of hot water stored in the entire capacity) as shown in (a) of FIG. Water is supplied from the water pressure reducing valve 11 with a check valve so that the water is full. Hot water is used and the amount of hot water storage gradually decreases, and the hot water storage state shown in FIG. Furthermore, as shown in (c), the amount of hot water supplied is reduced and the amount of stored hot water is less than the minimum amount of stored hot water (for example, 150 liters in the case of mode 4). When the temperature falls below 55 ° C., the microcomputer 40 determines that the amount of stored hot water has become smaller than the position of the detection sensor, outputs an operation signal to the microcomputer 50 on the heat pump unit 100 side, and causes the heat pump unit 100 to boil up and start operation.
[0032]
That is, the compressor 1 starts operation, and the refrigerant that has been compressed by the compressor 1 and has reached a high temperature is supplied to the refrigerant-to-water heat exchanger 2. Both the first three-way valve 20 and the second three-way valve 23 are switched to the flow paths as indicated by solid arrows in FIG. 1, and the circulation pump 19 is activated and the water at the bottom 10 b of the hot water storage tank 10 is turned on. Is supplied to the refrigerant-to-water heat exchanger 2 to start heat exchange between the refrigerant and water. As a result, the refrigerant loses heat and condenses, and the temperature of the water rises due to the heat of condensation of the refrigerant to return to the hot water tank 10 (its upper part 10a) as hot water, that is, hot water.
[0033]
At this time, the microcomputer 40 operates based on the temperature detected by the heat source outlet temperature sensor 36 and controls the opening degree of the flow rate adjusting valve 22, so that the hot water whose temperature has risen to substantially the set temperature (for example, 85 ° C.) To the upper part 10a of the hot water tank 10. Accordingly, the upper layer in the hot water tank 10 is hot water and the lower layer is water, and the hot water layer and the water layer are not mixed with the passage of time, and the hot water layer increases and the water layer decreases. In the normal operation state (corresponding to mode 7), the hot water storage tank 10 is finally filled with hot water. For example, when the heating control mode is mode 4, the state shown in FIG. As shown in the figure, when the hot water storage amount rises to 200 liters which is the amount of completion of boiling, and when the detection temperature of the detection sensor TS5 becomes 55 ° C. or higher, the CPU 41 operates and the microcomputer 40 moves to the first circulation pump 19. While outputting a stop signal, a stop signal is output to the compressor 1 via the microcomputer 50, and a boiling increase operation is complete | finished.
[0034]
As described above, during the heating operation, the heating operation is controlled according to the heating control mode shown in FIG. 3. Hereinafter, the control when changing the heating control mode will be described based on the flowchart of FIG. I will explain.
[0035]
First, it is determined whether the boiling control mode (operation mode) is manual or automatic. If the mode is manual, the boiling control mode is set to modes 1 to 3 based on the operation of the boiling amount setting switch 7b. Is set between. That is, the amount of boiling is divided into three stages, for example, large, medium, and small. Mode 3 is set when the amount is large, mode 2 is set when the amount is medium, and mode 1 is set when the amount is small. In particular, the heat pump unit 100, the hot water tank unit 200, and the hot water supply circuit 300 of the bath apparatus are controlled according to the set mode.
[0036]
When the heating control mode (operation mode) is automatic, for example, when the power to the hot water tank unit 100 and the heat pump unit 200 is turned on, the heating control mode 3 which is a standard mode is automatically set. For this reason, the amount of hot water is reduced by the hot water supply from the hot water storage tank 10, the detection temperature of the detection sensor TS6 is lower than 55 ° C., and the microcomputer 40 determines that the amount of hot water storage is less than 100 liters (determination A). With this determination, a timer (not shown) provided in the microcomputer 40 starts operating. After that, when the hot water storage amount does not become 50 liters or less, that is, when the detection sensor TS7 continues to detect a temperature of 55 ° C. or higher, the heating control mode 3 is set to a predetermined time (preliminary time set in the timer) For example 3 days).
[0037]
Note that when the amount of stored hot water decreases before the predetermined time elapses and the detection temperature of the detection sensor TS7 becomes lower than 55 ° C., the microcomputer 40 determines that the amount of stored hot water is less than 50 liters (determination B). Then, the heating control mode is shifted to a mode that is one level higher, that is, mode 4 that is a mode with a large mode number. For this reason, the minimum hot water storage amount at the start of boiling increase increases from 100 liters to 150 liters, and the final hot water storage amount at the boiling increase operation increases from 150 liters to 200 liters.
[0038]
When the microcomputer 40 determines that there is a hot water storage amount of 100 liters or more in the hot water storage tank 10 based on the detected temperature of the detection sensor TS6 (determination C), a timer (not shown) operates. When a hot water storage amount of 100 liters or more is maintained for a predetermined period (for example, 3 days) set in advance, the timer counts up, the microcomputer 40 operates, and a mode lower by one rank, that is, a mode number Shifts to mode 2, which is a mode in which the As a result, the maximum boiling amount is reduced from 370 liters to 300 liters.
[0039]
In each boiling control mode, the same determination as in the above mode 3 is performed. For example, in mode 5, when a hot water storage amount of 100 liters or more is maintained for a predetermined period, the timer counts up and the microcomputer 40 Operates and shifts to the next lower mode, that is, mode 4 which is a mode with a smaller mode number. As a result, the minimum hot water storage amount at the start of boiling increases from 200 liters to 150 liters, and the final hot water storage amount after the boiling increase operation decreases from 250 liters to 200 liters. Similarly, in mode 4 to mode 7, when a hot water storage amount of 100 liters or more is maintained for a predetermined period, the timer counts up and the microcomputer 40 operates, so that the mode lower in rank, that is, the mode number is set. Transition to a mode that is a smaller mode. As a result, both the minimum hot water storage amount at the start of boiling increase and the hot water storage amount at the end of boiling operation are reduced by 50 liters.
[0040]
As a result, when the amount of hot water supply is large, that is, when the usage load is large, the mode number can be shifted to the larger one and, of course, it is possible to appropriately cope with the load. The number is shifted to the smaller one, the maximum boiling amount at midnight is reduced, and both the minimum hot water amount at the start of boiling and the hot water amount at the end of heating operation are reduced, thereby reducing the number of hot water tanks 10. It is possible to control a wide range of operations corresponding to the use load with capacity, that is, control of the amount of hot water stored or the amount of boiling, minimizing heat loss due to heat dissipation, and improving the operating efficiency of the heat pump water heater, that is, the hot water supply efficiency.
[0041]
Hereinafter, the operation at the time of reheating of the bath apparatus in which the hot water supply operation is controlled as described above will be described.
[0042]
When the temperature of the hot water in the bathtub 30 is lowered while the user is bathing and the chasing switch 8 a of the bath remote controller 8 is operated, the bath remote controller 8 outputs a chasing operation signal to the control board 9. When the control board 9 receives the chasing operation signal, the microcomputer 40 operates and the first three-way valve 20 and the second three-way valve 23 are chased as indicated by the dashed arrows in FIG. Then, the flow control valve 22 is fully opened and the first circulation pump 19 and the second circulation pump 28 are started to operate. For this reason, the high-temperature water whose temperature has risen in the refrigerant-to-water heat exchanger 2 flows to the reheating heat exchanger 24 via the return pipe 21 and the forward pipe 25 and exchanges heat with the hot water from the bathtub 30 for reheating. The water whose temperature has been lowered is circulated to the refrigerant-to-water heat exchanger 2 via the second circulation pump 28, the first three-way valve 20 and the first circulation pump 19. Further, the microcomputer 40 starts the operation of the third circulation pump 33, and the operation of the third circulation pump 33 causes the hot water in the bathtub 30 to flow into the reheating heat exchanger 24, and from the refrigerant-to-water heat exchanger 2. The temperature rises by exchanging heat with high-temperature water, returns to the bathtub 30, and is chased. For this reason, a reheating operation using the heat pump unit 100 as a heat source is performed, and the high temperature water in the hot water storage tank 100 is not used for the renewal operation. Therefore, heat is radiated from the hot water storage tank unit 200 and the hot water supply circuit 300 during the reheating operation. As much as possible, the efficiency of chasing operation can be improved. Further, the chasing time can be shortened and the power consumption in the heat pump unit 100 can be reduced.
[0043]
In addition, the microcomputer 40 increases the discharge temperature of the refrigerant-to-water heat exchanger 2 to the second set temperature, which is the set temperature of the tracking temperature, so that the temperature on the inlet side of the refrigerant-to-water heat exchanger 2 is high. Thus, the opening degree on the inlet side of the first three-way valve 20 is controlled. For example, when the second set temperature, which is the discharge temperature of the refrigerant-to-water heat exchanger 2 at the time of reheating, is 90 ° C., the temperature on the inlet side of the refrigerant-to-water heat exchanger 2 is the third as described above. The opening degree of the first three-way valve 20 on the hot water tank 10 side and the opening degree of the reheating heat exchanger side are controlled so as to be set to the preset temperature. At this time, a part of the hot water flowing out from the reheating heat exchanger 24 is returned to the intermediate portion 10c of the hot water storage tank 10 through the second reheating hot water return pipe 29 according to the opening degree.
[0044]
For this reason, the heating efficiency in the refrigerant-to-water heat exchanger 2 at the time of reheating can be kept good, the efficiency of the reheating operation can be further improved, and the discharge temperature of the reheating heat exchanger 24 can be set to an appropriate temperature. It is also possible to keep it.
[0045]
Next, an operation for simultaneously supplying hot water while performing reheating will be described.
[0046]
When the reheating is performed as described above, for example, when the hot water temperature detection line sensor TS4 provided in the hot water storage tank 10 detects, for example, 60 ° C., which is a set temperature, the microcomputer 40 operates, and the flow rate adjustment valve 22 is controlled, the flow rate of the refrigerant-to-water heat exchanger 2 is adjusted, and the temperature of the high-temperature water supplied from the heat pump unit 100 to the hot water storage tank 10 is controlled to the first set temperature (85 ° C.). The high-temperature water flowing out from the refrigerant-to-water heat exchanger 2 is appropriately distributed to the reheating heat exchanger 24 and the hot water tank 10 by the second three-way valve 23 according to, for example, the amount of hot water supplied from the hot water tank 10. Is done. For this reason, it is possible to supply hot water for hot water supply to the hot water storage tank 10 and store the hot water for hot water supply while performing the reheating operation, and the user can remove the hot water from the hot water tank 10 while pursuing the bath. Hot water can be used.
[0047]
Further, the opening degree on the inlet side of the first three-way valve 20 is set so that the return water from the reheating heat exchanger 24 is returned to the refrigerant-to-water heat exchanger 2 and heated without being sent to the hot water tank 10 as much as possible. By controlling the heat dissipation loss in the hot water storage tank 10 as much as possible, the thermal efficiency at the time of chasing can be improved, and the power consumption can be reduced by shortening the chasing time.
[0048]
Further, the high temperature water heated by the refrigerant-to-water heat exchanger 2 through the second three-way valve 23 and the high temperature water stored in the hot water storage tank 10 and flowing through the reheating hot water outlet pipe 26 are mixed. When the mixing valve is sent to the reheating heat exchanger 24, the temperature of the high-temperature water from the refrigerant-to-water heat exchanger 2 and the temperature detected by the reheating hot water temperature sensor 38 are from the hot water storage tank 10. It is possible to repurchase mainly using high temperature water, whichever is higher than the temperature of the high temperature water, further shortening the replenishment time, greatly reducing power consumption, and it is very difficult for the user. An easy-to-use bath apparatus can be provided.
[0049]
In the above-described embodiment, the heat pump unit has been described as the heat source for heating. However, similar effects can be obtained when a fuel cell or the like is used as the heat source for heating.
[0050]
Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the various alternatives and modifications described above are within the scope of the present invention. Or a modification is included.
[0051]
【The invention's effect】
Conventionally, hot water in the hot water tank is used as a heat source for reheating, so if the temperature of the hot water in the hot water tank decreases due to hot water supply, etc., the hot water in the hot water tank may not be used for reheating. Therefore, at the time of reheating, the temperature of the hot water in the hot water tank was raised by operating the above heat source for heating and supplying heated hot water into the hot water tank, which was used for reheating. However, according to the present invention, the increase in power consumption was as much as possible. It is possible to suppress, efficiently perform chasing, and shorten chasing time.
[Brief description of the drawings]
FIG. 1 is a circuit explanatory diagram of a heat pump water heater.
FIG. 2 is a control block diagram.
FIG. 3 is a table showing a maximum boiling amount, a minimum hot water storage amount at the start of boiling increase, and a hot water storage amount at the end of boiling increase for each mode;
FIG. 4 is a diagram for explaining a change in the amount of stored hot water during a boiling increase operation.
FIG. 5 is a flowchart.
[Explanation of symbols]
1 Compressor
2 Refrigerant-to-water heat exchanger (heat exchanger for heating)
10 Hot water tank
18 Outward pipe
20 First switching valve (mixing valve)
21 Return pipe
23 Second switching valve (mixing valve)
24 Heat exchanger for reheating
25 Second return pipe
30 Bathtub
40 Microcomputer
41 CPU
42 RAM
43 ROM
50 microcomputer
100 heat pump unit
200 Hot water tank unit
300 Hot water supply circuit
400 memory circuit

Claims (1)

少なくとも圧縮機、冷媒対水熱交換器、膨張装置及び蒸発器を備えたヒートポンプ冷媒回路、循環ポンプにより貯湯槽下部の水が前記冷媒対水熱交換器に供給されて加熱された高温水を前記貯湯槽上部に戻して該貯湯槽内に貯留し該貯湯槽から出湯可能とする給湯回路と、風呂水を追焚きする追焚き用熱交換器とを備えた風呂装置において、前記ヒートポンプ冷媒回路の前記冷媒対水熱交換器で加熱された高温の水を前記貯湯槽上部に戻すか前記追焚き用熱交換器に供給するかに切り替え可能な第1の三方弁と、前記冷媒対水熱交換器に前記貯湯槽下部の水を供給するか前記追焚き用熱交換器で追焚きされた温水を供給するかに切り替え可能な第2の三方弁とを備え、風呂水の追焚き運転時には、前記第1及び三方弁を切り替えて前記ヒートポンプ冷媒回路の前記冷媒対水熱交換器で加熱された高温の水を前記追焚き用熱交換器に供給すると共に前記追焚き用熱交換器で追焚きされた温水を前記冷媒対水熱交換器に供給するようにしたことを特徴とする風呂装置。Heat pump refrigerant circuit including at least a compressor, a refrigerant-to-water heat exchanger, an expansion device, and an evaporator, and water at a lower portion of the hot water tank is supplied to the refrigerant-to-water heat exchanger by a circulation pump and heated high-temperature water is heated. In a bath apparatus comprising a hot water supply circuit that returns to the upper part of the hot water tank and stores the hot water in the hot water tank so that the hot water can be discharged from the hot water tank, and a reheating heat exchanger that tracks the bath water, A first three-way valve switchable between returning the hot water heated by the refrigerant-to-water heat exchanger to the upper part of the hot water storage tank or supplying it to the reheating heat exchanger; and the refrigerant-to-water heat exchange And a second three-way valve that can be switched between supplying water in the lower part of the hot water storage tank or supplying hot water reheated by the reheating heat exchanger. The heat is switched by switching the first and three-way valves. High-temperature water heated by the refrigerant-to-water heat exchanger of the pump refrigerant circuit is supplied to the reheating heat exchanger, and the hot water reheated by the reheating heat exchanger is supplied to the refrigerant-to-water heat exchange A bath apparatus characterized by being supplied to a vessel.
JP2002125150A 2002-04-26 2002-04-26 Bath equipment Expired - Fee Related JP3857951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125150A JP3857951B2 (en) 2002-04-26 2002-04-26 Bath equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125150A JP3857951B2 (en) 2002-04-26 2002-04-26 Bath equipment

Publications (2)

Publication Number Publication Date
JP2003322402A JP2003322402A (en) 2003-11-14
JP3857951B2 true JP3857951B2 (en) 2006-12-13

Family

ID=29539951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125150A Expired - Fee Related JP3857951B2 (en) 2002-04-26 2002-04-26 Bath equipment

Country Status (1)

Country Link
JP (1) JP3857951B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010283A (en) * 2005-07-04 2007-01-18 Hanshin Electric Co Ltd Hot water storage type hot water supply method and hot water storage type hot water supply device
JP4817916B2 (en) * 2006-03-24 2011-11-16 三洋電機株式会社 Heat pump type water heater
JP5085270B2 (en) * 2007-10-23 2012-11-28 東芝キヤリア株式会社 Heat pump hot water supply system
JP5168384B2 (en) * 2011-04-26 2013-03-21 ダイキン工業株式会社 Heat pump water heater
JP5741256B2 (en) * 2011-07-01 2015-07-01 三菱電機株式会社 Hot water storage water heater

Also Published As

Publication number Publication date
JP2003322402A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US9010281B2 (en) Hot water supply system
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP2005274132A (en) Hot-water storage type water heating system
KR101467088B1 (en) Storage type hot water supply device
JP4778299B2 (en) Hot water storage type hot water supply device and method for changing standby opening of hot water mixing valve
JP2004286307A (en) Storage type water heater
JPH09126547A (en) Heat pump type hot water supply apparatus
JP4448488B2 (en) Hot water storage water heater
JP3887781B2 (en) Heat pump water heater
JP3857951B2 (en) Bath equipment
JP3869749B2 (en) Hot water storage water heater
JP2004101134A (en) Hot water storage type hot-water feeder
JP3749194B2 (en) Hot water storage water heater
JP2011027298A (en) Hot water storage type hot water supply heating device
JP3903462B2 (en) Hot water storage water heater
JP2006308124A (en) Storage type water heater
JP2004116889A (en) Hot water storage-type hot water supply device
JP2004293837A (en) Hot-water storage type hot-water supply device
JP4155162B2 (en) Hot water storage water heater
JP2007132559A (en) Hot water storage type water heater
JP2004116890A (en) Hot water storage-type hot water supply device
JP2005257213A (en) Hot water storage type water heater
JP4988521B2 (en) Heat pump water heater
JP3972886B2 (en) Water heater
JP4773874B2 (en) Water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees