JP3741426B2 - Pile head and structure joining apparatus and installation method thereof - Google Patents

Pile head and structure joining apparatus and installation method thereof Download PDF

Info

Publication number
JP3741426B2
JP3741426B2 JP2002052784A JP2002052784A JP3741426B2 JP 3741426 B2 JP3741426 B2 JP 3741426B2 JP 2002052784 A JP2002052784 A JP 2002052784A JP 2002052784 A JP2002052784 A JP 2002052784A JP 3741426 B2 JP3741426 B2 JP 3741426B2
Authority
JP
Japan
Prior art keywords
pile
joining member
side joining
foundation
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002052784A
Other languages
Japanese (ja)
Other versions
JP2003253688A (en
Inventor
光生 宮崎
Original Assignee
株式会社ダイナミックデザイン
光生 宮崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイナミックデザイン, 光生 宮崎 filed Critical 株式会社ダイナミックデザイン
Priority to JP2002052784A priority Critical patent/JP3741426B2/en
Publication of JP2003253688A publication Critical patent/JP2003253688A/en
Application granted granted Critical
Publication of JP3741426B2 publication Critical patent/JP3741426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
1995年の阪神淡路大震災をはじめとしてこれまでの地震災害の経験により、構造物本体のみでなくその基礎構造体、特に杭基礎の耐震安全性の重要性が指摘されている。本発明は、構造物を支持する杭基礎の耐震安全性能を合理的且つ経済的に高める杭頭部の接合方法に関するものである。
【0002】
【従来の技術】
軟弱地盤に構造物を建設する場合には、構造物を支持するために鋼杭やプレストレスト鉄筋コンクリート杭、鋼管被覆コンクリート杭などの既製杭、あるいは場所打ちコンクリート杭など各種の杭基礎が採用されている。これらの杭は、平常時における構造物の重量支持が本来の目的であるが、過去の被害地震において杭の損傷事例が多数報告されてきたために、杭基礎の耐震性能向上が耐震設計上の重要課題として指摘されてきた。
【0003】
杭の耐震性能を向上させる最も一般的方法は、構造物によって伝達される水平力あるいは杭の周辺地層の水平変位によって強制変形を受けて杭体に発生する地震時応力(=曲げモーメントと水平せん断力)に耐えられるように、杭体の水平方向耐力(=曲げ耐力とせん断耐力)を高める方法である。わが国ではこれまで長年にわたって、杭体の水平方向耐力を高める各種の方法が開発・実用化されてきた。
【0004】
杭の水平耐力を高めるこれまでの方法においては、杭体は上部の構造物もしくは基礎フーチングに杭頭部の回転変位を拘束するように剛結合により一体化する「杭頭固定」接合を前提条件としている。しかし、杭頭の回転を拘束するために却って杭頭部には大きな地震時曲げモーメントとせん断力が発生する。
【0005】
この不合理を解消する方法として、この杭頭の接合条件を「杭頭固定」から「杭頭ピン接合」、「半剛接合」あるいは「弾性回転ばね接合」に変更すると、杭頭部に発生する地震時応力が理論的には大幅に緩和されることが従来から知られている。
【0006】
阪神淡路大震災を契機として、近年この杭頭ピン接合を実現しようとするいくつかの試みがなされており、既に実用化された工法も存在する。これまでに実用化された杭頭接合工法には、▲1▼杭頭部に球座を導入して回転ピン接合とするもの、▲2▼杭頭部と基礎底の間をすべり支承とするもの、▲3▼杭頭部にゴム等の弾性材料を介在させて回転ばね接合しようとするもの、▲4▼杭頭部を杭軸部より小断面にして曲げ剛性を下げ、その部分の塑性化や損傷を許容して曲げ応力の発生を制限しようとするものなどがある。
【0007】
【発明が解決しようとする課題】
本発明は、杭体、特に杭頭部に発生する地震時応力を大幅に低減できる「杭頭ピン接合」もしくは「杭頭回転ばね接合」を『合理的且つ経済的に』実現できる「杭体頭部とその上部の構造物もしくは基礎フーチングとの接合方法」を提供することを主課題としている。
【0008】
また、実用的な接合方法であるために、『施工が簡単・迅速』にできること、低コストで経済的な方法であること、既製杭にも場所打ちコンクリート杭にも適用できる『適用範囲の広い接合方法』であること、を重要条件としている。
【0009】
特に本発明は、上記従来の技術に記したこれまでに開発された既存の杭頭ピン接合工法それぞれが抱える問題点や弱点を克服・解決した接合工法の実現を重要課題としている。その問題点は、個々の工法毎に異なるので、以下に▲1▼から▲4▼の方法それぞれが抱える問題点と解決方法を以下に説明する。
【0010】
【課題を解決するための手段】
本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
構造物を支持する杭体の頭部と構造物若しくは構造物の基礎フーチングとの間に配置される杭頭接合装置であり、杭体上面に鉛直荷重を伝達する外周平板部を有し、その内側がすり鉢状に窪んだ凹型荷重受け部となっている凹部を有する杭側接合部材Aと、上記杭側接合部材Aの上側に配置され、当該杭側接合部材Aの凹部の中央上面に接する凸部と、その上面に存在し上部の基礎フーチングに接合される平板部からなる基礎側接合部材Bより構成されており、上記杭側接合部材Aと上記基礎側接合部材Bの両者の接触面において、上記杭側接合部材Aの凹部の曲率半径が上記基礎側接合部材Bの凸部の曲率半径よりも大きく、且つ基礎側接合部材Bの凸部の周囲と杭側接合部材Aの凹部の内壁面間に隙間が確保されていることを特徴とする杭体頭部と構造物との接合装置。
【0011】
〈構成2〉
構造物を支持する杭体の頭部と構造物若しくは構造物の基礎フーチングとの間に配置される杭頭接合装置であり、杭体上面に鉛直荷重を伝達する外周平板部を有し、中央部が上側に凸に突出した凸部を有する杭側接合部材Aと、上記杭側接合部材Aの上側に配置され、当該杭側接合部材Aの凸部を覆う下向きの凹型荷重伝達部となっている凹部を有し、その上面に存在し上部の基礎フーチングに接合される平板部からなる基礎側接合部材Bより構成されており、上記杭側接合部材Aと上記基礎側接合部材Bが両者の平面中央において接触し、その接触面において上記基礎側接合部材Bの凹部の曲率半径が上記杭側接合部材Aの凸部の曲率半径よりも大きく、且つ上記杭側接合部材Aの凸部の周囲と基礎側接合部材Bの凹部の内壁面間に隙間が確保されていることを特徴とする杭体頭部と構造物との接合装置。
【0012】
〈構成3〉
上記構成1または構成2に記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材Bの接触面で、凸部と凹部の中央接触部付近がほぼ平板状(曲率半径≒無限大)になっており、その範囲内において凸部は凹部に対して水平方向にズレることが可能となっており、上記杭側接合部材Aと基礎側接合部材Bは相対的に傾斜変形および水平変形できることを特徴とする杭体頭部と構造物との接合装置。
【0013】
〈構成4〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材Bの接触面で、凸部と凹部の中央接触部の中央付近に、両者の平面位置関係のずれを制限するための小さな凹凸からなる先端嵌合部を有し、上記先端嵌合部の凸部の周囲と上記先端嵌合部の凹部の内壁面間には、上記杭側接合部材Aと基礎側接合部材Bが相対的に傾斜変形できるだけの若干の隙間を有していることを特徴とする杭体頭部と構造物との接合装置。
【0014】
〈構成5〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材Bにおける上記中央接触部でのずれが、ある一定値以上に達するか、もしくは、上記杭側接合部材Aと基礎側接合部材B両者間の相対的傾斜角がある一定値以上に達すると、上記杭側接合部材Aと基礎側接合部材B両部材の凸部周壁と凹部内壁面が接触するように、上記杭側接合部材Aと基礎側接合部材B両部材間の隙間が設定されていることを特徴とする杭体頭部と構造物との接合装置。
【0015】
〈構成6〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材B両者間の隙間のうち、上記杭側接合部材Aと基礎側接合部材B両者の中央接触部近傍の周囲隙間が小さくなっており、上記中央接触部が一定値以上ズレずれると、上記凸部の先端近傍のみが、上記凹部の側壁に接触するように設定されていることを特徴とする杭体頭部と構造物との接合装置。
【0016】
〈構成7〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材B両者の中央接触部の接触面付近、もしくは、上記凹部と凸部の相対面する周壁面に、潤滑用液体の塗布層、防錆用液体の塗布層、潤滑用液体の充填部、防錆用液体の充填部、固体潤滑材皮膜、もしくは弾性体材料を介在させていることを特徴とする杭体頭部と構造物との接合装置。
【0017】
〈構成8〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材Bの隙間に、杭頭周囲の埋め戻し土等が混入しないように、発泡材もしくはスポンジ状物質を充填していることを特徴とする杭体頭部と構造物との結合装置。
【0018】
〈構成9〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材Bの隙間、もしくは杭側接合部材の周囲平板部とその上部の基礎側接合部材の間に、弾性材料を配置し、上記杭側接合部材Aと基礎側接合部材Bの相対的ずれおよび傾斜に対する復元力を与えて、杭頭の水平変形および回転変形に対する弾性ばね接合とすると同時に、装置周囲の埋め戻し土等の混入を防止していることを特徴とする杭体頭部と構造物との接合装置。
【0019】
〈構成10〉
上記構成1乃至3のいずれかに記載の杭頭接合装置において、基礎側接合部材B上部の接合用平板上面に、溶接により接合されたスタッドボルト、ねじ込みにより接合されたスタッドボルト、もしくは上部基礎フーチング側に固定された突起部を有しており、この突起部の上部に構造物基礎のコンクリ−トを打設することにより、上記接合用平板と上部構造物を連結・一体化できることを特徴とする杭体頭部と構造物との接合装置。
【0020】
〈構成11〉
上記構成1に記載の杭頭接合装置において、杭側接合部材Aの凹部外周が既製杭頭部の内径より僅かに小さく、杭側接合部材Aと杭体との間に僅かの水平ずれが発生すると杭体内径の内壁面に接触して水平せん断力を伝達できることを特徴とする杭体頭部と構造物との接合装置。
【0021】
〈構成12〉
上記構成2に記載の杭頭接合装置において、杭側接合部材Aの下部に既製杭頭部の内径より僅かに小さな円筒型挿入部を設けており、杭側接合部材Aと杭体との間に僅かの水平ずれが発生すると杭体内径の内壁面に接触して水平せん断力を伝達できることを特徴とする杭体頭部と構造物との接合装置。
【0022】
〈構成13〉
上記構成1乃至12のいずれかに記載の杭頭接合装置において、杭側接合部材Aおよび基礎側接合部材Bが、鋼材もしくは鋳物で製造されていることを特徴とする杭体頭部と構造物との接合装置。
【0023】
〈構成14〉
上記構成1乃至13のいずれかに記載の杭頭接合装置を使用して、接合部材Aの凹部の外周直径を鋼管製既製杭の内径より僅かに小さくし、鋼管杭打設後の上端もしくは打設後切断した上端の内面に挿入し、杭側接合部材Aの水平度が一定値以下に設置できる場合はそのままとし、杭側接合部材Aの水平度が一定値以下に確保できない場合は杭側接合部材Aを水平に保った状態で杭体と杭側接合部材Aを溶接接合することを特徴とする杭頭接合装置の鋼管杭への設置方法。
【0024】
〈構成15〉
上記構成1乃至13のいずれかに記載の杭頭接合装置を、既製コンクリート杭もしくは鋼管被覆既製コンクリート杭の上端の内面に挿入し、杭側接合部材Aの水平度が一定値以下に設置できる場合はそのままとし、杭側接合部材Aの水平度が一定値以下に確保できない場合は杭体上面を硬化性材料により水平に補修した後に、杭側接合部材Aを杭上端の内面に挿入することを特徴とする杭頭接合装置のコンクリート系既製杭への設置方法。
【0025】
〈構成16〉
上記構成1乃至13のいずれかに記載の杭頭接合装置の全体もしくは杭側接合部材Aのみ、あるいは杭側接合部材Aの凹部外周直径より僅かに大きな円筒部材を、場所打ちコンクリート杭のコンクリート打設前に所定の位置に設置し、杭体コンクリートを打設し、硬化後に残りのB部もしくは全体を挿入設置することを特徴とする杭頭接合装置の場所打ちコンクリート杭への設置方法。
【0026】
〈構成17〉
上記構成1乃至13のいずれかに記載の杭頭接合装置の全体、もしくは杭側接合部材Aのみを、場所打ちコンクリート杭のコンクリート打設後に所定の位置に設置し、杭側接合部材Aの周辺平板部に設けたアンカーボルト穴位置に現場で後打ちアンカーボルトを打設して杭頭接合装置を固定し、その周囲に発砲スチロールもしくは発砲ウレタン等のスポンジ状物質を配置してその上部に基礎側コンクリートを打設することを特徴とする杭頭接合装置の場所打ちコンクリート杭への設置方法。
〈概要〉
先ず、上記の既存工法▲1▼の杭頭部に球座を導入する杭頭ピン接合方法(図1)は、球座が通常は鋼材で構成されるため比較的容易に大荷重を支持させやすいという利点があるものの、その基本メカニズムに致命的欠陥を内包している。即ち、球座は同一の曲率半径を有する凹凸両球面が対面接触しており、その曲率半径は通常10cm前後であり大きくても数十cmを越えることはない。それに対して地震時の杭の変形は、地層の水平せん断変位に引きずられて傾斜を生じるため、杭頭部付近の回転中心位置は杭頭部から2〜3m下(曲率半径≒2〜3m)ないし数m下(曲率半径≒数m)もしくはそれ以上となる場合も多く、しかもその位置は杭と地盤条件の組み合わせや地震動によって異なってくる。
【0027】
杭の上側にある基礎フーチングは地中梁によって回転が拘束されているため球座の上面側は回転せず、杭のみが傾斜変形する。従って、球座を用いるピン接合では、図2に示すように球座の回転中心と杭傾斜の回転中心が一致せず、そのため正常な球座の回転運動が成立せず、接触面が口を開くようなズレが発生する。その結果、非常に大きな摩擦力が発生したり、隙間を開いた球面に異物が混入して球座機能が損なわれたり、場合によっては球座そのものが破損する可能性さえある。
【0028】
この欠点を解消するには、同一曲率による面接触という球座の基本機構を放棄することである。即ち、本発明は、従来の球座の面接触条件を否定し、点接触条件を成立させる。面積を持たない点接触は現実には存在しないが、杭の傾斜変形状態をマクロに観た場合に杭頭接合位置で点接触条件を成立させることがポイントである。そのために、杭側接合部材と基礎側接合部材の両者に凹凸2部材を設け、その接触面において凹部側の曲率半径を凸面側の曲率半径より大きく設定する。そして両者の接触部から少し離れた凸部材の周囲に隙間を確保する。この2条件により、曲率半径の小さな凸杭材は凹部材に対して自由に傾斜することが可能となり、結果的に点接触条件が成立していることになる。凹凸両者の曲率半径はもともと異なっているので、杭材の回転中心位置には左右されず、杭材の円滑な傾斜・回転運動が可能になっている。
【0029】
次に既存工法▲2▼の杭頭部と基礎底の間をすべり支承とする方法も致命的欠陥を有している。即ち、図3に示すとおり、杭材自体が傾斜するために、杭頭部のすべり面自体も傾斜することになり、基礎底面の滑り面側は地中梁で回転拘束されているため、滑りの接触面には傾斜による隙間が発生して正常なすべり面機構が成立しない。また、この機構には「すべりによる免震効果も期待できる」という主張もあるが、基礎底自体が地中に埋設されており地盤と構造物(基礎躯体)が一体化されていながら免震効果を期待するという主張は基本的矛盾を有している。
【0030】
但し、杭頭部と基礎底間に「ある程度の相対的すべり」を導入することには他の意味がある。即ち、建物側に発生した地震時慣性力を全て杭に伝達せず、建物内の地震力をできるだけ地盤側に流すという観点では、その相対的ずれが効果を発揮する。これは、従来の杭基礎の設計思想にはなかった新しい観点であり、本発明ではその利点のみを取り入れたすべり=「ズレ」を取り入れている。しかし、このズレが過大になると、杭に対してそのずれによるPδモーメントを杭に付加することになるので、このずれ量は小さな値に制限されていることが重要な条件である。また、本発明は両者の接触面を曲率半径の異なる曲面で構成することにより、接触面の相対的傾斜によってもすべり条件が崩れないようにした上で、そのすべり可能領域を僅かな範囲に制限している。これが構成3である。
【0031】
既存工法▲3▼の杭頭部にゴム等の弾性材料を介在させて回転ばね接合しようとするものは現在までに2タイプが実用化されている。一つはリング状のゴム体を溝内に封入するもので、これは回転や引き抜き力によりその噛み合わせ機構がはずれやすい欠点を持っている。もう一つは1層もしくは2〜3層程度の薄いゴム層を鋼板と加硫接着した積層ゴム体を利用するもので、機構的には全く欠陥がなく力学性能としては理想的な回転弾性ばね接合を実現している。敢えてこの方式の弱点をあげるとすれば、ゴム材料を使用するために作用荷重の使用面圧に制約があり、装置面積が大きくなるために製造コストがある程度かかってしまうことである。
【0032】
しかしゴム弾性体の利用には、弾性の復元力ばねが得られるという他の方法では得られない長所を有している。そこで、本発明では、鉛直荷重は凹凸両部材の鋼材の接触により支持することにより大荷重支持能力を確保し、弾性復元力を得るために凹凸両接合体間の隙間にゴム体を介在させ、弾性復元力を得るという解決を図っている。これにより、本発明は大きな鉛直荷重に対しても経済的に「弾性回転ばね接合」を実現することを可能にした。
【0033】
既存工法▲4▼の杭頭部を杭軸部より小断面にして曲げ剛性を下げ、その部分の塑性化や損傷を許容して曲げ応力の発生を制限しようとするものについては、「杭頭部の塑性化や損傷を許す」という思想は、低コスト化は可能であるが、耐震安全性の向上を第一目的とする本願発明者の設計思想には適合しない。杭頭接合工法の工夫は、杭の耐震性能向上、杭体の損傷防止を目的とするものであるのに、その最も重要な部分の損傷を前提とする方法は、その目的を忘れた解決策であり、本来の趣旨に矛盾し、しかも一旦損傷を受けたものの修復は不可能であるので、この方法は極めて不完全な解決策であると言わざるを得ない。従って、本発明ではこのような解決方法を否定し、採用しない。
【0034】
【発明の実施の形態】
以下、本発明を実施例を示す図面に基づいて説明する。
【0035】
図1は、従来の球座を利用する杭頭ピン接合の基本構成図であり、図2は地震時にはその基本メカニズムが崩れることの説明図である。図2(2)に示すとおり、上部の基礎フーチングは地中梁により回転が拘束されており、地震時には杭側が傾斜するため、球座の回転中心と杭頭部の回転中心が一致せず、この球座方式は基本原理上致命的欠陥を有している。
【0036】
図3は、従来のすべり支承を利用する杭頭すべり接合(杭頭ローラー接合と誤った呼称が用いられている場合もある)の場合も、その基本メカニズムが正常に成立しないことの説明図である。図3(1)はすべり板が杭側にある場合、(2)はすべり板が基礎フーチング側にある場合であるが、いずれも地震時には杭側のみが傾斜・回転するためにすべり面が口を開き、正常なすべり面の接触条件が成立しない。また、このすべり量δにより、杭には偏心モーメントPδ(Pは作用鉛直荷重)が作用するため、すべり量が過大になるとピン接合により解放できるモーメントを遙かに超える大きなモーメントを杭頭に作用させることになる。
【0037】
図4は、構成1に規定する本接合装置の基本構成を示したもので、図4(1)は鋼管杭に適用する場合、図4(2)は鋼管被覆を含むコンクリート系既製杭に適用する場合、図4(3)は場所打ちコンクリート杭に適用する場合について例示している。
【0038】
図5は、凹凸構成を上下逆転させた構成2の基本構成を示したもので、図5(1)は鋼管杭に適用する場合、図5(2)は鋼管被覆を含むコンクリート系既製杭に適用する場合、図5(3)は場所打ちコンクリート杭に適用する場合について例示したものである。
【0039】
図6は、本接合装置の基本原理を説明したもので、図6(1)は構成1・図4の場合、図6(2)は構成2・図5の場合である。前者(構成1・図4)は、杭側接合部材Aを引張応力状態で荷重負担するように構成しており、後者(構成2・図5)は、杭側接合部材Aを圧縮応力状態で荷重負担するように構成している。
【0040】
AB両部材は支持荷重を負担するに十分安全な部材断面を有するが、本部材は通常鋼材もしくはダクタイル鋳鉄等の鋳物で構成されるので、凸部材の先端断面積を杭軸断面に対して実質的に点接触と見なせるまでに小さくすることが可能となる。更に凸部材先端を滑らかな曲面とし、これに接触する凹部側を更に曲率半径の大きい湾曲面の受け皿として構成し、その周囲に隙間を確保することにより、凹凸両部材は自由に傾斜変形することが可能となる。その凹凸両部材接触面における曲面構成方法を図6(3)に示している。
【0041】
地震時に杭材が傾斜する時、本装置の凸部材は先端接触部を中心として傾斜する(=転がる)のであり、従来の球座支承のように接触面のすべりによる回転運動を行うものではない。球面のすべり運動ではそのすべり摩擦が発生し、大きな抵抗力となるが、本装置では基本運動のメカニズムが「すべりではなく、接触面の転がり回転運動である」ので、原理上はすべり摩擦抵抗力が発生しない。
【0042】
この凸部先端の位置がずれることを防止するために接触面中央に小さな凹凸嵌合部を設ける場合を図7(1)に示している。但し、この嵌合部は両者の傾斜変形を阻害することがないように両者の嵌め合い部には十分なゆとりを設けることが重要である。これが構成4の内容である。
【0043】
また、この接触部は上記のとおり基本的に転がり運動であるので、水平抵抗力が極めて小さいのが特徴である。そのため、この先端凹凸部の凸部材断面にはある程度のせん断耐力を確保することが好ましく、杭に大きな水平せん断力を伝達するためには、凸部材と凹部材両者間の隙間を適切に設定し、ある傾斜変形以上では両者が接触し、本装置が十分なせん断耐力を発揮できるように形状設定を行う。これが構成5の内容である。
【0044】
凹凸両部材の接触部付近における水平位置のズレ発生を防止すると同時に、上記の水平せん断力の伝達を確実に行うためには、凸部材の先端近傍の隙間を小さく構成することが確実である。そのために凹部側にずれ止め突起部を構成しているのが、図7(2)であり、構成6である。
【0045】
以上は、AB両部材の点接触によるピン接合機構を構成する方法を示したものであるが、
【0046】
杭頭接合工法として、 既存工法▲2▼の説明で記述したとおり、このピン接合工法に「若干のスベリ領域」を複合させることにより、杭に過大なPδモーメントを付加することなく、建物側の地震慣性力をより多く地盤側に直接伝達することが可能となる。そのすべり領域を構成するために、凹部材側の接触部の曲率半径を大きくし平板に近づけた上で、過大なすべりを制限するためのストッパー用突起部を構成する。図7(3)はその構成例を示したもので、これは構成3と構成6を複合した構成となっている。
【0047】
図7(3)においては、AB両部材の接触部の摩擦抵抗が少ない方がより円滑なすべりを発生させることができ、杭への水平伝達力を低減することができる。構成7は、本接合装置において最も重要な部分であるこの接触部分の潤滑性能を高め、合わせて接触面および凹凸両部材の表面(凹部材の内面側)の防錆対策を図る方法を示したものである。潤滑・防錆の両機能を同時に満足できる方法として、凹部材内側にグリース・オイル・防錆油・粘性流体などの潤滑・防錆用液体を充填する方法、PTFEや2硫化モリブデン等の個体潤滑剤皮膜を構成する方法があり、また両者の隙間および接触面間にゴム膜等の弾性体膜を介在させることができる。
【0048】
本接合装置は杭頭部に配置され、土中に埋め戻されるのが通常である。この時、接合部材AB間の隙間に埋め戻し土や割栗り地業の砂利や砂、あるいは捨てコンクリート等が混入すると本接合装置の変形性能を殺してしまう恐れがある。この機能喪失を防止し、本装置の確実な作動を保証するために、図4・図5に示すように接合部材AB両者の隙間に、発泡ウレタン・発泡スチロールなどスポンジ状物質を充填する。これが構成8である。これらの部材は埋め戻し土等の混入防止には十分であるが、極めて柔らかい材料であるので、地震時における本装置の作動には影響しない。
【0049】
本接合装置は凹凸両部材の点接触機構であるので、回転変形は極めて容易で抵抗力が殆ど発生しない。本接合装置に弾性復元力を与える方法として、構成9、図9に示すように本接合装置の周縁部のAB両者間の隙間にゴム体を介在させ、その弾性変形により復元力を与えることができる。また、図9(2)の下段に示すようにAB両部材間の隙間全体に弾性材料を充填し、復元力と防錆性能の両者を与えることもできる。本装置では鉛直荷重は凹凸両部材間の直接接触により伝達し、ゴム体で鉛直荷重を負担する必要がないので、復元ばね性能を調整することが容易である。また、このゴム体はAB両者間の隙間に埋戻し土等が混入するのを防止する機能も果たしている。
【0050】
構成10、図8は、本接合装置と上部基礎コンクリートとの接合方法に関するものである。本接合装置では平板上面に溶接もしくはねじ込みでスタッドボルトを取り付けている。また、図8に示すように凸部の固定機能を兼ねて、基礎フーチング内に定着用突出部を打ち込む方法も有効である。スタッドボルトおよび定着用突出部が予め用意された接合部材Bの上部に基礎コンクリートを打設するだけで上部基礎と本装置を一体化できるので、設置工事は簡単で迅速施工が可能である。
【0051】
構成11と12は、既製杭を対象とした場合の杭体と本接合装置の接合方法に関するもので、図4、図5,図8に示すように、装置下部を杭頭部内径より僅かに小さくし、杭頭部の内部円筒部分に本装置を挿入するだけで本装置の設置が完了するようにしたものである。本装置の挿入深さは通常10cm程度以上とし、上下動の作用があっても本装置が杭から抜け出ないようにしている。もともと本装置は浮き上がりには抵抗しないものであり、杭材には引張り力を伝達しない。
【0052】
構成13は、本接合装置の主要接合部材ABの構成材料を規定したもので、鋼材もしくは鋳物(鋳鉄)で製造する。特に、本装置の凹凸形状は鋳物成型に適しており、ダクタイル鋳鉄がその代表的材料である。
【0053】
構成14〜17は、本接合装置の設置方法・施工方法を規定したものである。構成14・図10は、鋼管杭に対する本接合装置の設置方法を示している。鋼管杭の打設後の杭頭が所定の高さに打設でき、杭の傾斜角も大きくない(通常、傾斜角≦1/100 rad) 場合には、本接合装置を鋼管杭の杭頭内部に挿入するだけでよい。
鋼管杭の傾斜が大きい場合および鋼管杭の杭頭を杭打設後ガス切断した場合には、図10に示すように、本装置を杭頭内部に挿入し、装置を水平に保った状態で杭と本装置を溶接接合する。この方法により、鋼管杭が傾斜している場合やガス切断により杭頭切断面がギザギザに乱れている場合にも本接合装置を水平に設置し、鉛直荷重を杭に正常に伝達し、地震時には杭頭ピン接合として杭を守ることができる。
【0054】
構成15・図11は、鋼管被覆を含むコンクリート系既製杭に対する本接合装置の設置方法を示している。打設後の杭が鉛直に打設されている場合には、本接合装置を杭頭内部に挿入するだけでよい。
杭の傾斜角が大きい(通常、傾斜角>1/100rad)場合には、杭上面をエポキシ樹脂もしくは高強度モルタル等で水平に補修し、その強度発現後に本装置を設置する。
【0055】
構成16・17は場所打ちコンクリート杭に対する本接合装置の設置方法を示している。構成16・図12は、接合部材Aの中央部が下に凹型に出ている場合の施工方法で、図12(1)のように場所打ちコンクリート杭のコンクリート打設前に接合装置全体もしくは接合部材Aを所定の位置に取り付けるか、図12(2)に示すように接合部材Aの中央部が挿入できる円筒部材を取り付けた後に杭のコンクリートを打設する方法である。
このコンクリート打設前に装置を取り付ける方法を用いない場合、接合部材Aの底部が下向きに凸型となっている装置を取り付けるためには、杭頭部のコンクリ−トに穴をあける必要があり、大きな手間と時間を要することになる。
【0056】
構成17・図13は、接合部材Aの底部が平らな装置を設置する場合の施工方法で、図13(1)のように場所打ちコンクリート杭のコンクリート硬化後に本装置設置位置を平らに均し、薄い敷きモルタル等の上に装置を水平に設置し、その後でアンカーボルトを後打ちする(図13(2))。場所打ちコンクリート杭の場合、この方法により容易に所定の位置に本接合装置を設置することができ、その後に図13(3)に示すように本装置の周囲に発泡スチロールもしくは発泡ウレタン等の柔らかい緩衝材を敷いて上部の基礎コンクリートを打設すればよい。
【0057】
【発明の効果】
以上により、本発明の杭頭接合装置を採用すると、杭体と構造物あるいは基礎フーチングとの接合において以下の効果を得ることができ、また既存の杭頭ピン接合工法に対しても有利な条件を実現することができる。
▲1▼杭頭と基礎フーチングの接合条件をほぼ完全なピン接合とすることができる。
▲2▼また杭頭を適度な復元力を有する弾性回転ばね接合とすることができる。
▲3▼また、基礎底と杭頭間に若干のすべり変形を許容することができ、杭に伝わる水平力を低減することができる。
▲4▼その結果、杭体頭部に発生する地震時応力を著しく低減することができ、杭体の耐震安全性能を飛躍的に高めることができる。
▲5▼杭頭部の地震時発生応力が飛躍的に低減されるため、地中梁断面を小さくすることができ、その結果基礎底を浅くし、掘削土量を削減し、基礎工事全体のコストが大きく削減される。
▲6▼本接合装置は、鉛直支持荷重として10トン/本以下の小荷重から1000トン/本以上の大荷重まで対応可能である。
▲7▼本接合装置は、小径の鋼管杭、既製コンクリート杭、鋼管被覆コンクリート杭(SC杭)、および場所打ちコンクリート杭のあらゆる杭種類に対して適用できる。
▲8▼いずれの杭種類に対しても良好な施工性を有しており、極めて短工期での施工が可能である。
具体的には、杭体施工後、本装置を杭頭に設置しその上部に基礎フーチングもしくは構造体のコンクリートを打設するだけで施工が完了するので、工事が簡単・容易で迅速に行うことができる。
▲9▼本接合装置の接合部材AおよびBは鋳物成型に適しており、低コストで製造可能であり且つ施工性もよいので、装置および設置工事の材工を含めて共に経済的な杭頭接合工法である。
【0058】
以上のとおり、本発明は、杭体の地震時応力を大幅に低減できる杭頭ピン接合、若干のすべり併用ピン接合、弾性回転ばね接合を、簡便な施工方法で迅速に構築することを可能にしたものである。しかもあらゆる杭種類に、小荷重から大荷重まで対応可能であり、しかも低コストで供給可能であるので、本発明の実用性は極めて高く、耐震安全性能の優れた杭基礎構造体を経済的に実現することを可能にしたものである。
【図面の簡単な説明】
【図1】 球座を用いる従来の杭頭ピン接合装置の基本構成図
【図2】 球座を用いる従来の杭頭ピン接合装置の不具合説明図
(1)建物下にある杭の地震時変形状態
(2)杭頭部付近における球座の曲率中心と杭の回転中心が一致しないことの原理説明図
【図3】 すべり支承を用いる従来の杭頭すべり(ローラー)接合の不具合説明図
(1)すべり板を杭側(下側)に設置する場合の地震時変形状態
(2)すべり板を基礎フーチング側(上側)に設置する場合の地震時変形状態
【図4】 本発明の杭頭接合装置の断面構成説明図(凹型荷重受け部を下側(杭側)に配置する場合)
(1)鋼管杭に適用する場合の装置断面構成例
(2)コンクリート系既製杭(SC杭含む)に適用する場合の例
(3)場所打ちコンクリート杭に適用する場合の例
【図5】 本発明の杭頭接合装置の断面構成説明図(凹型荷重受け部を上側(基礎フーチング側)に配置する場合)
(1)鋼管杭に適用する場合の装置断面構成例
(2)コンクリート系既製杭(SC杭含む)に適用する場合の例
(3)場所打ちコンクリート杭に適用する場合の例
【図6】 本発明装置の作動原理のメカニズム説明図
(1)凹型荷重受け部を下側(杭側)に配置する場合
(2)凹型荷重受け部を上側(基礎フーチング側)に配置する場合
(3)凹凸部材接触部の曲率構成説明図
【図7】 凹凸両部材接触部周辺の構成説明図
(1)接触部中央に先端嵌合部を設けた場合
(2)凸部材先端近傍の凹部材側にズレ止め用突起部を設けた場合
(3)接触部にスベリ領域を構成し、
その外側の凹部材に上記(2)のズレ止め用突起部を設けた場合
【図8】 杭および基礎との接合用部材の構成説明図
(1)鋼管杭の場合
(2)コンクリート系既製杭(SC杭含む)の場合
(3)場所打ちコンクリート杭の場合
【図9】 ゴム等の弾性材料により回転弾性ばねの復元力を付与する構成方法の例
(1)鋼管杭の場合
(2)コンクリート系既製杭(SC杭含む)の場合
(3)場所打ちコンクリート杭の場合
【図10】 鋼管杭に本接合装置を設置する場合の施工方法説明図
(1)鋼管杭杭頭の切断、および装置吊り込み
(2)本装置を所定の位置に保った状態で現場溶接、吊りボルト撤去
(3)上側に凸の装置の設置状態
【図11】 コンクリート系既製杭(SC杭含む)に本接合装置を設置する場合の施工方法説明図
(1)本接合装置の吊り込み
(2)本装置設置後、吊りボルト撤去、上部基礎コンクリート打設
【図12】 場所打ちコンクリート杭に本接合装置を設置する場合の施工方法説明図(凹部材が下側に出ている装置の場合)
(1)下側凹部材もしくは装置全体を所定の位置に配置し、鉄筋かごや仮設部材で固定した後、杭コンクリートを打設する施工方法
(2)下側凹部材を後から挿入設置できる円筒部材を杭コンクリート打設前に取り付け、杭コンクリート打設する。後に本装置を設置する施工方法
(3)同上円筒部材内に本装置を挿入設置し、グラウトにより固定する方法
【図13】 場所打ちコンクリート杭に本接合装置を設置する場合の施工方法説明図(凹部材が上側にある装置の場合)
(1)場所打ちコンクリートは通常どおり構築し、杭コンクリート打設後に本装置設置位置を水平にならし、本装置部材A(下側)を吊り込む。
(2)本装置部材Aを設置し、現場にてアンカーボルトを後打する。
(3)本装置部材B(上側)を吊り込み、設置し、周囲に発泡スチロール等の上下コンクリートの干渉防止、埋め戻し土の混入防止を兼ねた保護材料を配置した後、装置上部の基礎コンクリートを打設する。
【符号の説明】
1:建物もしくは上部構造物
10:基礎フーチング
11:地中梁
2:杭
21:鋼管杭
22:コンクリート系既製杭(SC杭含む)
23:場所打ちコンクリート杭
24:杭用鉄筋かご
3:球座を用いる杭頭ピン接合装置
3A:杭側部材
3B:基礎フーチング側部材
31:球座の接触すべり面
4:すべり支承による杭頭接合装置
41:すべり板
42:すべり面支持部材
5:本発明の杭頭接合装置(凹型部材が杭側(下側)の場合)
5A:杭側接合部材(凹型部材)
5B:基礎側接合部材(凸型部材)
5C:隙間充填緩衝材
5D:復元力用弾性体(ゴム体)
51:凹部材側接触面
52:すべり用クリアランス
53:ストッパー用突起部
54:基礎側固定用平板
55:スタッドボルト
56:定着用突出部
57:設置用吊りボルト
58:円筒型打ち込み枠
59:グラウト材
6:本発明の杭頭接合装置(凹型部材が基礎フーチング側(下側)の場合)
6A:杭側接合部材(凸型部材)
6B:基礎側接合部材(凹型部材)
6C:隙間充填緩衝材
6D:復元力用弾性体(ゴム体)
61:凹部材側接触面
64:基礎側固定用平板
65:スタッドボルト
66:アンカーボルト
[0001]
BACKGROUND OF THE INVENTION
The experience of earthquake disasters including the 1995 Hanshin-Awaji Earthquake has pointed out the importance of seismic safety not only for the structure itself but also for the foundation structure, especially the pile foundation. The present invention relates to a method for joining pile heads that rationally and economically improves the seismic safety performance of a pile foundation that supports a structure.
[0002]
[Prior art]
When constructing structures on soft ground, various pile foundations such as steel piles, prestressed reinforced concrete piles, steel pipe covered concrete piles, and cast-in-place concrete piles are used to support the structure. . These piles are originally intended to support the weight of the structure during normal times, but since many cases of pile damage have been reported in past earthquakes, it is important to improve the seismic performance of the pile foundation in terms of seismic design. It has been pointed out as an issue.
[0003]
The most common method for improving the seismic performance of piles is the seismic stress (= bending moment and horizontal shear) generated in the pile body due to forced deformation caused by horizontal force transmitted by the structure or horizontal displacement of the surrounding layer of the pile. This is a method of increasing the horizontal strength (= bending strength and shear strength) of the pile body so that it can withstand the force. In Japan, various methods for increasing the horizontal strength of pile bodies have been developed and put into practical use for many years.
[0004]
The conventional method for increasing the horizontal strength of piles is based on the assumption that the pile body is fixed to the upper structure or foundation footing by a rigid connection so as to constrain the rotational displacement of the pile head. It is said. However, in order to restrain the rotation of the pile head, a large bending moment and shear force are generated at the pile head.
[0005]
As a method to eliminate this unreasonableness, if the joint condition of this pile head is changed from "Pile head fixed" to "Pile head pin joint", "Semi-rigid joint" or "Elastic rotary spring joint", it will occur at the pile head It has been conventionally known that the stress during earthquakes is theoretically relieved greatly.
[0006]
In recent years, several attempts have been made to realize this pile head pin joint in the wake of the Great Hanshin Awaji Earthquake. The pile head joining methods that have been put to practical use are as follows: (1) Introducing a ball seat on the pile head to make a rotating pin joint, (2) Sliding support between the pile head and the foundation bottom , (3) Those trying to join a rotary spring with an elastic material such as rubber in the pile head, (4) Lowering the bending rigidity by making the pile head smaller than the pile shaft, and plasticity of the part There are some that try to limit the generation of bending stress by permitting the deformation and damage.
[0007]
[Problems to be solved by the invention]
The present invention is a “pile body” capable of “reasonably and economically” realizing “pile head pin joint” or “pile head rotation spring joint” that can greatly reduce the stress at the time of an earthquake occurring in a pile body, particularly a pile head. The main subject is to provide a “joining method between the head and its upper structure or basic footing”.
[0008]
In addition, because it is a practical joining method, it can be “simple and quick in construction”, it is a low-cost and economical method, and it can be applied to both ready-made piles and cast-in-place concrete piles. It is an important condition that it is a “joining method”.
[0009]
In particular, the present invention makes it an important subject to realize a joining method that overcomes and solves the problems and weaknesses of each of the existing pile head pin joining methods developed so far described in the above-described conventional technology. Since the problems differ depending on the individual construction methods, the problems and solutions of the methods (1) to (4) will be described below.
[0010]
[Means for Solving the Problems]
The present invention adopts the following configuration in order to solve the above points.
<Configuration 1>
It is a pile head joining device arranged between the head of the pile body that supports the structure and the foundation footing of the structure or structure, and has an outer peripheral flat plate portion that transmits a vertical load on the upper surface of the pile body, The pile side joining member A which has the recessed part which becomes the concave load receiving part which the inner side became depressed in the shape of a mortar, and it arrange | positions above the said pile side joining member A, and touches the center upper surface of the recessed part of the said pile side joining member A concerned. Consists of a base-side joining member B consisting of a convex part and a flat plate part that is present on the upper surface and joined to the upper foundation footing, and the contact surfaces of both the pile-side joining member A and the foundation-side joining member B , The curvature radius of the concave portion of the pile-side joining member A is larger than the curvature radius of the convex portion of the foundation-side joining member B, and the periphery of the convex portion of the foundation-side joining member B and the concave portion of the pile-side joining member A A gap is secured between the inner walls. Body head and joining apparatus of the structure.
[0011]
<Configuration 2>
It is a pile head joint device arranged between the head of the pile body that supports the structure and the foundation footing of the structure or structure, and has an outer peripheral flat plate portion that transmits a vertical load on the upper surface of the pile body, The pile-side joining member A having a convex portion protruding convexly on the upper side, and a downward concave load transmitting portion that is disposed on the upper side of the pile-side joining member A and covers the convex portion of the pile-side joining member A The pile-side joining member A and the foundation-side joining member B are both composed of a flat plate portion that is present on the upper surface and joined to the upper foundation footing. The curvature radius of the concave portion of the foundation-side joining member B is larger than the curvature radius of the convex portion of the pile-side joining member A, and the convex portion of the pile-side joining member A There is a gap between the periphery and the inner wall surface of the concave portion of the base side joining member B Bonding apparatus of Kuitai head and the structure, characterized in that it is holding.
[0012]
<Configuration 3>
In the pile head joining apparatus according to Configuration 1 or Configuration 2, in the contact surface between the pile-side joining member A and the foundation-side joining member B, the vicinity of the central contact portion between the convex portion and the concave portion is substantially flat (curvature radius≈infinite In the range, the convex portion can be displaced in the horizontal direction with respect to the concave portion, and the pile side joining member A and the foundation side joining member B are relatively inclined and horizontally deformed. A device for joining a pile head and a structure, which is deformable.
[0013]
<Configuration 4>
In the pile head joining apparatus according to any one of the above-described configurations 1 to 3, the contact surfaces of the pile-side joining member A and the foundation-side joining member B are both in the vicinity of the center of the center contact portion of the convex portion and the concave portion. There is a tip fitting portion made of small irregularities for limiting positional deviation, and the pile side joint is provided between the periphery of the convex portion of the tip fitting portion and the inner wall surface of the concave portion of the tip fitting portion. A joining apparatus for a pile body head and a structure, wherein the member A and the foundation-side joining member B have a slight gap that can be relatively inclined and deformed.
[0014]
<Configuration 5>
In the pile head joining device according to any one of the above configurations 1 to 3, the displacement at the center contact portion in the pile side joining member A and the foundation side joining member B reaches a certain value or more, or When the relative inclination angle between both the pile-side joining member A and the foundation-side joining member B reaches a certain value or more, the convex peripheral wall and the concave inner wall surface of both the pile-side joining member A and the foundation-side joining member B are A joint device between a pile body head and a structure, wherein a gap between both the pile-side joining member A and the foundation-side joining member B is set so as to come into contact.
[0015]
<Configuration 6>
In the pile head joining device according to any one of the above configurations 1 to 3, of the gaps between both the pile side joining member A and the foundation side joining member B, the pile side joining member A and the foundation side joining member B both. The peripheral gap in the vicinity of the central contact portion is small, and when the central contact portion is displaced by a predetermined value or more, only the vicinity of the tip of the convex portion is set to contact the side wall of the concave portion. A device for joining the pile body head to the structure.
[0016]
<Configuration 7>
In the pile head joining apparatus according to any one of the above-described configurations 1 to 3, the contact surfaces near the center contact portions of the pile side joining member A and the foundation side joining member B, or the concave and convex portions face each other. A lubricating liquid coating layer, a rust preventive liquid coating layer, a lubricating liquid filling portion, a rust preventing liquid filling portion, a solid lubricant film, or an elastic material is interposed on the peripheral wall surface. A device for joining the head of the pile body and the structure.
[0017]
<Configuration 8>
In the pile head joining apparatus according to any one of the above configurations 1 to 3, a foam material or a foam material or a backfill soil around the pile head is not mixed in a gap between the pile side joining member A and the foundation side joining member B. A coupling device for a pile body head and a structure characterized by being filled with a sponge-like substance.
[0018]
<Configuration 9>
In the pile head joining device according to any one of the above-described configurations 1 to 3, the gap between the pile side joining member A and the foundation side joining member B, or the peripheral flat plate portion of the pile side joining member and the foundation side joining member at the top thereof. An elastic material is disposed between them, and a restoring force for the relative displacement and inclination of the pile-side joining member A and the foundation-side joining member B is given, and at the same time as an elastic spring joint for horizontal deformation and rotational deformation of the pile head, An apparatus for joining a pile head and a structure, characterized by preventing backfilling soil around the apparatus from being mixed.
[0019]
<Configuration 10>
In the pile head joining device according to any one of the above-described configurations 1 to 3, a stud bolt joined by welding, a stud bolt joined by screwing, or an upper foundation footing joined to the upper surface of the joining flat plate on the foundation side joining member B. It has a protrusion fixed on the side, and the connecting plate and the upper structure can be connected and integrated by placing a concrete of the foundation of the structure on the upper part of the protrusion. To connect the pile head to the structure.
[0020]
<Configuration 11>
In the pile head joining apparatus described in the above configuration 1, the outer periphery of the concave portion of the pile side joining member A is slightly smaller than the inner diameter of the ready-made pile head, and a slight horizontal deviation occurs between the pile side joining member A and the pile body. Then, the pile body head and the structure joining device characterized by being capable of transmitting a horizontal shearing force in contact with the inner wall surface of the inside diameter of the pile body.
[0021]
<Configuration 12>
In the pile head joining apparatus described in the above configuration 2, a cylindrical insertion portion that is slightly smaller than the inner diameter of the pre-made pile head is provided at the lower part of the pile side joining member A, and between the pile side joining member A and the pile body. A device for joining a pile body head and a structure capable of transmitting a horizontal shearing force by contacting the inner wall surface of the inside diameter of the pile body when a slight horizontal deviation occurs.
[0022]
<Configuration 13>
The pile head joining apparatus according to any one of the above configurations 1 to 12, wherein the pile side joining member A and the foundation side joining member B are made of steel or casting, and the pile body head and structure Joining device with.
[0023]
<Configuration 14>
Using the pile head joining device according to any one of the above-described configurations 1 to 13, the outer peripheral diameter of the concave portion of the joining member A is slightly smaller than the inner diameter of the steel pipe-made ready-made pile, Inserted into the inner surface of the upper end that has been cut after installation, if the level of pile-side joining member A can be set below a certain value, leave it as is, and if the level of pile-side joining member A cannot be kept below a certain value, pile side A method for installing a pile head joining device on a steel pipe pile, wherein the pile body and the pile side joining member A are welded and joined while the joining member A is kept horizontal.
[0024]
<Configuration 15>
When the pile head joining device according to any one of the above configurations 1 to 13 is inserted into the inner surface of the upper end of a ready-made concrete pile or a steel pipe-covered ready-made concrete pile, and the level of the pile-side joining member A can be set to a certain value or less. If the horizontality of the pile-side joining member A cannot be secured below a certain value, the pile-side joining member A is inserted into the inner surface of the upper end of the pile after the upper surface of the pile body is repaired horizontally with a curable material. The installation method to the concrete-type ready-made pile of the characteristic pile head joining apparatus.
[0025]
<Configuration 16>
The entire pile head joining device according to any one of the above-described configurations 1 to 13, or only the pile-side joining member A, or a cylindrical member slightly larger than the outer peripheral diameter of the concave portion of the pile-side joining member A is used for concrete casting of cast-in-place concrete piles. A method for installing a pile head joining apparatus on a cast-in-place concrete pile, wherein the pile body concrete is placed at a predetermined position before installation, pile concrete is placed, and the remaining part B or the whole is inserted and installed after curing.
[0026]
<Configuration 17>
The entire pile head joining apparatus according to any one of the above-described configurations 1 to 13 or only the pile side joining member A is installed at a predetermined position after the concrete casting of the cast-in-place concrete pile, and the periphery of the pile side joining member A Post-placed anchor bolts are installed in the anchor bolt hole positions on the flat plate part to fix the pile head joining device, and a sponge-like material such as foamed polystyrene or foamed urethane is placed around it and the foundation is placed above it. A method of installing a pile head joining device on a cast-in-place concrete pile, characterized by placing side concrete.
<Overview>
First, the pile head pin joining method (Fig. 1) in which the ball seat is introduced into the pile head of the above existing method (1) is to support a large load relatively easily because the ball seat is usually made of steel. Although it has the advantage of being easy, it has a fatal flaw in its basic mechanism. That is, in the ball seat, both concave and convex spherical surfaces having the same radius of curvature are in contact with each other, and the radius of curvature is usually around 10 cm and does not exceed several tens of cm at most. On the other hand, the deformation of the pile at the time of the earthquake causes the slope to be dragged by the horizontal shear displacement of the formation, so the rotation center position near the pile head is 2-3 m below the pile head (curvature radius ≈ 2-3 m) It is often a few meters below (curvature radius ≈ several m) or more, and the position varies depending on the combination of pile and ground conditions and the earthquake motion.
[0027]
Since the foundation footing on the upper side of the pile is constrained from rotating by the underground beam, the upper surface side of the ball seat does not rotate, and only the pile is inclined and deformed. Therefore, in the pin joint using the ball seat, as shown in FIG. 2, the rotation center of the ball seat and the rotation center of the pile inclination do not coincide with each other. An open discrepancy occurs. As a result, there is a possibility that a very large frictional force is generated, a foreign matter is mixed into a spherical surface with a gap between them and the ball seat function is impaired, or the ball seat itself may be damaged in some cases.
[0028]
In order to eliminate this drawback, it is necessary to abandon the basic mechanism of the ball seat called surface contact with the same curvature. That is, the present invention negates the conventional surface contact condition of the ball seat and establishes the point contact condition. Point contact without an area does not actually exist, but the point is to establish the point contact condition at the pile head joint position when the inclined deformation state of the pile is viewed macroscopically. For this purpose, the concave and convex two members are provided on both the pile side joining member and the foundation side joining member, and the curvature radius on the concave side is set larger than the curvature radius on the convex side on the contact surface. And a clearance gap is ensured around the convex member a little away from the contact part of both. By these two conditions, the convex pile material having a small curvature radius can be freely inclined with respect to the concave material, and as a result, the point contact condition is established. Since the curvature radii of both the unevenness are originally different, the pile material can be smoothly tilted and rotated independently of the rotation center position of the pile material.
[0029]
Next, the method of sliding support between the pile head and the foundation bottom in the existing method (2) has a fatal defect. That is, as shown in FIG. 3, since the pile material itself is inclined, the sliding surface of the pile head itself is also inclined, and the sliding surface side of the foundation bottom is rotationally restrained by the underground beam. A gap due to an inclination is generated on the contact surface of the contact surface and a normal sliding surface mechanism is not established. In addition, there is a claim that this mechanism can also be expected to have a seismic isolation effect due to slipping, but the base bottom itself is buried in the ground and the ground and structure (foundation) are integrated, but the seismic isolation effect The claim of expecting has a fundamental contradiction.
[0030]
However, there is another meaning in introducing “a certain amount of relative slip” between the pile head and the foundation bottom. That is, the relative displacement is effective from the viewpoint of not transmitting all of the earthquake inertia force generated on the building side to the pile, but allowing the seismic force in the building to flow as much as possible to the ground side. This is a new point of view that was not found in the conventional design concept of pile foundations, and the present invention incorporates slip = "deviation" that incorporates only its advantages. However, if this deviation becomes excessive, a Pδ moment due to the deviation is added to the pile, so that the deviation is limited to a small value. In addition, the present invention is configured such that both contact surfaces are curved surfaces having different radii of curvature so that the slip condition is not disturbed by the relative inclination of the contact surface, and the slipperable region is limited to a slight range. is doing. This is configuration 3.
[0031]
Two types have been put to practical use so far in which an elastic material such as rubber is interposed between the pile heads of the existing method (3) to join a rotary spring. One is to enclose a ring-shaped rubber body in the groove, and this has a drawback that its engagement mechanism is easily disengaged by rotation or pulling force. The other uses a laminated rubber body in which one or two to three thin rubber layers are vulcanized and bonded to a steel plate. There is no mechanical defect at all and the rotational elastic spring is ideal for mechanical performance. Bonding is realized. If we dare to raise the weak point of this method, the use surface pressure of the working load is limited because of the use of a rubber material, and the manufacturing area is increased to some extent because the device area is increased.
[0032]
However, the use of a rubber elastic body has an advantage that an elastic restoring force spring cannot be obtained by other methods. Therefore, in the present invention, the vertical load is supported by the contact of the steel material of both the concavo-convex members to ensure a large load support capability, and a rubber body is interposed in the gap between the concavo-convex both joints to obtain an elastic restoring force, The solution is to obtain an elastic restoring force. As a result, the present invention has made it possible to economically realize “elastic rotation spring joining” even for large vertical loads.
[0033]
For the existing method (4), the pile head is made smaller than the pile shaft, the bending rigidity is lowered, the plasticity and damage of the part is allowed, and the generation of bending stress is restricted. Although the idea of “allowing plasticization and damage of the part” can be reduced in cost, it does not conform to the design idea of the present inventor whose primary purpose is to improve seismic safety. The idea of the pile head joining method is to improve the seismic performance of the pile and prevent damage to the pile body, but the method that assumes damage to the most important part is a solution that forgot its purpose. This contradicts the original idea, and once damaged, it cannot be repaired, so this method must be said to be an extremely incomplete solution. Therefore, the present invention denies such a solution and does not adopt it.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.
[0035]
FIG. 1 is a basic configuration diagram of a pile head pin joint using a conventional ball seat, and FIG. 2 is an explanatory diagram showing that the basic mechanism is destroyed during an earthquake. As shown in Fig. 2 (2), the rotation of the upper foundation footing is constrained by underground beams, and the pile side tilts during an earthquake, so the rotation center of the ball seat and the rotation center of the pile head do not match, This ball seat system has a fatal defect on the basic principle.
[0036]
FIG. 3 is an explanatory diagram showing that the basic mechanism is not normally established even in the case of a pile head slide joint using a conventional slide bearing (in some cases, a wrong name is used as a pile head roller joint). is there. Fig. 3 (1) shows the case where the sliding plate is on the pile side, and Fig. 3 (2) shows the case where the sliding plate is on the foundation footing side. The normal sliding surface contact condition is not established. In addition, the eccentric moment Pδ (P is the applied vertical load) acts on the pile due to this slip amount δ, so if the slip amount is excessive, a large moment that far exceeds the moment that can be released by pin joining acts on the pile head. I will let you.
[0037]
FIG. 4 shows the basic configuration of the present joining apparatus defined in Configuration 1. FIG. 4 (1) applies to steel pipe piles, and FIG. 4 (2) applies to concrete-based ready-made piles including steel pipe coverings. When doing, FIG.4 (3) has illustrated about the case where it applies to a cast-in-place concrete pile.
[0038]
FIG. 5 shows the basic configuration of configuration 2 in which the concavo-convex configuration is turned upside down. FIG. 5 (1) is applied to a steel pipe pile, and FIG. 5 (2) is a concrete ready-made pile including a steel pipe coating. In the case of application, FIG. 5 (3) illustrates the case of application to a cast-in-place concrete pile.
[0039]
FIG. 6 illustrates the basic principle of the present joining apparatus. FIG. 6 (1) shows the case of configurations 1 and 4, and FIG. 6 (2) shows the case of configurations 2 and 5. FIG. The former (Configuration 1 / FIG. 4) is configured to bear the load on the pile-side joining member A in a tensile stress state, and the latter (Configuration 2 / FIG. 5) is configured to load the pile-side joining member A in a compressive stress state. It is configured to bear the load.
[0040]
Both AB members have a sufficiently safe member cross-section to bear the supporting load, but this member is usually made of a cast material such as steel or ductile cast iron, so that the tip cross-sectional area of the convex member is substantially equal to the pile shaft cross-section. Therefore, it can be reduced to a point contact. In addition, the concave and convex members are freely inclined and deformed by forming the tip of the convex member as a smooth curved surface, and forming the concave side in contact with this as a tray with a curved surface having a larger curvature radius, and securing a gap around it. Is possible. FIG. 6 (3) shows a method of constructing a curved surface on the contact surface between the concave and convex members.
[0041]
When the pile material inclines during an earthquake, the convex member of this device inclines around the tip contact part (= rolls), and does not perform rotational movement due to sliding of the contact surface unlike conventional ball seat bearings. . In the sliding motion of a spherical surface, the sliding friction is generated and becomes a large resistance force. However, in this device, the basic motion mechanism is not a sliding motion but a rolling rotational motion of the contact surface. Does not occur.
[0042]
FIG. 7A shows a case where a small uneven fitting portion is provided at the center of the contact surface in order to prevent the position of the tip of the convex portion from shifting. However, it is important that the fitting portion has a sufficient space so that the fitting deformation portion of the fitting portion does not hinder the inclined deformation of the fitting portion. This is the content of Configuration 4.
[0043]
Moreover, since this contact part is basically a rolling motion as described above, the horizontal resistance force is extremely small. For this reason, it is preferable to secure a certain amount of shear strength in the convex member cross section of the concave and convex portion of the tip, and in order to transmit a large horizontal shearing force to the pile, a gap between both the convex member and the concave member is appropriately set. The shape is set so that the two come into contact with each other at a certain slope or more and the apparatus can exhibit a sufficient shear strength. This is the content of Configuration 5.
[0044]
In order to prevent the horizontal position deviation in the vicinity of the contact portions of both the concavo-convex members and at the same time reliably transmit the horizontal shearing force, it is certain that the gap near the tip of the convex member is made small. For this purpose, FIG. 7B shows a configuration 6 in which a slip prevention projection is formed on the concave side.
[0045]
The above shows a method of configuring a pin joining mechanism by point contact of both AB members.
[0046]
As described in the explanation of the existing method (2), as the pile head joining method, by combining this pin joining method with “slight slip area”, without adding excessive Pδ moment to the pile, It is possible to transmit more earthquake inertia force directly to the ground side. In order to configure the slip region, a radius of curvature of the contact portion on the recess material side is increased and brought close to a flat plate, and a stopper projection for limiting excessive slip is configured. FIG. 7 (3) shows an example of the configuration, which is a configuration in which the configuration 3 and the configuration 6 are combined.
[0047]
In FIG. 7 (3), the direction where there is little frictional resistance of the contact part of AB both members can generate a smoother slip, and can reduce the horizontal transmission force to a pile. Configuration 7 shows a method for improving the lubrication performance of the contact portion, which is the most important part in the present joining device, and also taking measures to prevent rust on the surface of the contact surface and the concave and convex members (the inner surface side of the concave portion). Is. As a method that can satisfy both the functions of lubrication and rust prevention, the inside of the recess material is filled with lubrication / rust prevention liquid such as grease, oil, rust prevention oil, viscous fluid, etc., solid lubrication such as PTFE and molybdenum disulfide There is a method of forming an agent film, and an elastic film such as a rubber film can be interposed between the gap and the contact surface.
[0048]
This joining device is usually placed on the pile head and backfilled in the soil. At this time, if the backfill soil, gravel or sand from the cracking ground industry, or discarded concrete is mixed in the gap between the joining members AB, the deformation performance of the joining device may be killed. In order to prevent this loss of function and to ensure the reliable operation of the present apparatus, a gap between both the joining members AB is filled with a sponge-like material such as urethane foam or polystyrene foam as shown in FIGS. This is configuration 8. These members are sufficient to prevent the backfill soil and the like from being mixed, but they are extremely soft materials and do not affect the operation of the apparatus during an earthquake.
[0049]
Since this joining apparatus is a point contact mechanism of both concavo-convex members, rotational deformation is extremely easy and hardly generates a resistance force. As a method of giving an elastic restoring force to the present joining apparatus, a rubber body is interposed in the gap between the AB portions of the peripheral portion of the present joining apparatus as shown in Configuration 9 and FIG. 9, and the restoring force is given by elastic deformation thereof. it can. Further, as shown in the lower part of FIG. 9 (2), the entire gap between the AB members can be filled with an elastic material to give both restoring force and rust prevention performance. In the present apparatus, the vertical load is transmitted by direct contact between both the concavo-convex members, and it is not necessary to bear the vertical load with the rubber body, so that it is easy to adjust the restoring spring performance. The rubber body also functions to prevent backfilling soil and the like from being mixed into the gap between the two ABs.
[0050]
Configuration 10 and FIG. 8 relate to a method of joining the present joining apparatus and the upper foundation concrete. In this joining apparatus, a stud bolt is attached to the upper surface of the flat plate by welding or screwing. In addition, as shown in FIG. 8, a method of driving a fixing protrusion into the basic footing is also effective as a fixing function of the convex portion. Since the upper foundation and the apparatus can be integrated by simply placing the foundation concrete on the upper part of the joining member B having the stud bolts and fixing protrusions prepared in advance, the installation work is simple and quick.
[0051]
Configurations 11 and 12 relate to a method of joining the pile body and the main joining device when the ready-made pile is a target. As shown in FIGS. 4, 5, and 8, the lower part of the device is slightly less than the inner diameter of the pile head. The installation of the apparatus is completed simply by reducing the size and inserting the apparatus into the inner cylindrical portion of the pile head. The insertion depth of this apparatus is usually about 10 cm or more so that this apparatus does not come out of the pile even if there is an action of vertical movement. Originally, this device does not resist lifting and does not transmit tensile force to the pile material.
[0052]
The configuration 13 defines the constituent material of the main joining member AB of the present joining apparatus, and is manufactured from a steel material or a casting (cast iron). In particular, the uneven shape of the present apparatus is suitable for casting, and ductile cast iron is a typical material.
[0053]
Configurations 14 to 17 prescribe the installation method and construction method of the present joining apparatus. Structure 14 and FIG. 10 have shown the installation method of this joining apparatus with respect to a steel pipe pile. If the pile head after the steel pipe pile can be driven to the specified height and the pile inclination angle is not large (normally, inclination angle ≤ 1/100 rad), this joining device is connected to the pile head of the steel pipe pile. Just insert it inside.
When the slope of the steel pipe pile is large and when the steel pipe pile head is gas-cut after driving the pile, as shown in Fig. 10, the device is inserted inside the pile head and the device is kept in a horizontal state. The pile and this device are welded together. By this method, even when the steel pipe pile is inclined or the cut surface of the pile head is disturbed by gas cutting, this joining device is installed horizontally and the vertical load is transmitted normally to the pile. Pile can be protected as a pile head pin joint.
[0054]
Structure 15 and FIG. 11 have shown the installation method of this joining apparatus with respect to the concrete-type ready-made pile containing a steel pipe covering. When the pile after placing is driven vertically, it is only necessary to insert this joining device into the pile head.
If the inclination angle of the pile is large (usually inclination angle> 1/100 rad), repair the upper surface of the pile horizontally with epoxy resin or high-strength mortar, etc., and install this device after the strength is developed.
[0055]
Configurations 16 and 17 show the installation method of the present joining apparatus for cast-in-place concrete piles. Configuration 16 and FIG. 12 are construction methods in the case where the central portion of the joining member A protrudes in a concave shape, and as shown in FIG. 12 (1), the entire joining device or joining is performed before casting the cast-in-place concrete pile. This is a method of placing the concrete of the pile after attaching the member A at a predetermined position or attaching a cylindrical member into which the central portion of the joining member A can be inserted as shown in FIG.
If the method of attaching the device before the concrete is not used, in order to attach the device in which the bottom of the joining member A is convex downward, it is necessary to make a hole in the pile head concrete. It will take a lot of time and effort.
[0056]
Configuration 17 and Fig. 13 are construction methods for installing a device with a flat bottom of the joining member A. As shown in Fig. 13 (1), the installation position of this device is leveled flat after the cast-in-place concrete pile is hardened. Then, the apparatus is horizontally installed on a thin mortar or the like, and then the anchor bolt is post-placed (FIG. 13 (2)). In the case of cast-in-place concrete piles, this joining device can be easily installed at a predetermined position by this method, and then, as shown in FIG. 13 (3), soft cushioning such as polystyrene foam or urethane foam around the device. All you need to do is lay the material and place the foundation concrete on the top.
[0057]
【The invention's effect】
As described above, when the pile head joining device of the present invention is adopted, the following effects can be obtained in joining the pile body and the structure or the foundation footing, and also advantageous conditions for the existing pile head pin joining method Can be realized.
(1) The joint condition between the pile head and the foundation footing can be almost perfect pin joining.
(2) Further, the pile head can be made into an elastic rotary spring joint having an appropriate restoring force.
(3) In addition, a slight slip deformation can be allowed between the foundation bottom and the pile head, and the horizontal force transmitted to the pile can be reduced.
(4) As a result, it is possible to remarkably reduce the earthquake stress generated in the pile body head, and to dramatically improve the seismic safety performance of the pile body.
(5) Since the stress generated by the earthquake at the pile head is drastically reduced, the cross section of the underground beam can be reduced. As a result, the foundation bottom is shallow, the amount of excavated soil is reduced, and the entire foundation work is reduced. Cost is greatly reduced.
{Circle around (6)} The present joining apparatus can cope with a vertical support load from a small load of 10 tons / piece or less to a large load of 1000 tons / piece or more.
(7) This joining apparatus can be applied to all types of piles including small-diameter steel pipe piles, ready-made concrete piles, steel pipe-covered concrete piles (SC piles), and cast-in-place concrete piles.
(8) It has good workability for all types of piles, and construction in a very short construction period is possible.
Specifically, after construction of the pile body, the construction is completed simply by installing this device on the pile head and placing the foundation footing or concrete of the structure on the top of the pile body. Can do.
(9) The joining members A and B of this joining device are suitable for casting, can be manufactured at low cost, and have good workability. It is a joining method.
[0058]
As described above, the present invention makes it possible to quickly construct a pile head pin joint, a slight slip-combined pin joint, and an elastic rotary spring joint that can greatly reduce the stress of a pile body during an earthquake with a simple construction method. It is a thing. Moreover, since it can be applied to all types of piles from small loads to large loads and can be supplied at low cost, the utility of the present invention is extremely high, and a pile foundation structure with excellent seismic safety performance is economical. It is possible to realize.
[Brief description of the drawings]
FIG. 1 Basic configuration diagram of a conventional pile head pin joining device using a ball seat
FIG. 2 is a diagram for explaining a malfunction of a conventional pile head pin joining device using a ball seat.
(1) Earthquake deformation state of piles under the building
(2) Illustration of the principle that the center of curvature of the ball seat and the center of rotation of the pile do not coincide near the pile head
[Fig. 3] Explanatory diagram of conventional pile head sliding (roller) joint using sliding bearing
(1) Deformation state during earthquake when slip plate is installed on the pile side (lower side)
(2) Deformation state during an earthquake when the sliding plate is installed on the foundation footing side (upper side)
FIG. 4 is an explanatory diagram of a cross-sectional configuration of a pile head joining device according to the present invention (when a concave load receiving portion is arranged on the lower side (pile side)).
(1) Device cross-sectional configuration example when applied to steel pipe piles
(2) Example when applied to concrete-based ready-made piles (including SC piles)
(3) Example of application to cast-in-place concrete piles
FIG. 5 is a cross-sectional configuration explanatory view of the pile head joining device of the present invention (when the concave load receiving portion is arranged on the upper side (foundation footing side)).
(1) Device cross-sectional configuration example when applied to steel pipe piles
(2) Example when applied to concrete-based ready-made piles (including SC piles)
(3) Example of application to cast-in-place concrete piles
FIG. 6 is a mechanism explanatory diagram of the operating principle of the device of the present invention.
(1) When placing the concave load receiving part on the lower side (pile side)
(2) When placing the concave load receiving part on the upper side (foundation footing side)
(3) Curvature composition explanatory drawing of a concavo-convex member contact part
FIG. 7 is an explanatory diagram of the configuration around the contact portion of both concave and convex members.
(1) When a tip fitting part is provided in the center of the contact part
(2) When a protrusion for preventing misalignment is provided on the concave material side near the tip of the convex member
(3) A slip area is formed at the contact portion,
When the protrusion for preventing misalignment of (2) above is provided on the outer concave material
FIG. 8 is a diagram illustrating the structure of a member for joining a pile and a foundation.
(1) In the case of steel pipe piles
(2) For concrete ready-made piles (including SC piles)
(3) For cast-in-place concrete piles
FIG. 9 shows an example of a configuration method for applying a restoring force of a rotary elastic spring by an elastic material such as rubber.
(1) In the case of steel pipe piles
(2) For concrete ready-made piles (including SC piles)
(3) For cast-in-place concrete piles
[Fig. 10] Explanatory drawing of construction method when installing this joining device on steel pipe pile
(1) Cutting steel pipe pile heads and suspending equipment
(2) On-site welding and suspension bolt removal with the device held in place
(3) Installation state of the device protruding upward
[Fig. 11] Explanatory drawing of construction method when installing this joining device on concrete-based ready-made piles (including SC piles)
(1) Suspension of this joining device
(2) After installing this equipment, remove the suspension bolts and place the upper foundation concrete.
[Fig. 12] Explanatory drawing of the construction method when installing this joining device on cast-in-place concrete piles (in the case of the device with the recessed material protruding downward)
(1) A method of placing pile concrete after placing the lower recess material or the entire device at a predetermined position and fixing it with a reinforcing bar or temporary member.
(2) A cylindrical member capable of inserting and installing the lower concave member later is attached before pile concrete placement, and pile concrete placement is performed. Construction method to install this device later
(3) Method of inserting and installing this apparatus in the same cylindrical member as above and fixing by grouting
[Fig. 13] Explanatory drawing of construction method when installing this joining device on cast-in-place concrete pile (in the case of equipment with concave material on the upper side)
(1) The cast-in-place concrete is constructed as usual, and after placing the pile concrete, the device installation position is leveled and the device member A (lower side) is suspended.
(2) The apparatus member A is installed and an anchor bolt is post-placed on site.
(3) Suspend and install this device member B (upper side), and after placing protective materials that prevent both upper and lower concrete interference such as foamed polystyrene and backfill soil around it, the foundation concrete above the device is To cast.
[Explanation of symbols]
1: Building or superstructure
10: Basic footing
11: Underground beam
2: Pile
21: Steel pipe pile
22: Ready-made concrete piles (including SC piles)
23: Cast-in-place concrete pile
24: Pile rebar basket
3: Pile head pin joining device using ball seat
3A: Pile side member
3B: Basic footing side member
31: Contact sliding surface of the ball seat
4: Pile head joining device by sliding support
41: Sliding board
42: Sliding surface support member
5: Pile head joining device of the present invention (when the concave member is on the pile side (lower side))
5A: Pile side joint member (concave member)
5B: Foundation side joining member (convex type member)
5C: gap filling cushioning material
5D: Elastic body for restoring force (rubber body)
51: Recessed material side contact surface
52: Sliding clearance
53: Protrusion for stopper
54: Flat plate for foundation side fixing
55: Stud bolt
56: Fixing protrusion
57: Hanging bolt for installation
58: Cylindrical driving frame
59: grout wood
6: Pile head joining device of the present invention (when the concave member is on the foundation footing side (lower side))
6A: Pile side joint member (convex member)
6B: Foundation side joining member (concave member)
6C: Gap filling cushioning material
6D: Elastic body for restoring force (rubber body)
61: Contact surface on recess side
64: Flat plate for fixing on the foundation side
65: Stud bolt
66: Anchor bolt

Claims (16)

構造物を支持する杭体の頭部と構造物若しくは構造物の基礎フーチングとの間に配置される杭頭接合装置であり、
杭体上面に鉛直荷重を伝達する外周平板部を有し、その内側がすり鉢状に窪んだ凹型荷重受け部となっている凹部を有する杭側接合部材Aと、
上記杭側接合部材Aの上側に配置され、当該杭側接合部材Aの凹部の中央上面に接する凸部と、その上面に存在し上部の基礎フーチングに接合される平板部からなる基礎側接合部材Bより構成されており、
上記杭側接合部材Aと上記基礎側接合部材Bの両者の接触面において、上記杭側接合部材Aの凹部の曲率半径が上記基礎側接合部材Bの凸部の曲率半径よりも大きく、且つ基礎側接合部材Bの凸部の周囲と杭側接合部材Aの凹部の内壁面間に隙間が確保されており、
上記杭側接合部材Aと基礎側接合部材Bの隙間に、発泡材もしくはスポンジ状物質を充填していることを特徴とする杭体頭部と構造物との接合装置。
A pile head joining device arranged between the head of the pile body that supports the structure and the structure or the foundation footing of the structure,
A pile-side joining member A having an outer peripheral flat plate portion for transmitting a vertical load on the upper surface of the pile body, and having a concave portion that is a concave load receiving portion whose inside is recessed in a mortar shape,
The foundation side joining member which consists of the convex part which is arrange | positioned above the said pile side joining member A, touches the center upper surface of the recessed part of the said pile side joining member A, and exists in the upper surface, and is joined to an upper foundation footing. B,
In the contact surfaces of both the pile-side joining member A and the foundation-side joining member B, the curvature radius of the concave portion of the pile-side joining member A is larger than the curvature radius of the convex portion of the foundation-side joining member B, and the foundation A gap is secured between the periphery of the convex portion of the side joining member B and the inner wall surface of the concave portion of the pile side joining member A,
An apparatus for joining a pile body head and a structure , wherein a gap between the pile side joining member A and the foundation side joining member B is filled with a foam material or a sponge-like substance .
構造物を支持する杭体の頭部と構造物若しくは構造物の基礎フーチングとの間に配置される杭頭接合装置であり、
杭体上面に鉛直荷重を伝達する外周平板部を有し、中央部が上側に凸に突出した凸部を有する杭側接合部材Aと、
上記杭側接合部材Aの上側に配置され、当該杭側接合部材Aの凸部を覆う下向きの凹型荷重伝達部となっている凹部を有し、その上面に存在し上部の基礎フーチングに接合される平板部からなる基礎側接合部材Bより構成されており、
上記杭側接合部材Aと上記基礎側接合部材Bが両者の平面中央において接触し、その接触面において上記基礎側接合部材Bの凹部の曲率半径が上記杭側接合部材Aの凸部の曲率半径よりも大きく、且つ上記杭側接合部材Aの凸部の周囲と基礎側接合部材Bの凹部の内壁面間に隙間が確保されており、
上記杭側接合部材Aと基礎側接合部材Bの隙間に、発泡材もしくはスポンジ状物質を充填していることを特徴とする杭体頭部と構造物との接合装置。
A pile head joining device arranged between the head of the pile body that supports the structure and the structure or the foundation footing of the structure,
A pile-side joining member A having an outer peripheral flat plate portion for transmitting a vertical load on the upper surface of the pile body, and having a convex portion with a central portion projecting upward.
Arranged on the upper side of the pile-side joining member A, has a concave portion serving as a downward concave load transmitting portion covering the convex portion of the pile-side joining member A, and is present on the upper surface and joined to the upper foundation footing. Composed of a base-side joining member B composed of a flat plate portion,
The pile-side joining member A and the foundation-side joining member B are in contact with each other at the center of the plane, and the curvature radius of the concave portion of the foundation-side joining member B is the curvature radius of the convex portion of the pile-side joining member A at the contact surface. Larger than that, and a gap is secured between the periphery of the convex portion of the pile-side joining member A and the inner wall surface of the concave portion of the foundation-side joining member B,
An apparatus for joining a pile body head and a structure , wherein a gap between the pile side joining member A and the foundation side joining member B is filled with a foam material or a sponge-like substance .
上記請求項1または請求項2に記載の杭頭接合装置において、
上記杭側接合部材Aと基礎側接合部材Bの接触面で、凸部と凹部の中央接触部付近がほぼ平板状(曲率半径≒無限大)になっており、その範囲内において凸部は凹部に対して水平方向にズレることが可能となっており、
上記杭側接合部材Aと基礎側接合部材Bは相対的に傾斜変形および水平変形できることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to claim 1 or 2,
In the contact surface of the pile-side joining member A and the foundation-side joining member B, the vicinity of the central contact portion of the convex portion and the concave portion is substantially flat (curvature radius≈infinity), and the convex portion is a concave portion within the range. It is possible to shift horizontally with respect to
The said pile side joining member A and the foundation side joining member B can carry out the inclination deformation | transformation and horizontal deformation | transformation relatively, The joining apparatus of the pile body head and structure characterized by the above-mentioned.
上記請求項1乃至3のいずれかに記載の杭頭接合装置において、
上記杭側接合部材Aと基礎側接合部材Bの接触面で、凸部と凹部の中央接触部の中央付近に、両者の平面位置関係のずれを制限するための小さな凹凸からなる先端嵌合部を有し、上記先端嵌合部の凸部の周囲と上記先端嵌合部の凹部の内壁面間には、上記杭側接合部材Aと基礎側接合部材Bが相対的に傾斜変形できるだけの若干の隙間を有していることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to any one of claims 1 to 3,
At the contact surface of the pile-side joining member A and the foundation-side joining member B, a tip fitting portion made of small irregularities for limiting the deviation of the planar positional relationship between the convex portion and the central contact portion of the concave portion. The pile-side joining member A and the foundation-side joining member B can be slightly inclined and deformed between the periphery of the convex portion of the tip fitting portion and the inner wall surface of the concave portion of the tip fitting portion. An apparatus for joining a pile body head and a structure characterized by having a gap of
上記請求項1乃至3のいずれかに記載の杭頭接合装置において、
上記杭側接合部材Aと基礎側接合部材Bにおける上記中央接触部でのずれが、ある一定値以上に達するか、もしくは、
上記杭側接合部材Aと基礎側接合部材B両者間の相対的傾斜角がある一定値以上に達すると、
上記杭側接合部材Aと基礎側接合部材B両部材の凸部周壁と凹部内壁面が接触するように、
上記杭側接合部材Aと基礎側接合部材B両部材間の隙間が設定されていることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to any one of claims 1 to 3,
The displacement at the central contact portion in the pile side joining member A and the foundation side joining member B reaches a certain value or more, or
When the relative inclination angle between the pile-side joining member A and the foundation-side joining member B reaches a certain value or more,
The convex peripheral wall and the concave inner wall surface of both the pile side joining member A and the foundation side joining member B are in contact with each other.
A joint device between a pile body head and a structure, wherein a gap between both the pile-side joining member A and the foundation-side joining member B is set.
上記請求項1乃至3のいずれかに記載の杭頭接合装置において、
上記杭側接合部材Aと基礎側接合部材B両者の中央接触部近傍の、上記凹部側に、上記凸部側に突出する突起部を設け、
上記中央接触部が一定値以上ズレずれると、上記凸部の先端近傍のみが、上記凹部側の上記突起部に接触するように設定されていることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to any one of claims 1 to 3,
In the vicinity of the center contact portion of both the pile-side joining member A and the foundation-side joining member B, a protrusion that protrudes toward the convex side is provided on the concave side.
When the central contact portion is displaced by a certain value or more, only the vicinity of the tip of the convex portion is set so as to come into contact with the protruding portion on the concave portion side, and the pile body head and the structure, Welding equipment.
上記請求項1乃至3のいずれかに記載の杭頭接合装置において、上記杭側接合部材Aと基礎側接合部材B両者の中央接触部の接触面付近、もしくは、上記凹部と凸部の相対面する周壁面に、潤滑用液体の塗布層、防錆用液体の塗布層、潤滑用液体の充填部、防錆用液体の充填部、固体潤滑材皮膜、もしくは弾性体材料を介在させていることを特徴とする杭体頭部と構造物との接合装置。 The pile head joining apparatus according to any one of claims 1 to 3, wherein the vicinity of the contact surface of the center contact portion of both the pile side joining member A and the foundation side joining member B, or the relative surface of the concave portion and the convex portion. A lubricating liquid coating layer, a rust preventive liquid coating layer, a lubricating liquid filling portion, a rust preventing liquid filling portion, a solid lubricant film, or an elastic material is interposed on the peripheral wall surface A device for joining a pile body head and a structure characterized by the above. 上記請求項1乃至3のいずれかに記載の杭頭接合装置において、
上記杭側接合部材Aと基礎側接合部材Bの隙間、もしくは杭側接合部材の周囲平板部とその上部の基礎側接合部材の間に、上記杭側接合部材Aと基礎側接合部材Bの相対的ずれおよび傾斜に対する復元力を与えるゴム弾性体を配置し、杭頭の水平変形および回転変形に対する弾性ばね接合とすると同時に、装置周囲の埋め戻し土等の混入を防止していることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to any one of claims 1 to 3,
Between the pile-side joining member A and the foundation-side joining member B, or between the surrounding flat plate portion of the pile-side joining member and the foundation-side joining member at the upper part thereof , the relative of the pile-side joining member A and the foundation-side joining member B It is characterized by the elastic elastic body that gives the restoring force against the misalignment and inclination, and the elastic spring joint against the horizontal deformation and rotational deformation of the pile head and at the same time preventing the backfill soil around the device from mixing To connect the pile head to the structure.
上記請求項1乃至3のいずれかに記載の杭頭接合装置において、
基礎側接合部材B上部の接合用平板上面に、溶接により接合されたスタッドボルト、ねじ込みにより接合されたスタッドボルト、もしくは上部基礎フーチング側に固定された突起部を有しており、
この突起部の上部に構造物基礎のコンクリ−トを打設することにより、上記接合用平板と上部構造物を連結・一体化できることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to any one of claims 1 to 3,
On the upper surface of the joining flat plate on the upper side of the base side joining member B, a stud bolt joined by welding, a stud bolt joined by screwing, or a protrusion fixed to the upper base footing side,
An apparatus for joining a pile head and a structure, wherein the joining flat plate and the upper structure can be connected and integrated by placing a concrete of the foundation of the structure on top of the protrusion.
上記請求項1に記載の杭頭接合装置において、
杭側接合部材Aの凹部外周が既製杭頭部の内径より僅かに小さく、
杭側接合部材Aと杭体との間に僅かの水平ずれが発生すると杭体内径の内壁面に接触して水平せん断力を伝達できることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to claim 1,
The outer periphery of the concave portion of the pile-side joining member A is slightly smaller than the inner diameter of the ready-made pile head,
Pile body head and structure joining device characterized in that when a slight horizontal shift occurs between the pile side joining member A and the pile body, it can contact the inner wall surface of the inside diameter of the pile body and transmit a horizontal shearing force. .
上記請求項2に記載の杭頭接合装置において、
杭側接合部材Aの下部に既製杭頭部の内径より僅かに小さな円筒型挿入部を設けており、
杭側接合部材Aと杭体との間に僅かの水平ずれが発生すると杭体内径の内壁面に接触して水平せん断力を伝達できることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to claim 2,
A cylindrical insertion part slightly smaller than the inner diameter of the pre-made pile head is provided at the bottom of the pile-side joining member A,
Pile body head and structure joining device characterized in that when a slight horizontal shift occurs between the pile side joining member A and the pile body, it can contact the inner wall surface of the inside diameter of the pile body and transmit a horizontal shearing force. .
上記請求項1乃至12のいずれかに記載の杭頭接合装置において、
杭側接合部材Aおよび基礎側接合部材Bが、鋼材もしくは鋳物で製造されていることを特徴とする杭体頭部と構造物との接合装置。
In the pile head joining apparatus according to any one of claims 1 to 12 ,
The pile-side joining member A and the foundation-side joining member B are manufactured from steel materials or castings.
上記請求項1乃至12のいずれかに記載の杭頭接合装置を使用して、
接合部材Aの凹部の外周直径を鋼管製既製杭の内径より僅かに小さくし、
鋼管杭打設後の上端もしくは打設後切断した上端の内面に挿入し、
杭側接合部材Aの水平度が一定値以下に設置できる場合はそのままとし、
杭側接合部材Aの水平度が一定値以下に確保できない場合は杭側接合部材Aを水平に保った状態で杭体と杭側接合部材Aを溶接接合することを特徴とする杭頭接合装置の鋼管杭への設置方法。
Using the pile head joining device according to any one of claims 1 to 12 ,
The outer diameter of the concave portion of the joining member A is slightly smaller than the inner diameter of the steel pipe ready-made pile,
Insert the steel pipe pile on the inner surface of the upper end after casting or the upper end cut after casting,
When the level of pile-side joining member A can be set below a certain value, leave it as it is,
Pile head joining device, wherein the pile body and the pile side joining member A are welded and joined in a state where the pile side joining member A is kept horizontal when the level of the pile side joining member A cannot be secured below a certain value. Installation method for steel pipe piles.
上記請求項1乃至12のいずれかに記載の杭頭接合装置を、
既製コンクリート杭もしくは鋼管被覆既製コンクリート杭の上端の内面に挿入し、
杭側接合部材Aの水平度が一定値以下に設置できる場合はそのままとし、
杭側接合部材Aの水平度が一定値以下に確保できない場合は杭体上面を硬化性材料により水平に補修した後に、
杭側接合部材Aを杭上端の内面に挿入することを特徴とする杭頭接合装置のコンクリート系既製杭への設置方法。
The pile head joining device according to any one of claims 1 to 12 ,
Insert into the inner surface of the upper end of ready-made concrete pile or steel pipe-covered ready-made concrete pile,
When the level of pile-side joining member A can be set below a certain value, leave it as it is,
When the level of pile-side joining member A cannot be secured below a certain value, after repairing the upper surface of the pile body horizontally with a curable material,
The pile side joining member A is inserted in the inner surface of the pile upper end, The installation method to the concrete type ready-made pile of the pile head joining apparatus characterized by the above-mentioned.
上記請求項1乃至12のいずれかに記載の杭頭接合装置の全体もしくは杭側接合部材Aのみ、あるいは杭側接合部材Aの凹部外周直径より僅かに大きな円筒部材を、
場所打ちコンクリート杭のコンクリート打設前に所定の位置に設置し、
杭体コンクリートを打設し、硬化後に残りのB部もしくは全体を挿入設置することを特徴とする杭頭接合装置の場所打ちコンクリート杭への設置方法。
The entire pile head joining device according to any one of claims 1 to 12 , or only the pile side joining member A, or a cylindrical member slightly larger than the outer peripheral diameter of the concave portion of the pile side joining member A,
Install in place before placing concrete in cast-in-place concrete piles,
A method for installing a pile head joining apparatus on a cast-in-place concrete pile, in which pile body concrete is placed and the remaining part B or the whole is inserted and installed after curing.
上記請求項1乃至12のいずれかに記載の杭頭接合装置の全体、もしくは杭側接合部材Aのみを、
場所打ちコンクリート杭のコンクリート打設後に所定の位置に設置し、
杭側接合部材Aの周辺平板部に設けたアンカーボルト穴位置に現場で後打ちアンカーボルトを打設して杭頭接合装置を固定し、
その周囲に発泡スチロールもしくは発泡ウレタン等のスポンジ状物質を配置してその上部に基礎側コンクリートを打設することを特徴とする杭頭接合装置の場所打ちコンクリート杭への設置方法。
The whole pile head joining device according to any one of claims 1 to 12 , or only the pile side joining member A,
Installed in place after the concrete placement of cast-in-place concrete piles,
Fix the pile head joining device by placing a post-placed anchor bolt in the field at the anchor bolt hole position provided in the peripheral plate part of the pile side joining member A,
A method for installing a pile head joining device on a cast-in-place concrete pile, characterized in that a sponge-like substance such as foamed polystyrene or urethane foam is placed around the base and concrete on the foundation side is placed thereon.
JP2002052784A 2002-02-28 2002-02-28 Pile head and structure joining apparatus and installation method thereof Expired - Lifetime JP3741426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052784A JP3741426B2 (en) 2002-02-28 2002-02-28 Pile head and structure joining apparatus and installation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052784A JP3741426B2 (en) 2002-02-28 2002-02-28 Pile head and structure joining apparatus and installation method thereof

Publications (2)

Publication Number Publication Date
JP2003253688A JP2003253688A (en) 2003-09-10
JP3741426B2 true JP3741426B2 (en) 2006-02-01

Family

ID=28664388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052784A Expired - Lifetime JP3741426B2 (en) 2002-02-28 2002-02-28 Pile head and structure joining apparatus and installation method thereof

Country Status (1)

Country Link
JP (1) JP3741426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711139A (en) * 2012-09-29 2014-04-09 上海中技桩业股份有限公司 Semi-rigid connection structure between pile foundation and bearing platform

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605641B2 (en) * 2004-11-24 2011-01-05 株式会社フジタ Building basic structure and construction method
JP2006161363A (en) * 2004-12-06 2006-06-22 Shimizu Corp Pile design system
JP2007039937A (en) * 2005-08-02 2007-02-15 Toda Constr Co Ltd Foundation structure of building
JP4636416B2 (en) * 2007-03-06 2011-02-23 日本ヒューム株式会社 Seismic isolation device mounting structure on pile head and its mounting method
JP5054449B2 (en) * 2007-07-06 2012-10-24 大成建設株式会社 Rehabilitation method of pile foundation structure
JP5410711B2 (en) * 2008-08-22 2014-02-05 株式会社松井工業 rack
JP5002045B2 (en) * 2010-09-10 2012-08-15 株式会社フジタ Building basic structure
CN102031789A (en) * 2010-12-15 2011-04-27 哈尔滨工程大学 Flexible connecting structure for bearing platform and pile
JP6924639B2 (en) * 2017-07-10 2021-08-25 システム計測株式会社 Pile head connection structure
JP6531155B2 (en) * 2017-11-22 2019-06-12 泰徳 松中 Concrete pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711139A (en) * 2012-09-29 2014-04-09 上海中技桩业股份有限公司 Semi-rigid connection structure between pile foundation and bearing platform

Also Published As

Publication number Publication date
JP2003253688A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP3741426B2 (en) Pile head and structure joining apparatus and installation method thereof
CN109356210B (en) Pile foundation building inclination correction pile interception underpinning limiting structure and construction method thereof
JP3623168B2 (en) Pile foundation structure
US7909541B1 (en) Apparatus and method for improved grout containment in post-grouting applications
CN110005444A (en) Highly seismic region method for tunnel construction and tunnel support structure
KR101668465B1 (en) Bridge bearing device including a rotatable anchor system maintenance is possible
JP3765000B2 (en) Ground improvement foundation method for soft ground.
JP2003232033A (en) Foundation pile structure
JP5077865B2 (en) Ready-made pile and foundation pile structure
WO1998036130A1 (en) Structure of pile foundation
WO2022032994A1 (en) Method for inclination rectification by rotational displacement of building underpinning foundation
JP3455644B2 (en) Pile foundation structure
JP2964933B2 (en) Underground structure, asymmetric U-shaped sheet pile, and method of placing asymmetric U-shaped sheet pile
JPH05331862A (en) Steel foundation structure
JP3831737B2 (en) Steel tower basic structure
JP3803153B2 (en) Seismic structure of building
JPH10227039A (en) Pile foundation structure
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP3690495B2 (en) Building construction method and building
JP5052396B2 (en) Pile head joint structure and temporary tool for pile head joint used in its construction
JP2001214465A (en) Reinforcing structure for underground construction
JP3760302B2 (en) Joint structure of members and construction method of joint between cast-in-place concrete pile and superstructure
JP3165063B2 (en) Seismic foundation structure
KR102215027B1 (en) Construction method of structure using ground bearing capacity
JP3256201B2 (en) Installation method of pile head joining device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Ref document number: 3741426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151118

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term