JP3742872B2 - Electroless plating method using light-fixed fine particles as catalyst - Google Patents

Electroless plating method using light-fixed fine particles as catalyst Download PDF

Info

Publication number
JP3742872B2
JP3742872B2 JP2001204408A JP2001204408A JP3742872B2 JP 3742872 B2 JP3742872 B2 JP 3742872B2 JP 2001204408 A JP2001204408 A JP 2001204408A JP 2001204408 A JP2001204408 A JP 2001204408A JP 3742872 B2 JP3742872 B2 JP 3742872B2
Authority
JP
Japan
Prior art keywords
fine particles
electroless plating
metal fine
plating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001204408A
Other languages
Japanese (ja)
Other versions
JP2003013242A (en
Inventor
淳 山田
康郎 新留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001204408A priority Critical patent/JP3742872B2/en
Publication of JP2003013242A publication Critical patent/JP2003013242A/en
Application granted granted Critical
Publication of JP3742872B2 publication Critical patent/JP3742872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面処理の技術分野に属し、特に、新しい無電解メッキ法を利用して、各種の機能性材料として有用な特定の導電性パターンが形成された非導電性材料を製造する方法に関する。
【0002】
【従来の技術】
無電解メッキは、プラスチックやガラス等の絶縁物(非導電性材料)の表面を金属化し導電性を付与する方法として用いられている。典型的な無電解メッキは以下の手順で行われる。(1)各種のエッチング方法により被メッキ物の表面を粗面化および親水化(表面改質)する。(2)被メッキ物に無電解メッキの触媒核を付与(核付け処理)し、次いで、その触媒核を活性化(活性化処理)する。(3)無電解メッキ液に浸漬することにより無電解メッキ皮膜を生成させる。この際、触媒核が、金属イオンを還元してメッキ皮膜として生成させるための触媒として作用するとともに、メッキされた金属自身が触媒活性を有することによって無電解メッキが進行する。真空紫外光や放射線による表面改質や金属コロイド粒子を吸着させることによる触媒核固定法も提案されている。
【0003】
上記のような手法でメッキを行う場合は、通常、被メッキ物の表面全体でメッキが進行する。被メッキ領域のパターン化を行うには、無電解メッキにより触媒パターン上に金属を析出させる前に、メッキを進行させる金属パラジウム等の無電解メッキ触媒成分を感光性樹脂に混合したペーストを用い、フォトリソグラフ法で触媒層のパターンを形成したり、あるいは感光性パラジウム化合物や感光性パラジウム高分子キレート化合物を用いて紫外線による露光部分にのみ触媒核を固定する方法が提案されている。
これらの方法でポリイミドやガラスなどの基板に被メッキ領域のパターン化を行う場合、触媒核の固定処理工程が多く、洗浄水等の多量の廃液処理が必要であるなどの問題があった。
【0004】
また、例えば、テフロン多孔質電極などを得る目的で、フッ素系高分子などの化学的に非常に不活性な非伝導性(非導電性)多孔質材料の表面および内部(内孔の表面)に導電性パターンを形成する方法としては、従来の手法は以下の点で不充分であった:(1)溶液による表面改質/核付けを行う場合は、必然的に処理領域が多孔質材料全体に及んでしまい、特定の領域にのみ導電性パターンを形成することは不可能である。(2)真空紫外光や放射線による表面改質および紫外線によって触媒核を固定する手法では、光および放射線が多孔質材料内部に及びにくいので、厚みのある多孔質材料(1mm程度以上)を貫通する導電性パターンを作成する目的には適さない。(3)感光性材料を用いる方法は、重合した高分子によって多孔質材料の孔径が変わることや、未反応の触媒材料を完全に除去することが困難であるなどの問題点がある。
【0005】
最近、無電解メッキに必要な触媒核の形成方法として、金属の蒸着膜の一部をレーザーにより急激に熱を与えてふきとばして被メッキ用材料上に転写することが提示されている(特開2001−102724)。しかし、この方法も、被メッキ用材料の内部(内孔の表面)には転写することはできないこと、金属蒸着膜は使い捨てであり、その一部のみが触媒核として使用されて残りは廃棄されてしまう点において非効率的ないしは非経済的である等の問題がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、多孔質の非導電性材料を含む各種の基板材料の表面に導電性パターンを形成することができ、特に、それらの内部の空孔にも導電性を付与することができるような簡便で効率的な新しいタイプの無電解メッキ技術を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、先に、金属コロイド溶液にレーザー光を照射すると基板の表面に金属微粒子が析出して固着することに着目し、この現象に基づく金属微粒子の光固定化方法を案出した(特願平11−342146;特願2000−276369)。本発明者は、このたび、この金属微粒子の光固定化方法を無電解メッキにおける触媒核の形成に適用することによって上述の目的を達成し得る無電解メッキ法を確立し本発明を導き出した。
【0008】
かくして、本発明は、基本発明として、金属微粒子を低極性溶媒に分散して調製したコロイド溶液に被無電解メッキ用材料を浸漬し、これに紫外域から近赤外域のレーザー光を照射することにより金属微粒子を前記被電解メッキ用材料の表面に析出させ固定し、固定された金属微粒子を触媒核とする無電解メッキによって、金属微粒子が固定された部分をメッキすることを特徴とする、無電解メッキ法を提供するものである。
【0009】
さらに、本発明は、上記の無電解メッキ法を利用する発明として、金属微粒子を低極性溶媒に分散して調製したコロイド溶液に非導電性材料を浸漬し、これに紫外域から近赤外域のレーザー光を照射することにより所望のパターンに応じて金属微粒子を前記非導電性材料の表面に析出させ固定し、固定された金属微粒子を触媒核とする無電解メッキによって、所望のパターンに応じて金属微粒子が固定された部分のみに導電性を持たせる方法を付与することを特徴とする、導電性パターンが形成された非導電性材料の製造方法を提供する。本発明の導電性パターンが形成された非導電性材料の製造方法の1態様においては、非導電性材料が多孔質材料であり、その内孔の表面にも導電性が付与される。
【0010】
【発明の実施の形態】
本発明の実施の形態を本発明の構成要素に沿って以下に詳細に説明する。
A.本発明で使用する金属微粒子のコロイド溶液とは、粒径3nm〜100nm、好ましくは5nm〜50nmの金属微粒子の表面を、好ましくはレーザー光照射により金属微粒子表面から分離するような安定化剤で保護した状態で低極性溶媒に分散したものである。
【0011】
このようなコロイド溶液を構成する金属としては、Ag、Au、Cu、Pd、Ptなどの紫外〜近赤外域におけるプラズモン吸収バンドの大きい金属を好ましい材料として挙げることができる。これらの金属の微粒子は、紫外〜近赤外のレーザー光のエネルギーを吸収して基板の表面(表層部)に析出する。本発明は、紫外〜近赤外域のプラズモン吸収が大きいこれらの金属が、同時に、無電解メッキにおける触媒活性、すなわち、無電解メッキにおける還元剤の酸化作用に対する触媒活性を有し無電解析出することができる金属であることを見出したことに基づくものである。
【0012】
低極性溶媒に金属粒子を可溶化する分散安定剤としては、ドデカンチオールなどのチオール化合物を挙げることができる。
分散する低極性溶媒としては、ヘキサンなどの脂肪族、シクロヘキサンなどの脂環式、ベンゼン、トルエンなどの芳香族等の炭化水素類などが利用可能である。レーザー照射による溶媒の劣化を避けるという観点から脂環式溶媒が好ましい。
【0013】
B.上述したような金属微粒子を基板表面へ固定するのに用いられるレーザー光は特に限定されるものでなく、紫外域から近赤外域の各種のレーザー光が利用できるが、特にパルスレーザー光の利用は効率のよい方法である。パルスレーザー光としては、例えば、Nd:YAGレーザーの基本波(1064nm)、2倍波(532nm)、3倍波(355nm)、パルス幅5ns〜10ns、およびパルスエネルギー10mJ〜300mJのものが有用である。
【0014】
このようなレーザー光照射による金属微粒子の光固定化においては、一般に、粒径の大きい金属微粒子は光固定化の効率が高いが、低極性溶媒中での分散安定性が悪くなり易く、粒子が凝集して沈殿しやすい。すなわち、より大きい粒径の金属微粒子を用いると、より少ない照射エネルギーで粒子を固定することが可能である。例えば、平均粒径7.5nmの粒子を用いると、およそ18mJpulse 1cm 2以上(532nm、10ns)の照射エネルギーで固定可能であるのに対して、平均粒径約3nmの粒子を用いると、少なくとも75mJpulse 1cm 2以上(532nm)のレーザーパルスを照射しないと微粒子の固定化が起こらない。一方、粒径の大きい金属微粒子は低極性溶媒中での分散安定性が悪く、粒子が凝集して沈殿しやすいので、溶液の長期保存(1ヶ月程度以上)には不適当である。これらの点を考慮し、金属微粒子は、一般に平均粒径として100nm以下とするのが好ましい。金属微粒子の粒径の下限は原理的には特に存しないが、上述したようなレーザーの使用上の便宜を考えると、一般的には平均粒径として5nm以上とするのが好ましい。
レーザー照射部位以外で物理的に弱く吸着した金属微粒子は既述したような金属微粒子の分散に用いたシクロヘキサンなどの溶媒に浸漬することでほぼ完全に除去することができる。
【0015】
C.図1は、本発明に従い金属微粒子のコロイド溶液から基板の表面に金属微粒子の析出・固定する工程を原理的に説明するものである。
パルスレーザー光(L)は、マスク(M)を介し、セル(G)内に基板(S)が浸漬されている金属コロイド溶液(C)に照射される。照射された基板(S)の表面に金属微粒子(P)が固定される。金属微粒子の固定の工程は、マスクを介することなく、レーザー光を所望の描画図形(パターン)に従って操作することによっても実施できる。基板が透明の場合には、基材をガラス容器壁に密着させて照射する方法(a)が、不透明の場合には容器壁から1〜3mm程度隔てて照射する方法(b)が有効である。
【0016】
D.本発明においては、以上のようにして触媒核となる金属微粒子が光固定された基板を化学メッキ液に浸漬することにより無電解メッキを実施する。化学メッキ液は、特に限定されるものではなく、金属塩と還元剤とを含有する無電解メッキ用の各種の化学メッキ液を使用することができる。
【0017】
化学メッキ液に含有される金属(メッキ金属)としては、Au、Ag、Cu、Pd、Pt、Ni、Co等の従来より無電解析出性の金属として知られた金属のいずれも使用可能である。化学メッキ液に含有される金属は、上述のように触媒核として予め基板上に固定された金属と同種または別異の金属のいずれでもよい。無電解メッキ用化学メッキ液に含有される還元剤としては、例えば、ホルムアルデヒド(ホルマリン)、次亜リン酸塩などが挙げられるが、これらに限定されるものではない。
【0018】
以上のようにして、本発明に従えば、コロイド溶液からレーザー光照射により金属微粒子を基板(メッキ用非導電性材料)の表面に固定しておき、この金属微粒子を触媒核として無電解メッキを行うことにより所定の金属をメッキすることができ、この際、所望のパターンに応じてレーザー光を照射することにより導電性パターンが形成された非導電性材料を製造することができる。
【0019】
本発明に従えば、金属微粒子のコロイド溶液中にメッキ用非導電性材料(基板)を浸漬した状態でレーザー光を照射するので、触媒核となる金属微粒子が所望パターンに応じて基板に均一に固定され、この結果、後の無電解メッキ工程により均一なメッキが達成される。特に、非導電性材料が多孔質材料の場合は、その内孔の表面にまで触媒核となる金属微粒子が固定され、従って、内孔にまで確実にメッキが進行し、その多孔性を損なうことなく、厚みのある多孔質材料を貫通するような導電性パターンを付与することもできる。
【0020】
さらに、本発明に従えば、コロイド溶液中の金属微粒子は、レーザー照射部分以外ではほとんど変化せず、一定量の溶液を照射セル中に入れておけば、繰り返し触媒核の固定に使用可能であり、きわめて効率的(経済的)にメッキを行うことができる。また、本発明に従う無電解メッキにおいては、上述したようなコロイド溶液に短時間(例えば、60秒以下)レーザー光を照射するという簡単な操作により触媒核を形成することができ、煩雑な前処理や廃液処理を必要としない。
【0021】
本発明に従い、触媒核となる金属微粒子を固定し、無電解析出性の金属をメッキして必要な導電性パターンを形成することができる非導電性材料としては、ガラス、フッ化カルシウム、単結晶シリコンなどの無機材料に加え、ポリメチルメタクリレート、ポリビニルクロライド、フッ素系高分子(テフロン)などの各種のポリマーが挙げられる。
【0022】
本発明に従う無電解メッキ法は、多孔質材料の表面(内孔の表面を含む)をメッキするのにも有用である。多孔質材料の例としてはフッ素系高分子のメンブランフィルターが利用可能であり、平均孔径100nm以下の基材であっても多孔性をほとんど損ねることなく導電性を付与できる。
以下、本発明の特徴をさらに具体的に示すため実施例を記述するが、本発明はこれらの実施例によって制限されるものではない。
【0023】
【実施例】
(1)メンブランフィルターへのメッキ
A.金コロイド溶液の調製
塩化金酸を水素化ホウ素ナトリウムで還元するレフ(Leff)らの方法(J. Phys. Chem., 99, 7036 (1995))により金コロイド溶液を得た。透過電子顕微鏡(TEM)で測定した結果、金微粒子の平均粒径は7〜8nmであった。
【0024】
B.メンブランフィルターへの金微粒子の光固定化方法
上記のように作製した金コロイドをシクロヘキサンに溶解してコロイド溶液とした。この溶液約3mLを蛍光測定用石英セル(4×1×4cm)に入れ、テフロン製メンブランフィルター(ミリポア社デュラポアVVLP、孔径0.1μm)を浸し、パルスレーザー光(Nd:YAGレーザー、波長532nm、パルス幅5〜7nm、パルスエネルギー約33mJ、繰り返し数10Hz)を約30秒間照射した。なお、セルの全面にマスクを置き、レーザー光がこのマスクを通過して、メンブランフィルターをパターン照射するようにした(図1)。メンブランフィルターを取り出し、シクロヘキサンで洗浄するとレーザー光照射部のみに金微粒子の付着が確認された。
メンブランフィルターをトルエン中に浸漬し、超音波照射によっても脱離は明確には認められなかった。すなわち、金微粒子はメンブランフィルターの内孔の中に取り込まれていることが確認された。
図2は、マスクに対応して固定された金微粒子の走査電子顕微鏡写真(SEM像)である。白い丸形のものが析出・固定した金コロイドであり、粒径は約10nmから約60nmであった。粒径の違いはレーザー光照射前の金微粒子の粒径分布にも依存するものと推測される。
【0025】
C.無電解メッキ
金ナノ粒子が固定化されたメンブランフィルター(ポアサイズ、100nm)をメッキ液に40分間浸した。メッキ液は、酒石酸ナトリウムカリウム(0.7g)および硫酸銅(2.0g)を水(40mL)に溶かした溶液に、ホルマリン2mLを水で希釈して10mLにした溶液を使用直前に混合したものである。市販のメッキ液も使用可能である。メンブランフィルターを取り出し、水洗後、風乾した。メッキされた部分(図3のハート型の部分)が導電性であることをテスターで確認した。
図4に、メンブランフィルターのメッキ部分の走査型電子顕微鏡写真を示す。繊維質が網目状に重なった多孔質構造はメンブランフィルター固有の構造であり、メッキ層は繊維質を被うようにフィルター表面および多孔質構造内部(内孔の表面)で進行していることがわかった。なお、この場合には、メッキ処理後においてもメンブランフィルターの多孔性はかなり保たれていることがわかった。
【0026】
(2)ガラス基板へのメッキ
メンブランフィルターと同様の要領で、カバーガラス(厚さ0.1mm)を表面に金微粒子を固定化したものについて、無電解メッキを行った。図5のハート型の部分について導電性が確認された。メッキされた部分の走査型電子顕微鏡写真(図6)より、平均数十μm〜数百μmの厚みの銅がメッキされていることが明らかとなった。
【0027】
【発明の効果】
以上述べたように、本発明は、短時間のレーザー照射によって、基板材料に限定されず各種の非導電性材料に無電解メッキの触媒核となる金属微粒子を所望のパターンに応じて固定し、さらに、無電解メッキによる導電部位を簡便に作成することを可能とするものである。
本発明は、半導体デバイス、半導体デバイス実装部品、各種フラットパネル表示装置、光デバイス等に使用される金属微細線パターンの作成や、電気化学的センサーや電池に使用される機能性多孔質電極のパターン形成に優れた手段となる。
【図面の簡単な説明】
【図1】本発明に従い金属微粒子を被メッキ用基板に光固定化する工程の概念図である。
【図2】本発明に従いメンブランフィルターに光固定された金属微粒子の走査電子顕微鏡写真(SEM像)である。
【図3】本発明に従い銅メッキされたメンブランフィルターを示す。
【図4】本発明に従い銅メッキされたメンブランフィルターの走査電子顕微鏡写真(SEM像)である。
【図5】本発明に従い銅メッキされたカバーガラスを示す。
【図6】本発明に従い銅メッキされたカバーガラスの走査電子顕微鏡写真(SEM像)である。
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of surface treatment, and particularly relates to a method for producing a non-conductive material in which a specific conductive pattern useful as various functional materials is formed using a new electroless plating method. .
[0002]
[Prior art]
Electroless plating is used as a method of metalizing the surface of an insulator (non-conductive material) such as plastic or glass to impart conductivity. A typical electroless plating is performed by the following procedure. (1) The surface of the object to be plated is roughened and made hydrophilic (surface modification) by various etching methods. (2) An electroless plating catalyst nucleus is imparted to the object to be plated (nucleation treatment), and then the catalyst nucleus is activated (activation treatment). (3) An electroless plating film is formed by dipping in an electroless plating solution. At this time, the catalyst nucleus acts as a catalyst for reducing metal ions to form a plating film, and electroless plating proceeds because the plated metal itself has catalytic activity. Catalytic nucleus immobilization methods by surface modification by vacuum ultraviolet light or radiation and by adsorbing metal colloid particles have also been proposed.
[0003]
When plating is performed by the method as described above, the plating usually proceeds on the entire surface of the object to be plated. In order to pattern the area to be plated, before depositing metal on the catalyst pattern by electroless plating, a paste in which an electroless plating catalyst component such as metal palladium that advances plating is mixed with a photosensitive resin is used. A method of forming a pattern of a catalyst layer by a photolithographic method, or fixing a catalyst nucleus only to a portion exposed by ultraviolet rays using a photosensitive palladium compound or a photosensitive palladium polymer chelate compound has been proposed.
When patterning a region to be plated on a substrate such as polyimide or glass by these methods, there are many steps for fixing the catalyst core, and there is a problem that a large amount of waste liquid such as cleaning water is required.
[0004]
For example, for the purpose of obtaining a Teflon porous electrode or the like, on the surface and inside of the chemically highly inert non-conductive (non-conductive) porous material such as a fluorine-based polymer (surface of the inner hole) As a method for forming a conductive pattern, the conventional method is insufficient in the following points: (1) When surface modification / nucleation with a solution is performed, the treatment region is inevitably the entire porous material. Therefore, it is impossible to form a conductive pattern only in a specific region. (2) In the method of surface modification by vacuum ultraviolet light or radiation and the method of fixing the catalyst core by ultraviolet light, since light and radiation hardly reach the inside of the porous material, it penetrates a thick porous material (about 1 mm or more). It is not suitable for the purpose of creating a conductive pattern. (3) The method using a photosensitive material has problems such as the pore size of the porous material being changed by the polymerized polymer and the difficulty of completely removing the unreacted catalyst material.
[0005]
Recently, as a method for forming catalyst nuclei necessary for electroless plating, it has been proposed to transfer a portion of a metal vapor-deposited film onto a material to be plated by applying heat suddenly with a laser and wiping it off (Japanese Patent Application Laid-Open No. 2005-318867). 2001-102724). However, this method also cannot be transferred to the inside of the material to be plated (surface of the inner hole), the metal vapor deposition film is disposable, only a part of it is used as a catalyst core, and the rest is discarded However, there are problems such as inefficiency or uneconomical.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to form a conductive pattern on the surface of various substrate materials including a porous non-conductive material, and in particular, it is possible to impart conductivity to pores in the inside. The object is to provide a new type of electroless plating technology that is simple and efficient.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have previously devised a method for light immobilization of metal fine particles based on this phenomenon, paying attention to the fact that metal fine particles are deposited and fixed on the surface of the substrate when the colloidal metal solution is irradiated with laser light. (Japanese Patent Application No. 11-342146; Japanese Patent Application No. 2000-276369). The present inventor has established the electroless plating method capable of achieving the above-mentioned object by applying this method of photofixation of metal fine particles to the formation of catalyst nuclei in electroless plating, and has derived the present invention.
[0008]
Thus, according to the present invention, as a basic invention, an electroless plating material is immersed in a colloidal solution prepared by dispersing metal fine particles in a low-polarity solvent, and this is irradiated with laser light from the ultraviolet region to the near infrared region. the metal fine particles are deposited on the surface of the object to be electroless plating material is fixed, by electroless plating to the immobilized metal particles as a catalyst nucleus, characterized by plating the portion where metal fine particles are fixed, An electroless plating method is provided.
[0009]
Furthermore, the present invention, as an invention utilizing the above electroless plating method, immerses a non-conductive material in a colloidal solution prepared by dispersing metal fine particles in a low-polarity solvent, and in this, an ultraviolet region to a near infrared region By irradiating laser light, metal fine particles are deposited and fixed on the surface of the non-conductive material according to a desired pattern, and according to the desired pattern by electroless plating using the fixed metal fine particles as catalyst nuclei. Provided is a method for producing a non-conductive material having a conductive pattern, wherein a method of imparting conductivity only to a portion where metal fine particles are fixed is provided. In one aspect of the method for producing a non-conductive material on which the conductive pattern of the present invention is formed, the non-conductive material is a porous material, and conductivity is imparted to the surface of the inner hole.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below along the components of the present invention.
A. The colloidal solution of metal fine particles used in the present invention is protected with a stabilizer that separates the surface of metal fine particles having a particle diameter of 3 nm to 100 nm, preferably 5 nm to 50 nm from the surface of the metal fine particles, preferably by laser light irradiation. And dispersed in a low polarity solvent.
[0011]
As a metal constituting such a colloidal solution, a metal having a large plasmon absorption band in the ultraviolet to near-infrared region such as Ag, Au, Cu, Pd, and Pt can be mentioned as a preferable material. These metal fine particles absorb the energy of ultraviolet to near infrared laser light and are deposited on the surface (surface layer portion) of the substrate. In the present invention, these metals having large plasmon absorption in the ultraviolet to near-infrared region are simultaneously electrolessly deposited with catalytic activity in electroless plating, that is, catalytic activity for the oxidizing action of a reducing agent in electroless plating. It is based on the finding that it is a metal that can be used.
[0012]
Examples of the dispersion stabilizer that solubilizes metal particles in a low polarity solvent include thiol compounds such as dodecanethiol.
As the low polarity solvent to be dispersed, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, and aromatic hydrocarbons such as benzene and toluene can be used. From the viewpoint of avoiding deterioration of the solvent due to laser irradiation, an alicyclic solvent is preferred.
[0013]
B. The laser beam used for fixing the metal fine particles as described above to the substrate surface is not particularly limited, and various laser beams from the ultraviolet region to the near infrared region can be used. It is an efficient method. As the pulse laser beam, for example, a fundamental wave (1064 nm), a second harmonic (532 nm), a third harmonic (355 nm), a pulse width of 5 ns to 10 ns, and a pulse energy of 10 mJ to 300 mJ of an Nd: YAG laser are useful. is there.
[0014]
In such light immobilization of metal fine particles by laser light irradiation, in general, metal fine particles having a large particle size have high efficiency of light immobilization, but dispersion stability in a low-polarity solvent tends to deteriorate, Aggregates and precipitates easily. That is, when metal fine particles having a larger particle diameter are used, the particles can be fixed with less irradiation energy. For example, the use of particles having an average particle diameter of 7.5 nm, approximately 18mJpulse - 1 cm - 2 or more (532 nm, 10 ns) whereas fixable in irradiation energy, the use of particles having an average particle diameter of about 3nm at least 75mJpulse - 1 cm - 2 or more is not irradiated with the laser pulse when the immobilization of microparticles (532 nm) does not occur. On the other hand, metal fine particles having a large particle size are not suitable for long-term storage of a solution (about 1 month or more) because the dispersion stability in a low-polar solvent is poor and the particles tend to aggregate and precipitate. Considering these points, it is generally preferable that the fine metal particles have an average particle size of 100 nm or less. In principle, the lower limit of the particle size of the metal fine particles does not exist, but in view of the convenience in using the laser as described above, it is generally preferable that the average particle size is 5 nm or more.
The metal fine particles that are physically weakly adsorbed outside the laser irradiation site can be almost completely removed by immersing them in a solvent such as cyclohexane used for dispersing the metal fine particles as described above.
[0015]
C. FIG. 1 illustrates in principle the process of depositing and fixing metal fine particles on a substrate surface from a colloidal solution of metal fine particles according to the present invention.
The pulsed laser light (L) is applied to the metal colloid solution (C) in which the substrate (S) is immersed in the cell (G) through the mask (M). Metal fine particles (P) are fixed on the surface of the irradiated substrate (S). The step of fixing the metal fine particles can also be performed by operating the laser beam according to a desired drawing figure (pattern) without using a mask. When the substrate is transparent, the method (a) for irradiating the base material in close contact with the glass container wall is effective, and when the substrate is opaque, the method (b) for irradiating the substrate at a distance of about 1 to 3 mm is effective. .
[0016]
D. In the present invention, electroless plating is performed by immersing the substrate on which the metal fine particles serving as catalyst nuclei are fixed as described above in a chemical plating solution. The chemical plating solution is not particularly limited, and various chemical plating solutions for electroless plating containing a metal salt and a reducing agent can be used.
[0017]
As the metal (plating metal) contained in the chemical plating solution, any of conventionally known metals as electroless depositing metals such as Au, Ag, Cu, Pd, Pt, Ni, and Co can be used. . The metal contained in the chemical plating solution may be the same or different from the metal previously fixed on the substrate as the catalyst nucleus as described above. Examples of the reducing agent contained in the chemical plating solution for electroless plating include, but are not limited to, formaldehyde (formalin) and hypophosphite.
[0018]
As described above, according to the present invention, metal fine particles are fixed to the surface of a substrate (non-conductive material for plating) by laser light irradiation from a colloid solution, and electroless plating is performed using the metal fine particles as a catalyst core. By performing this, a predetermined metal can be plated, and at this time, a non-conductive material in which a conductive pattern is formed can be manufactured by irradiating laser light according to a desired pattern.
[0019]
According to the present invention, the laser light is irradiated with the nonconductive material for plating (substrate) immersed in a colloidal solution of metal fine particles, so that the metal fine particles serving as catalyst nuclei are uniformly applied to the substrate according to the desired pattern. As a result, uniform plating is achieved by a subsequent electroless plating process. In particular, when the non-conductive material is a porous material, the metal fine particles serving as the catalyst core are fixed to the surface of the inner hole, and therefore the plating proceeds to the inner hole with certainty and the porosity is impaired. Alternatively, a conductive pattern that penetrates a thick porous material can also be provided.
[0020]
Furthermore, according to the present invention, the metal fine particles in the colloidal solution are hardly changed except in the laser irradiation part, and can be used repeatedly for fixing the catalyst nucleus if a certain amount of the solution is placed in the irradiation cell. Therefore, plating can be performed very efficiently (economically). In the electroless plating according to the present invention, catalyst nuclei can be formed by a simple operation of irradiating the colloidal solution as described above with laser light for a short time (for example, 60 seconds or less). And no waste liquid treatment.
[0021]
In accordance with the present invention, non-conductive materials that can form the necessary conductive pattern by fixing fine metal particles serving as catalyst nuclei and plating electrolessly deposited metal include glass, calcium fluoride, and single crystals. In addition to inorganic materials such as silicon, various polymers such as polymethyl methacrylate, polyvinyl chloride, and fluorine-based polymer (Teflon) can be used.
[0022]
The electroless plating method according to the present invention is also useful for plating the surface of the porous material (including the surface of the inner hole). As an example of the porous material, a membrane filter of a fluorine-based polymer can be used, and even a substrate having an average pore diameter of 100 nm or less can impart conductivity without substantially impairing the porosity.
EXAMPLES Hereinafter, examples will be described in order to more specifically show the features of the present invention, but the present invention is not limited by these examples.
[0023]
【Example】
(1) Plating on membrane filter Preparation of colloidal gold solution A colloidal gold solution was obtained by the method of Leff et al. (J. Phys. Chem., 99, 7036 (1995)) in which chloroauric acid was reduced with sodium borohydride. As a result of measurement with a transmission electron microscope (TEM), the average particle size of the gold fine particles was 7 to 8 nm.
[0024]
B. Method for Photoimmobilization of Gold Fine Particles on Membrane Filter The gold colloid prepared as described above was dissolved in cyclohexane to obtain a colloid solution. About 3 mL of this solution was placed in a quartz cell for fluorescence measurement (4 × 1 × 4 cm), dipped in a Teflon membrane filter (Millipore Durapore VVLP, pore size 0.1 μm), and pulsed laser light (Nd: YAG laser, wavelength 532 nm, (Pulse width 5 to 7 nm, pulse energy about 33 mJ, repetition rate 10 Hz) was irradiated for about 30 seconds. A mask was placed on the entire surface of the cell, and laser light passed through the mask to irradiate the membrane filter with a pattern (FIG. 1). When the membrane filter was taken out and washed with cyclohexane, it was confirmed that gold fine particles adhered only to the laser light irradiated part.
Desorption was not clearly observed even when the membrane filter was immersed in toluene and irradiated with ultrasonic waves. That is, it was confirmed that the gold fine particles were taken into the inner pores of the membrane filter.
FIG. 2 is a scanning electron micrograph (SEM image) of gold fine particles fixed corresponding to the mask. White colloidal gold colloids were deposited and fixed, and the particle size was about 10 nm to about 60 nm. The difference in particle size is presumed to depend on the particle size distribution of the gold fine particles before laser light irradiation.
[0025]
C. A membrane filter (pore size, 100 nm) on which electroless plated gold nanoparticles were immobilized was immersed in the plating solution for 40 minutes. The plating solution is a solution in which potassium potassium tartrate (0.7 g) and copper sulfate (2.0 g) are dissolved in water (40 mL), and a solution obtained by diluting formalin 2 mL with water to 10 mL is mixed immediately before use. It is. Commercially available plating solutions can also be used. The membrane filter was taken out, washed with water and air-dried. It was confirmed by a tester that the plated portion (heart-shaped portion in FIG. 3) was conductive.
FIG. 4 shows a scanning electron micrograph of the plated portion of the membrane filter. The porous structure in which the fibers overlap in a mesh form is a unique structure of the membrane filter, and the plating layer must progress on the filter surface and inside the porous structure (inner pore surface) so as to cover the fibers. all right. In this case, it was found that the porosity of the membrane filter was maintained considerably even after the plating treatment.
[0026]
(2) In the same manner as the plating membrane filter on the glass substrate, the cover glass (thickness 0.1 mm) having gold fine particles fixed on the surface was subjected to electroless plating. Conductivity was confirmed for the heart-shaped portion of FIG. From the scanning electron micrograph (FIG. 6) of the plated portion, it was revealed that copper having an average thickness of several tens of μm to several hundreds of μm was plated.
[0027]
【The invention's effect】
As described above, the present invention fixes metal fine particles serving as catalyst nuclei for electroless plating according to a desired pattern to various non-conductive materials without being limited to the substrate material by short-time laser irradiation, Furthermore, it is possible to easily create a conductive portion by electroless plating.
The present invention provides a metal fine line pattern used for semiconductor devices, semiconductor device mounting components, various flat panel display devices, optical devices, etc., and patterns of functional porous electrodes used for electrochemical sensors and batteries. It is an excellent means for formation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a process for optically fixing metal fine particles to a substrate to be plated according to the present invention.
FIG. 2 is a scanning electron micrograph (SEM image) of fine metal particles light-fixed on a membrane filter according to the present invention.
FIG. 3 shows a membrane filter plated with copper according to the present invention.
FIG. 4 is a scanning electron micrograph (SEM image) of a membrane filter plated with copper according to the present invention.
FIG. 5 illustrates a cover glass plated with copper according to the present invention.
FIG. 6 is a scanning electron micrograph (SEM image) of a cover glass plated with copper according to the present invention.

Claims (3)

金属微粒子を低極性溶媒に分散して調製したコロイド溶液に被無電解メッキ用材料を浸漬し、これに紫外域から近赤外域のレーザー光を照射することにより金属微粒子を前記被電解メッキ用材料の表面に析出させ固定し、固定された金属微粒子を触媒核とする無電解メッキによって、金属微粒子が固定された部分をメッキすることを特徴とする、無電解メッキ法。The metal fine particles by immersing the object to be electroless plating material in a colloidal solution prepared by dispersing the low-polarity solvent, which for the object to be electroless plated metal particles by irradiating a laser beam in the near infrared region from ultraviolet region An electroless plating method comprising depositing and fixing on a surface of a material, and plating a portion where the metal fine particles are fixed by electroless plating using the fixed metal fine particles as a catalyst core. 金属微粒子を低極性溶媒に分散して調製したコロイド溶液に非導電性材料を浸漬し、これに紫外域から近赤外域のレーザー光を照射することにより所望のパターンに応じて金属微粒子を前記非導電性材料の表面に析出させ固定し、固定された金属微粒子を触媒核とする無電解メッキによって、所望のパターンに応じて金属微粒子が固定された部分のみに導電性付与することを特徴とする、導電性パターンが形成された非導電性材料の製造方法。A non-conductive material is immersed in a colloidal solution prepared by dispersing metal fine particles in a low-polarity solvent, and this is irradiated with laser light from the ultraviolet region to the near-infrared region. It is characterized by depositing and fixing on the surface of a conductive material, and providing electroconductivity only to a portion where the metal fine particles are fixed according to a desired pattern by electroless plating using the fixed metal fine particles as a catalyst core. The manufacturing method of the nonelectroconductive material in which the electroconductive pattern was formed. 非導電性材料が多孔質材料であり、その内孔の表面にも導電性を付与することを特徴とする請求項2に記載の導電性パターンが形成された非導電性材料の製造方法。3. The method for producing a non-conductive material having a conductive pattern according to claim 2, wherein the non-conductive material is a porous material, and the surface of the inner hole is also provided with conductivity.
JP2001204408A 2001-07-05 2001-07-05 Electroless plating method using light-fixed fine particles as catalyst Expired - Fee Related JP3742872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204408A JP3742872B2 (en) 2001-07-05 2001-07-05 Electroless plating method using light-fixed fine particles as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204408A JP3742872B2 (en) 2001-07-05 2001-07-05 Electroless plating method using light-fixed fine particles as catalyst

Publications (2)

Publication Number Publication Date
JP2003013242A JP2003013242A (en) 2003-01-15
JP3742872B2 true JP3742872B2 (en) 2006-02-08

Family

ID=19040884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204408A Expired - Fee Related JP3742872B2 (en) 2001-07-05 2001-07-05 Electroless plating method using light-fixed fine particles as catalyst

Country Status (1)

Country Link
JP (1) JP3742872B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622375B2 (en) 2002-04-01 2009-11-24 Canon Kabushiki Kaisha Conductive member and process of producing the same
JP4250444B2 (en) * 2002-04-01 2009-04-08 キヤノン株式会社 Manufacturing method of conductive member and conductive member
JP4628914B2 (en) * 2005-09-20 2011-02-09 株式会社大和化成研究所 Circuit pattern forming method
JP2007129007A (en) 2005-11-02 2007-05-24 Hitachi Ltd Method of manufacturing semiconductor device having organic semiconductor film
JP4895354B2 (en) * 2006-02-27 2012-03-14 株式会社東芝 Particle substrate manufacturing method and particle substrate
EP3276042B1 (en) * 2015-03-24 2024-01-31 OM Sangyo Co., Ltd. Method for producing plated article

Also Published As

Publication number Publication date
JP2003013242A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
Hrapovic et al. New strategy for preparing thin gold films on modified glass surfaces by electroless deposition
US4981715A (en) Method of patterning electroless plated metal on a polymer substrate
JP2000503817A (en) Patterned conductor structure disposed on non-conductive support material, particularly fine patterned conductor structure and method of manufacturing the same
JPH07188936A (en) Production of metallic pattern on electrical insulation substrate in electroless process
CN100489156C (en) Resin substrate having a resin-metal composite layer and method for manufacturing thereof
JPH07110921B2 (en) Selective catalytic activation of polymer films
JP5649150B1 (en) Pretreatment liquid for electroless plating and electroless plating method
JP3742872B2 (en) Electroless plating method using light-fixed fine particles as catalyst
NL8105633A (en) METHOD FOR MANUFACTURING METAL IMAGES OR PATTERNS ON AND / OR UNDER THE SURFACE OF A SUBSTRATE WITH A SEMICONDUCTIVE PHOTOGRAPHIC COMPOUND
JP2013529256A (en) Method for low temperature preparation of conductive mesostructured coatings
JP3058063B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JP3675768B2 (en) Method for producing composite member, porous substrate for forming composite member, photosensitive compound for forming composite member, and composition for forming composite member
Ng et al. Ultra-violet direct patterning of metal on polyimide
JP2001149774A (en) Light immobilizing method for metallic fine particles
DE102005011345A1 (en) Method for producing nanostructure on substrate involves irradiating of defined surface of substrate through ions, introduction of irradiating substrate into a supersaturated solution and removal of substrate form solution
JP2006057167A (en) Method for forming wiring by plating
EP0577187A1 (en) Method of providing a metal pattern on glass in an electroless process
JP3823245B2 (en) Photodeposition and fixation method of metal fine particles on the surface of conductive material
JPH09272980A (en) Activation catalyst solution for electroless plating, and electroless plating method
JPH10245682A (en) Formation of wiring and wiring board
Niidome et al. Novel method for spatioselective electroless plating catalyzed by laser-deposited gold nanoparticles
JP3398713B2 (en) Pretreatment method for electroless plating
JP2001192847A (en) Method for forming plating on polymer-molded material
JP2007197753A (en) Metallic thin film and method for producing the same
JPH0978250A (en) Forming method of conductive pattern

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees