JP3741355B2 - Multi-speed transmission for automobile - Google Patents

Multi-speed transmission for automobile Download PDF

Info

Publication number
JP3741355B2
JP3741355B2 JP2000114957A JP2000114957A JP3741355B2 JP 3741355 B2 JP3741355 B2 JP 3741355B2 JP 2000114957 A JP2000114957 A JP 2000114957A JP 2000114957 A JP2000114957 A JP 2000114957A JP 3741355 B2 JP3741355 B2 JP 3741355B2
Authority
JP
Japan
Prior art keywords
gear
input shaft
speed
shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000114957A
Other languages
Japanese (ja)
Other versions
JP2001295898A (en
Inventor
清仁 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Machine Industry Co Ltd
Original Assignee
Aichi Machine Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Machine Industry Co Ltd filed Critical Aichi Machine Industry Co Ltd
Priority to JP2000114957A priority Critical patent/JP3741355B2/en
Publication of JP2001295898A publication Critical patent/JP2001295898A/en
Application granted granted Critical
Publication of JP3741355B2 publication Critical patent/JP3741355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H2003/0931Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts each countershaft having an output gear meshing with a single common gear on the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はツインクラッチ式の変速機に関するものである。
【0002】
【従来の技術】
従来のツインクラッチ式の変速機は2枚のクラッチ板と、該クラッチ板に連結される2本の入力軸と、一方の入力軸(第1入力軸)の回転を他方の入力軸(第2入力軸)に伝達するための副軸および該回転を反転させるアイドラ軸と、第2入力軸から回転が伝達される出力軸とを具備し、第1入力軸には奇数段用(1速、3速、5速用)の歯車が担持され、第2入力軸には偶数段用(2速、4速用)の歯車が担持されている。
上記構成では1速の場合には副軸の1速用駆動歯車から第2入力軸の4速用駆動歯車(1速用被駆動歯車になる)を介して第2入力軸へ回転を伝達し、更に2速用駆動歯車を介して出力軸に伝達する。リバースの場合には副軸のリバース用駆動歯車からアイドラ軸の歯車で回転を反転させて第2入力軸の4速用駆動歯車を介して第2入力軸に回転を伝達し、更に2速用駆動歯車を介して出力軸に伝達するか、あるいはアイドラ軸の歯車の回転を直接出力軸の2速用被駆動歯車に伝達する。
【0003】
【発明が解決しようとする課題】
上記従来の構成では1速の場合に第2入力軸の2速用歯車を利用して出力軸へ回転を伝達するために、第1入力軸から副軸を介して第2入力軸に回転を伝達するまでにある程度減速されていなければ、1速としての必要な歯車比を得ることが出来ない。
そのためには第1入力軸の回転を副軸に伝達する駆動歯車のピッチ径は、第2入力軸の副軸からの回転が伝達される被駆動歯車のピッチ径よりも小さいことが要求される。上記ピッチ径の差が小さいと第1入力軸から副軸を介して第2入力軸へ回転を伝達する際の減速比が十分に得られず、第2入力軸から出力軸への回転伝達に第2入力軸の2速用駆動歯車と出力軸の2速用被駆動歯車との減速比をかけ合わせても、1速として必要な大きい減速比が得られにくい。
前進5段の場合には第1入力軸のピッチ径の小さい3速用駆動歯車を利用して副軸へ回転を伝達し、更に第2入力軸のピッチ径の大きい4速用駆動歯車を副軸からの回転を伝達する被駆動歯車として利用する。第1入力軸に副軸へ回転を伝達するための歯車や第2入力軸に副軸からの回転を伝達するための歯車を専用に設けることは変速機の軸方向の長さ短縮と云う目的に反し、かつ構造簡素化の妨げとなる。
したがって上記したように第1入力軸の3速用駆動歯車と第2入力軸の4速用駆動歯車を利用するのであるが、3速用歯車比と4速用歯車比との差は一般的に小さく、そのためにピッチ径の差も小さくなり、3速用駆動歯車から4速用駆動歯車までの減速比、即ち第1入力軸から副軸を介して第2入力軸までの減速比が十分とれず、その結果1速としての大きな減速比が得られないと云う問題が発生する。
更にリバースを実現するためには前記したように第1入力軸の3速用駆動歯車から副軸を介して出力軸の2速用被駆動歯車に逆回転を伝達して必要な減速比を得るか、あるいは第1入力軸の3速用駆動歯車から副軸、アイドラ軸を介して反転した回転を第2入力軸の2速用駆動歯車に伝達し、その該2速用歯車比を利用して必要な減速比を得ることになる。
前者の方法では副軸に第1入力軸の3速用駆動歯車と噛合する歯車と出力軸の歯車と噛合する歯車とを担持させる必要があり、同時に1速の実現のために副軸に1速用駆動歯車、第2入力軸に1速用被駆動歯車を担持させる必要があり、これを両立させるためには設計の自由度はかなり制限される。
後者の方法では第2入力軸の2速用駆動歯車のピッチ径が小さいので、アイドラ軸の歯車を介して第2入力軸の2速用駆動歯車を駆動する副軸の歯車のピッチ径を出来るだけ小さくしてここでの減速比を1以上にしようとすると、副軸自体が細くなって強度上不利になり、したがって減速比は自ずから限界がある。そこで第1入力軸の3速用駆動歯車から副軸へ回転を伝達する際の減速比を大きくして減速比を補完しようとすると、副軸には大径な歯車が必要となり、副軸と入力軸との軸間距離が拡大し、更に1速との両立を考慮すると設計の自由度はかなり制限される。いずれにしてもリバースの場合も大きな減速比を得ることは困難である。
第2入力軸に6速用駆動歯車を担持させて6段変速とすると、副軸からの回転が伝達される被駆動歯車としてピッチ径の大きい6速用駆動歯車や4速用駆動歯車を利用することが出来、第1入力軸の3速用駆動歯車とのピッチ径の差が拡がり、上記問題は軽減されるが、その代わりに変速機の軸方向の長さが長くなると云う新たな問題が発生する。
【0004】
【課題を解決するための手段】
本発明は上記従来の課題を解決するための手段として、第1クラッチ板D1 と第2クラッチ板D2 と、第1クラッチ板D1 に連結した第1入力軸X1 と、第2クラッチ板D2 に連結した第2入力軸X2 と、第1入力軸X1 から第2入力軸X2 に回転を伝達する副軸Xs と、第1入力軸X1 から副軸Xs を介して第2入力軸X2 に伝達される回転を反転するアイドラ軸XR と、該第1入力軸X1 または第2入力軸X2 からの回転を差動装置DFに伝達する出力軸Xo とを具備し、第1入力軸X1 と第2入力軸X2 とは同心的に配され、上記第1入力軸X1 にはリバース、1速および3速用の駆動歯車G1が担持され、上記第2入力軸X2 には2速、4速、5速および5速以上の高速な変速段用の駆動歯車G2、G3、G4が取付けられ、上記副軸Xs には第1入力軸X1 の歯車G1に噛合して第1入力軸X1 の回転を副軸Xs に伝達する歯車G13と、第2入力軸X2 の2速用歯車以外の歯車を1速用被駆動歯車として該歯車に噛合する1速用駆動歯車G11と、アイドラ軸XR の歯車G14に噛合するリバース用駆動歯車G12と、該1速用歯車G11と該リバース用歯車G12とをセレクトするスリーブS3 付カップリングC3 とが担持され、上記アイドラ軸XR の歯車G14はリバース時に被駆動歯車となる第2入力軸の2速用歯車以外の歯車と噛合し、上記出力軸Xo には2速、3速、4速、5速および5速以上の高速な変速段用の被駆動歯車G5、G6、G7、G8と、該歯車の一つをセレクトするスリーブS1 、S2 付カップリングC1 、C2 と、差動装置DFに回転を伝達する歯車G9とが担持され、各歯車G5、G6、G7、G8は第1入力軸X1 および第2入力軸X2 の対応する各駆動歯車G1、G2、G3、G4が噛合している多段変速機を提供するものである。
【0005】
6段以上の高速段変速機の場合には、上記出力軸Xo に加えて更にもう一つの出力軸X’o を追加し、該出力軸X’o に2速用被駆動歯車G5と6速あるいは6速よりも高速なすべての変速段用歯車G16を担持させる。
【0006】
【発明の実施の形態】
本発明の第1実施例を図1に示す。図においてD1 はリバース、1速、3速の駆動を行う第1クラッチ板であり、D2 は2速、4速、5速、および5速よりも高速なすべての変速段の駆動を行う第2クラッチ板である。
【0007】
第1クラッチD1 には第1入力軸X1 が連結し、第2クラッチD2 には第2入力軸X2 が連結し、第2入力軸X2 は中空であり内部に第1入力軸X1 が挿通され、したがって第1入力軸X1 と第2入力軸X2 とは同心的に配置される。
【0008】
第1入力軸X1 には3速および1速、リバース用駆動歯車G1が固定的に取付けられており、第2入力軸X2 には2速用駆動歯車G2、4速用駆動歯車G3、5速用駆動歯車G4が軸に対して固定的に取付けられている。
【0009】
o は出力軸であり該出力軸Xo には2速用被駆動歯車G5、3速用被駆動歯車G6、4速用被駆動歯車G7、5速用被駆動歯車G8が軸に対して回転自在に取付けられており、更に出力用歯車G9が軸に対して固定的に取付けられている。上記歯車G5、G6、G7、G8にはそれぞれハブH5、H6、H7、H8が設けられており、歯車G5、G7間、歯車G6、G8間にはそれぞれスリーブS1 を有するカップリングC1 、スリーブS2 を有するカップリングC2 が介在されている。そして歯車G6は第1入力軸X1 の歯車G1と噛合し、歯車G5、G7、G8は第2入力軸X2 の歯車G2、G3、G4にそれぞれ噛合し、歯車G9は差動装置DFの歯車G10に噛合している。
【0010】
s は副軸であり該副軸Xs には1速用被駆動歯車G11、リバース用被駆動歯車G12が軸に対して回転自在に取付けられており、更に回転伝達用歯車G13が軸に対して固定的に取付けられている。上記歯車G11、G12にはそれぞれハブH11、H12が設けられており、歯車G11、G12間にはスリーブS3 を有するカップリングC3 が介在されている。そして歯車G13は第1入力軸X1 の歯車G1と噛合し、歯車G11は第2入力軸X2 の歯車G4が噛合している。即ち第2入力軸X2 の歯車G4は5速用の他、1速の場合に副軸Xs の回転を第2入力軸X2 に伝える被駆動歯車として働く。
【0011】
R はアイドラ軸であり該アイドラ軸XR には反転歯車G14が軸に対して固定的に取付けられており、該歯車G14は第2入力軸X2 の歯車G3に噛合している。即ち第2入力軸X2 の歯車G3は4速用の他、リバースの場合に副軸Xs の回転をアイドラ軸XR を介して第2入力軸X2 に伝える被駆動歯車として働く。
【0012】
上記構成において、第2入力軸X2 の5速用駆動歯車G4のピッチ径は、第1入力軸X1 の3速および1速、リバース用駆動歯車G1のピッチ径よりも大きく、更に該歯車G4のピッチ径は第2入力軸X2 の歯車G3、即ちリバース時に副軸Xs の回転をアイドラ軸XR を介して第2入力軸X2 に伝える被駆動歯車として働く歯車G3のピッチ径よりも大きい。
【0013】
以下に上記構成の動作を説明する。
〔1速〕
スリーブS3 を1速用歯車G11側へスライドさせてカップリングC3 と1速用歯車G11のハブH11とを接続する。第1入力軸X1 の回転は歯車G1より副軸Xs の歯車G13を介して副軸Xs に伝達され、更に副軸Xs の歯車G11より第2入力軸X2 の2速用駆動歯車G2以外の歯車G4を介して第2入力軸X2 に伝達される。更にスリーブS1 を2速用歯車G5側へスライドさせてカップリングC1 と2速用歯車G5のハブH5とを接続すると、該第2入力軸X2 の回転は歯車G2より出力軸Xo の歯車G5を介して出力軸Xo に伝達され、該出力軸Xo の回転は歯車G9を介して差動装置DFの歯車G10に伝達される。
【0014】
〔リバース〕
スリーブS3 をリバース用歯車G12側へスライドさせてカップリングC3 とリバース用歯車G12のハブH12とを接続する。そうすると副軸Xs の回転はアイドラ軸XR の歯車G14によって反転されて第2入力軸X2 の歯車G3を介して第2入力軸X2 に伝達され、第2入力軸X2 の回転はスリーブS1 を2速用歯車G5側へスライドさせてカップリングC1 と2速用歯車G5のハブH5とを接続することにより歯車G2より出力軸Xo の歯車G5を介して出力軸Xo に伝達され、更に歯車G9を介して差動装置DFの歯車G10に伝達される。
【0015】
〔2速〕
スリーブS1 を2速用歯車G5側へスライドさせてカップリングC1 と歯車G5のハブH5とを接続する。第2入力軸X2 の回転は歯車G2から出力軸Xo の歯車G5を介して出力軸Xo に伝達され、更に1速、リバースの場合と同様差動装置DFに伝達される。
【0016】
〔3速〕
スリーブS2 を3速用歯車G6側へスライドさせてカップリングC2 と歯車G6のハブH6とを接続する。第1入力軸X1 の回転は出力軸Xo の歯車G6を介して出力軸Xo に伝達され、前記と同様差動装置DFに伝達される。
【0017】
〔4速〕
スリーブS1 を4速用歯車G7側へスライドさせてカップリングC1 と歯車G7のハブH7とを接続する。この場合は第2入力軸X2 の回転は歯車G3から出力軸Xo の歯車G7を介して出力軸Xo に伝達され、前記と同様差動装置DFに伝達される。
【0018】
〔5速〕
スリーブS2 を5速用歯車G8側へスライドさせてカップリングC2 と歯車G8のハブH8とを接続する。第2入力軸X2 の回転は歯車G4から出力軸Xo の歯車G8を介して出力軸Xo に伝達され、前記と同様差動装置DFに伝達される。
【0019】
図2に本発明の他の実施例が示される。前実施例では副軸Xs を駆動するために第1入力軸X1 の歯車G1を使用したが、本実施例では第1入力軸X1 に副軸Xs 駆動専用歯車G15を追加した。
【0020】
歯車G1は出力軸Xo の3速用歯車G6と噛合しているのでピッチ径は制限される。しかし本実施例の場合には歯車G15は副軸Xs 駆動専用であるから、歯車G1よりもピッチ径を小さくして1速およびリバースの減速比をより大きくとることが出来る。なお該歯車G15のピッチ径よりも第2入力軸X2 の歯車G4のピッチ径の方が当然大きい。
【0021】
図3以下には6段変速機に関する実施例が示される。図3に示す実施例は図1に示す実施例を6段化したものであって、出力軸が長くならないようにするために出力軸X’o を1本追加し、該出力軸X’o に2速用歯車G5と6速用歯車G16と差動装置駆動用歯車G17とを取付け、該歯車G5、G16間にそれぞれのハブH5、H16に接続するためのスリーブS6 を有するカップリングC6 を介在させる。出力軸Xo にあっては2速用歯車G5を出力軸X’o に移したので、4速用歯車G7と5速用歯車G8との間にそれぞれのハブH7、H8に接続するためのスリーブS5 を有するカップリングC5 を介在させ、更に3速用歯車G6専用にスリーブS4 を有するカップリングC4 を取付けた。この実施例では第2入力軸X2 の5速用駆動歯車G4を6速用に共用している。
【0022】
図4には6段変速機の他の実施例が示される。本実施例は図2に示す実施例を6段化したものであり、即ち図3に示す実施例において第1入力軸X1 に副軸Xs 駆動専用歯車G18を追加し、該歯車G18を副軸Xs の歯車G13に噛合させる。
【0023】
図5には6段変速機の更に他の実施例が示される。この実施例では図1に示す実施例を6段化したものであり、図3に示す実施例に6速駆動専用歯車G19を第2入力軸X2 に追加して歯車G4を5速用とし、該歯車G19を出力軸X’o の6速用被駆動歯車G16に噛合させる。
【0024】
図6には6段変速機の更に他の実施例が示される。本実施例は図2に示す実施例を6段化したものであり、図5に示す実施例において第1入力軸X1 に副軸Xs 駆動専用歯車G18を追加し、該歯車G18を副軸Xs の歯車G13に噛合させる。
【0025】
上記図3〜図6に示す6段変速機の実施例では、1速駆動時の副軸Xs の回転は第2入力軸X2 の2速用駆動歯車G2以外の歯車G4に伝達されるが、該歯車G4のピッチ径は第1入力軸X1 の歯車G1またはG18のピッチ径よりも大きく、またリバース駆動時の副軸Xs の回転が伝達される第2入力軸X2 の歯車G3のピッチ径よりも大きい。
【0026】
上記6段変速機において、2速の場合はスリーブS6 を歯車G5側へスライドさせてカップリングC6 と歯車G5のハブH5とを接続し、第2入力軸X2 の回転を歯車G2、歯車G5を介して出力軸X’o に伝達し、6速の場合はスリーブS6 を歯車G16側へスライドさせてカップリングC6 と歯車G16のハブH16とを接続し、第2入力軸X2 の回転を図3、図4に示す実施例では歯車G4、図5、図6に示す実施例では歯車G19から歯車G16を介して出力軸X’o に伝達する。
【0027】
上記実施例以外、6段変速機にあっては第2入力軸X2 に2速用歯車G2、4速用歯車G3、5速および6速用歯車G4、あるいは図5、図6に示す実施例にあっては6速用歯車G19の位置を入れかえてもよい。
【0028】
【発明の効果】
本発明では2速用駆動歯車G2が取付けられている第2入力軸X2 に奇数段歯車である5速用歯車G4を取付け、1速の場合には該歯車G4は副軸Xs の回転を第2入力軸X2 に伝達する被駆動歯車としても働くから、第1入力軸X1 の3速用歯車G1とのピッチ径差を大きくとることが出来る。したがって3速用駆動歯車G1から5速用駆動歯車G4までの減速比を大きくとることが可能となり、1速の場合には第2入力軸X2 の回転は2速用歯車G2を介して出力軸Xo に伝達するので、該歯車G2の歯車比を利用することによって減速比を大きくとることが出来る。
【0029】
リバースの場合は副軸Xs の回転をアイドラ軸XR を介して第2入力軸X2 に伝達するための被駆動歯車として4速用駆動歯車G3を使用するから、副軸Xs の回転をアイドラ軸XR に伝達するための歯車G12のピッチ径をさほど小さくしなくても、1速の場合と同等の減速比が得られ、更に1速の場合と同様2速用歯車G2によって出力軸Xo に回転を伝達するので、リバースとしての減速比を大きくとることが出来る。
【0030】
本発明では従来奇数段用駆動歯車を担持する第1入力軸X1 から5速用歯車G4を偶数段用駆動歯車を担持する第2入力軸X2 に移しただけであるから、従来に比して変速機の軸方向の長さの増加は殆んどなく、また歯車G4を第2入力軸X2 に移したことによって4速←→5速の変速はツインクラッチ式の変速を行うことが出来ず、シングルクラッチ式の変速となるが、シングルクラッチ式変速の場合に変速性能として問題になる変速段は低速段側であり、4速←→5速のような高速段側の変速では変速性能に関して殆んど問題がない。本発明では1速から4速までの変速はツインクラッチ式変速を適用するから変速性能の損失は最低限に抑えられる。
【0031】
本発明では更に6速を追加する場合には出力軸を1本追加し、2速用歯車と6速用歯車とを追加した出力軸に担持させる。したがって6速を追加しても変速機の軸方向の長さは増加しない。
【図面の簡単な説明】
図1および図2は5段変速機の実施例に関するものである。
【図1】5段変速機の一実施例の説明図
【図2】他の実施例の説明図
図3〜図6は6段変速機の実施例に関するものである。
【図3】6段変速機の一実施例の説明図
【図4】他の実施例の説明図
【図5】更に他の実施例の説明図
【図6】更に他の実施例の説明図
【符号の説明】
1 第1クラッチ板
2 第2クラッチ板
1 第1入力軸
2 第2入力軸
o 出力軸
s 副軸
R アイドラ軸
G 歯車
S スリーブ
H ハブ
C カップリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a twin clutch type transmission.
[0002]
[Prior art]
The conventional twin clutch type transmission has two clutch plates, two input shafts connected to the clutch plates, and rotation of one input shaft (first input shaft) to the other input shaft (second input shaft). A secondary shaft for transmitting to the input shaft), an idler shaft for reversing the rotation, and an output shaft for transmitting the rotation from the second input shaft. Gears for 3rd speed and 5th speed are carried, and gears for even-numbered stages (for 2nd speed and 4th speed) are carried on the second input shaft.
In the above configuration, in the case of the first speed, rotation is transmitted from the first-speed drive gear of the secondary shaft to the second input shaft via the fourth-speed drive gear of the second input shaft (becomes a first-speed driven gear). Further, it is transmitted to the output shaft through the second-speed drive gear. In the case of reverse, the rotation is reversed from the reverse drive gear of the secondary shaft by the idler shaft gear, and the rotation is transmitted to the second input shaft through the fourth speed drive gear of the second input shaft, and further for the second speed. The rotation is transmitted to the output shaft via the drive gear, or the rotation of the gear of the idler shaft is directly transmitted to the second-speed driven gear of the output shaft.
[0003]
[Problems to be solved by the invention]
In the above conventional configuration, in order to transmit the rotation to the output shaft using the second speed gear of the second input shaft in the case of the first speed, the rotation is performed from the first input shaft to the second input shaft via the auxiliary shaft. If the speed is not reduced to some extent before transmission, the required gear ratio as the first speed cannot be obtained.
For this purpose, the pitch diameter of the drive gear that transmits the rotation of the first input shaft to the sub shaft is required to be smaller than the pitch diameter of the driven gear that transmits the rotation of the second input shaft from the sub shaft. . If the difference in pitch diameter is small, a sufficient reduction ratio for transmitting rotation from the first input shaft to the second input shaft via the auxiliary shaft cannot be obtained, and rotation transmission from the second input shaft to the output shaft is not possible. Even if the reduction ratios of the second-speed driving gear for the second input shaft and the second-speed driven gear for the output shaft are multiplied, it is difficult to obtain a large reduction ratio necessary for the first speed.
In the case of five forward gears, rotation is transmitted to the sub-shaft by using the third-speed drive gear having a small pitch diameter of the first input shaft, and the fourth-speed drive gear having a large pitch diameter of the second input shaft is further transmitted to the sub-shaft. It is used as a driven gear that transmits rotation from the shaft. The purpose of shortening the axial length of the transmission is to provide a gear for transmitting the rotation to the first input shaft and the gear for transmitting the rotation from the second shaft to the second input shaft. Contrary to this, it becomes an obstacle to simplification of the structure.
Therefore, as described above, the third-speed drive gear for the first input shaft and the fourth-speed drive gear for the second input shaft are used. The difference between the third-speed gear ratio and the fourth-speed gear ratio is general. Therefore, the difference in pitch diameter is also small, and the reduction ratio from the third-speed drive gear to the fourth-speed drive gear, that is, the reduction ratio from the first input shaft to the second input shaft via the auxiliary shaft is sufficient. As a result, there arises a problem that a large reduction ratio as the first speed cannot be obtained.
Further, in order to realize reverse, as described above, reverse rotation is transmitted from the third-speed driving gear of the first input shaft to the second-speed driven gear of the output shaft via the auxiliary shaft to obtain a necessary reduction ratio. Alternatively, the rotation reversed from the third-speed drive gear of the first input shaft through the countershaft and idler shaft is transmitted to the second-speed drive gear of the second input shaft, and the second-speed gear ratio is utilized. To obtain the required reduction ratio.
In the former method, it is necessary to carry a gear that meshes with the third-speed drive gear of the first input shaft and a gear that meshes with the gear of the output shaft on the auxiliary shaft, and at the same time, the auxiliary shaft has 1 It is necessary to carry the first-speed driven gear on the speed driving gear and the second input shaft, and in order to achieve both, the degree of freedom in design is considerably limited.
In the latter method, since the pitch diameter of the second-speed drive gear for the second input shaft is small, the pitch diameter of the counter-shaft gear that drives the second-speed drive gear for the second input shaft can be made via the idler gear. If the reduction ratio here is made to be 1 or more, the countershaft itself becomes thin and disadvantageous in terms of strength. Therefore, the reduction ratio is naturally limited. Therefore, if the reduction ratio when transmitting the rotation from the third-speed drive gear of the first input shaft to the sub-shaft is increased to supplement the reduction ratio, a large-diameter gear is required for the sub-shaft. The distance between the shaft and the input shaft is increased, and the degree of freedom in design is considerably limited in consideration of compatibility with the first speed. In any case, it is difficult to obtain a large reduction ratio even in reverse.
If the 6-speed drive gear is carried on the second input shaft and the 6-speed shift is performed, the 6-speed drive gear or the 4-speed drive gear having a large pitch diameter is used as the driven gear to which the rotation from the auxiliary shaft is transmitted. The difference between the pitch diameter of the first input shaft and the third-speed drive gear is widened, and the above problem is reduced. However, a new problem is that the axial length of the transmission is increased instead. Occurs.
[0004]
[Means for Solving the Problems]
As a means for solving the present invention the above conventional problems, a first clutch plate D 1 and the second clutch plate D 2, the first input shaft X 1 which is connected to the first clutch plate D 1, the second clutch A second input shaft X 2 connected to the plate D 2 , a sub-axis X s that transmits rotation from the first input shaft X 1 to the second input shaft X 2 , and a sub-axis X s from the first input shaft X 1 output shaft X for transmitting idler shaft X R to invert the rotation transmitted to the second input shaft X 2 through the rotation of the first input shaft X 1 or the second input shaft X 2 to the differential device DF ; and a o, a first input shaft X 1 and the second input shaft X 2 is arranged concentrically, the reverse to the above first input shaft X 1, the driving gear G1 for the first speed and third speed supported is, the second input shaft 2 speed in X 2, 4-speed drive gear for fast shift speed of more than 5-speed and fifth speed G2, G3, G4 are attached, first the above countershaft X s A gear G13 for transmitting the rotational force axis X 1 of the first input shaft X 1 meshes with the gear G1 to the countershaft X s, a second input shaft gear other than the second-speed gear X 2 the first-speed the first speed drive gear G11 which meshes with the gear as a drive gear, and selects the reverse drive gear G12 meshing with the gear G14 of the idler shaft X R, and the first-speed gear G11 and said reverse gear G12 sleeve and S coupling C 3 with 3 is carried, it said gear G14 of the idler shaft X R is the gear meshes than the second-speed gear of the second input shaft to be driven gear to the reverse time, to the output shaft X o With driven gears G5, G6, G7, G8 for high speed gears of 2nd, 3rd, 4th, 5th and 5th and above, and sleeves S 1 and S 2 for selecting one of the gears a coupling C 1, C 2, the gear G9 Toga担for transmitting rotation to the differential device DF Those are, the gears G5, G6, G7, G8 is to provide a multi-speed transmission the driving gears G1, G2 corresponding to the first input shaft X 1 and the second input shaft X 2, G3, G4 is engaged It is.
[0005]
If more than six stages of fast variable transmission further 'add the o, output shaft X' other output shaft X in addition to the output shaft X o and the driven gear G5 for second speed to o 6 All gears G16 having a speed higher than 6 or higher are carried.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention is shown in FIG. In the figure, D 1 is a first clutch plate that performs reverse, first, and third speed driving, and D 2 drives all gear stages that are faster than second, fourth, fifth, and fifth speeds. It is a 2nd clutch board.
[0007]
A first input shaft X 1 is connected to the first clutch D 1 , a second input shaft X 2 is connected to the second clutch D 2 , and the second input shaft X 2 is hollow and has a first input shaft inside. X 1 is inserted, and therefore the first input shaft X 1 and the second input shaft X 2 are arranged concentrically.
[0008]
The first input shaft X 1 is fixedly attached with a third speed gear, a first speed reverse drive gear G 1, and the second input shaft X 2 is a second speed drive gear G 2, a fourth speed drive gear G 3, A 5-speed drive gear G4 is fixedly attached to the shaft.
[0009]
X o is an output shaft, and a second-speed driven gear G5, a third-speed driven gear G6, a fourth-speed driven gear G7, and a fifth-speed driven gear G8 are connected to the output shaft X o with respect to the shaft. The output gear G9 is fixedly attached to the shaft. Hubs H5, H6, H7, and H8 are provided on the gears G5, G6, G7, and G8, respectively. A coupling C 1 having a sleeve S 1 is provided between the gears G5 and G7 and between the gears G6 and G8. A coupling C 2 having a sleeve S 2 is interposed. The gear G6 is gear G1 meshes of the first input shaft X 1, gear G5, G7, G8, respectively meshed with the second input shaft X 2 of the gear G2, G3, G4, the gear G9 is the differential device DF It meshes with the gear G10.
[0010]
X s is a countershaft sub axis X s driven gear for first gear to G11, the reverse gear driven gear G12 is mounted rotatably relative to the axis, the further rotation transmitting gear G13 is axial On the other hand, it is fixedly attached. Hub H11 Each of the above gear G11, G12, H12 is provided, coupling C 3 having a sleeve S 3 is interposed between the gear G11, G12. The gear G13 is the first to gear G1 and the engagement of the input shaft X 1, gear G11 has a gear G4 and the second input shaft X 2 meshes. That gear G4 and the second input shaft X 2 other for 5-speed, serves as a driven gear for transmitting the rotation of the countershaft X s in the case of the first speed to the second input shaft X 2.
[0011]
X R is the is the idler shaft X R idler shaft and reversing gearbox G14 is fixedly mounted with respect to the axis, the gear G14 is engaged with the gear G3 of the second input shaft X 2. That second gear G3 of the input shaft X 2 another for 4-speed, serves as a driven gear for transmitting the rotation of the countershaft X s to the second input shaft X 2 through the idler shaft X R in the case of reverse.
[0012]
In the above structure, the pitch diameter of the second input shaft X 2 5-speed drive gear G4 is the third speed and the first speed of the first input shaft X 1, greater than the pitch diameter of reverse drive gear G1, further the gear pitch diameter of G4 pitch diameter of the gear G3 acting as a driven gear for transmitting the second input shaft X 2 of the gear G3, i.e. the rotation of the countershaft X s in reverse when the second input shaft X 2 through the idler shaft X R Bigger than.
[0013]
The operation of the above configuration will be described below.
[1st gear]
The sleeve S 3 is slid to the first speed gear G11 side connecting the hub H11 coupling C 3 and 1 speed gear G11. Rotation of the first input shaft X 1 is transmitted through the gears G13 countershaft X s from the gear G1 to the counter shaft X s, further driving the second-speed countershaft X s of the gear G11 from the second input shaft X 2 It is transmitted to the second input shaft X 2 via a gear G4 other than the gear G2. Further, when the sleeve S 1 is slid to the second speed gear G5 side to connect the coupling C 1 and the hub H5 of the second speed gear G5, the rotation of the second input shaft X 2 is rotated from the gear G2 to the output shaft X o. It is transmitted to the output shaft X o through the gear G5, and the rotation of said output shaft X o is transmitted to the gear G10 of a differential device DF through the gear G9.
[0014]
〔reverse〕
The sleeve S 3 is slid to the reverse gear G12 side connecting the hub H12 coupling C 3 and the reverse gear G12 to. Then the rotation of the countershaft X s is transmitted to the second input shaft X 2 through the second input shaft X 2 of the gear G3 is inverted by gear G14 of the idler shaft X R, the rotation of the second input shaft X 2 is By sliding the sleeve S 1 to the second speed gear G5 side to connect the coupling C 1 and the hub H5 of the second speed gear G5, the output shaft X o is output from the gear G2 via the gear G5 of the output shaft X o. To the gear G10 of the differential gear DF via the gear G9.
[0015]
[2nd gear]
The sleeve S 1 is slid to the second speed gear G5 side to connect the coupling C 1 and the hub H5 of the gear G5. Rotation of the second input shaft X 2 is transmitted to the output shaft X o through the gear G5 of the output shaft X o from the gear G2, it is further transmitted first speed, in the case of reverse and same differential DF.
[0016]
[3rd speed]
The sleeve S 2 is slid to the third speed gear G6 side connecting the hub H6 of coupling C 2 and the gear G6 and. Rotation of the first input shaft X 1 is transmitted to the output shaft X o through the gear G6 of the output shaft X o, it is transmitted to the same differential device DF.
[0017]
[4th gear]
The sleeve S 1 is slid toward the fourth speed gear G 7 to connect the coupling C 1 and the hub H 7 of the gear G 7. In this case, the rotation of the second input shaft X 2 is transmitted to the output shaft X o through the gear G7 of the output shaft X o from the gear G3, it is transmitted to the same differential device DF.
[0018]
[5-speed]
The sleeve S 2 is slid to a 5-speed gear G8 side connecting the hub H8 coupling C 2 and the gear G8 are. Rotation of the second input shaft X 2 is transmitted to the output shaft X o output shaft through the gear G8 of X o from the gear G4, it is transmitted to the same differential device DF.
[0019]
FIG. 2 shows another embodiment of the present invention. While using the first input shaft X 1 gear G1 to drive the countershaft X s in the previous embodiment, in this embodiment adds a countershaft X s drive dedicated gear G15 to the first input shaft X 1.
[0020]
Gear G1 is the pitch diameter so meshes with the output shaft X o 3rd-speed gear G6 is limited. But the gear G15 in the case of the present embodiment is because it is the auxiliary shaft X s drive only, it is possible to take larger first speed and reverse speed reduction ratio by reducing the pitch diameter than gear G1. Note than the pitch diameter of the gear G15 is naturally larger pitch diameter of the second input shaft X 2 of the gear G4.
[0021]
An embodiment relating to a six-speed transmission is shown below in FIG. The embodiment shown in FIG. 3 is a six-stage embodiment of the embodiment shown in FIG. 1, and an output shaft X ′ o is added to prevent the output shaft from becoming long, and the output shaft X ′ o coupling having a sleeve S 6 for mounting the second-speed gear G5 and the sixth speed gear G16 and the differential drive gear G17, is connected between the gear G5, G16 to each hub H5, H16 to C 6 intervenes. Since In the output shaft X o is transferred to the output shaft X 'o the second speed gear G5, for connection to a respective hub H7, H8 between a fourth speed gear G7 and a 5-speed gear G8 the coupling C 5 having a sleeve S 5 is interposed and fitted with a coupling C 4 having a sleeve S 4 further gear G6 dedicated for third speed. In this embodiment share the second input shaft 5-speed drive gear G4 of X 2 to 6-speed.
[0022]
FIG. 4 shows another embodiment of the six-speed transmission. This embodiment is obtained by 6 staged an embodiment shown in FIG. 2, i.e. to add the countershaft X s drive dedicated gear G18 to the first input shaft X 1 in the embodiment shown in FIG. 3, the gear wheels G18 It is engaged with the gear G13 of countershaft X s.
[0023]
FIG. 5 shows still another embodiment of a six-speed transmission. In this embodiment is obtained by 6 staged an embodiment shown in FIG. 1, the gear G4 and a fifth speed by adding the 6-speed drive-exclusive gear G19 to the second input shaft X 2 in the embodiment shown in FIG. 3 , it is meshed with the gear G19 to the output shaft X 'driven gear for sixth speed of o G16.
[0024]
FIG. 6 shows still another embodiment of a six-speed transmission. This embodiment is obtained by 6 staged an embodiment shown in FIG. 2, and add the countershaft X s drive dedicated gear G18 to the first input shaft X 1 in the embodiment shown in FIG. 5, the gear wheels G18 sub It is engaged with the gear G13 axis X s.
[0025]
In Example 6-speed transmission shown in FIG. 3 to FIG. 6, the rotation of the countershaft X s of the first speed drive is transmitted to the gear G4 other than 2-speed drive gear G2 of the second input shaft X 2 but the pitch diameter of the gear G4 is larger than the pitch diameter of the gear G1 or G18 of the first input shaft X 1, while the second input shaft X 2 gear rotating countershaft X s during reverse driving force is transmitted It is larger than the pitch diameter of G3.
[0026]
In the 6-speed transmission, in the case of 2-speed slide the sleeve S 6 to the gear G5 side connects the hub H5 of coupling C 6 and the gear G5, the rotation of the second input shaft X 2 gear G2, transmitted to the output shaft X 'o through the gear G5, in the case of 6-speed slide the sleeve S 6 to the gear G16 side connects the hub H16 coupling C 6 and the gear G16, the second input shaft X Figure 3 the rotation of 2, the gear G4 in the embodiment shown in FIG. 4, FIG. 5, in the embodiment shown in FIG. 6 to transfer from the gear G19 to the output shaft X 'o via the gear G16.
[0027]
Other than the above embodiment, in the 6-speed transmission second input shaft X 2 to the second-speed gear G2,4 speed gear G3,5 speed and sixth-speed gear G4 or 5, embodiment shown in FIG. 6 In the example, the position of the sixth gear G19 may be changed.
[0028]
【The invention's effect】
Install the 5-speed gear G4 is an odd stage gear to the second input shaft X 2 of the second-speed drive gear G2 is mounted in the present invention, the gear G4 when the first speed is the rotation of the countershaft X s As a driven gear for transmitting to the second input shaft X 2 , a large pitch diameter difference from the third speed gear G 1 of the first input shaft X 1 can be obtained. Therefore, it is possible to increase the reduction ratio from the third speed drive gear G1 to the fifth speed drive gear G4. In the case of the first speed, the rotation of the second input shaft X 2 is output via the second speed gear G2. Since transmission is performed to the axis X o , the reduction ratio can be increased by using the gear ratio of the gear G2.
[0029]
Since the case of reverse uses 4-speed drive gear G3 as a driven gear for transmitting the rotation of the countershaft X s to the second input shaft X 2 through the idler shaft X R, the rotation of the countershaft X s even without much smaller pitch diameter of the gear G12 for transmitting the idler shaft X R, when the first speed and the same reduction ratio is obtained, and the output by the case of the first speed and the same second speed gear G2 Since the rotation is transmitted to the axis X o , the reverse reduction ratio can be increased.
[0030]
Since the present invention is only transferred from the first input shaft X 1 carrying a conventional odd-drive gear to fifth speed gear G4 to a second input shaft X 2 carrying the even-numbered stage driven gear ratio to the conventional to Donaku N is increased axial length of the transmission殆, also transmission of 4-speed ← → 5-speed by transferring the gear G4 to a second input shaft X 2 is performing the shift of the twin clutch However, the single-clutch shift is a problem with the shift performance in the single-clutch shift. There is almost no problem with gear shifting performance. In the present invention, since the shift from the first speed to the fourth speed applies the twin clutch type shift, the loss of the shift performance is minimized.
[0031]
In the present invention, when the sixth speed is further added, one output shaft is added, and the second speed gear and the sixth speed gear are carried on the added output shaft. Therefore, even if the sixth speed is added, the axial length of the transmission does not increase.
[Brief description of the drawings]
1 and 2 relate to an embodiment of a five-speed transmission.
FIG. 1 is an explanatory diagram of one embodiment of a five-speed transmission. FIG. 2 is an explanatory diagram of another embodiment. FIGS. 3 to 6 relate to an embodiment of a six-speed transmission.
FIG. 3 is an explanatory diagram of one embodiment of a six-speed transmission. FIG. 4 is an explanatory diagram of another embodiment. FIG. 5 is an explanatory diagram of still another embodiment. FIG. 6 is an explanatory diagram of still another embodiment. [Explanation of symbols]
D 1 first clutch plate D 2 second clutch plate X 1 first input shaft X 2 second input shaft X o output shaft X s secondary shaft X R idler shaft G gear S sleeve H hub C coupling

Claims (2)

第1クラッチ板と第2クラッチ板と、第1クラッチ板に連結した第1入力軸と、第2クラッチ板に連結した第2入力軸と、第1入力軸から第2入力軸に回転を伝達する副軸と、第1入力軸から副軸を介して第2入力軸に伝達される回転を反転するアイドラ軸と、該第1入力軸または第2入力軸からの回転を差動装置に伝達する出力軸とを具備し、第1入力軸と第2入力軸とは同心的に配され、上記第1入力軸にはリバース、1速および3速用の駆動歯車が担持され、上記第2入力軸には2速、4速、5速および5速以上の高速な変速段用の駆動歯車が取付けられ、上記副軸には第1入力軸の歯車に噛合して第1入力軸の回転を副軸に伝達する歯車と、第2入力軸の2速用歯車以外の歯車を1速用被駆動歯車として該歯車に噛合する1速用駆動歯車と、アイドラ軸の歯車に噛合するリバース用駆動歯車と、該1速用歯車と該リバース用歯車とをセレクトするスリーブ付カップリングとが担持され、上記アイドラ軸の歯車はリバース時に被駆動歯車となる第2入力軸の2速用歯車以外の歯車と噛合し、上記出力軸には2速、3速、4速、5速および5速以上の高速な変速段用の被駆動歯車と、該歯車の一つをセレクトするスリーブ付カップリングと、差動装置に回転を伝達する歯車とが担持され、各歯車は第1入力軸および第2入力軸の対応する各駆動歯車が噛合していることを特徴とする多段変速機Rotation is transmitted from the first input shaft to the second input shaft, the first clutch plate, the second clutch plate, the first input shaft connected to the first clutch plate, the second input shaft connected to the second clutch plate A countershaft that rotates, an idler shaft that reverses rotation transmitted from the first input shaft to the second input shaft via the subshaft, and rotation from the first input shaft or the second input shaft is transmitted to the differential device. The first input shaft and the second input shaft are concentrically arranged, and the first input shaft carries reverse, first and third-speed drive gears, and the second input shaft. The input shaft is attached with drive gears for high speeds of 2, 4, 5, and 5 speeds or more, and the auxiliary shaft meshes with the gear of the first input shaft to rotate the first input shaft. A first-speed drive in which a gear other than the second-speed gear of the second input shaft is engaged with the gear as a first-speed driven gear. A vehicle, a reverse drive gear meshing with a gear of an idler shaft, and a coupling with a sleeve for selecting the first speed gear and the reverse gear are supported, and the idler shaft gear is a driven gear at the time of reverse Meshed with a gear other than the second-speed gear of the second input shaft, and the output shaft has a driven gear for a high-speed gear stage of 2, 3, 4, 5, or more, A coupling with a sleeve for selecting one of the gears and a gear for transmitting rotation to the differential are carried. Each gear is engaged with a corresponding drive gear of the first input shaft and the second input shaft. Multi-stage transmission characterized in that 上記出力軸に加えて更にもう一つの出力軸を追加し、該出力軸に2速用被駆動歯車と6速あるいは6速よりも高速なすべての変速段用歯車を担持させた請求項1に記載の自動車用多段変速機Further adding another output shaft in addition to the output shaft, claim a wheel for fast every gear stage than 6-speed or six-speed and the driven gear for second speed was carried on the output shaft 1 Multistage transmission for automobiles as described in
JP2000114957A 2000-04-17 2000-04-17 Multi-speed transmission for automobile Expired - Fee Related JP3741355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114957A JP3741355B2 (en) 2000-04-17 2000-04-17 Multi-speed transmission for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114957A JP3741355B2 (en) 2000-04-17 2000-04-17 Multi-speed transmission for automobile

Publications (2)

Publication Number Publication Date
JP2001295898A JP2001295898A (en) 2001-10-26
JP3741355B2 true JP3741355B2 (en) 2006-02-01

Family

ID=18626679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114957A Expired - Fee Related JP3741355B2 (en) 2000-04-17 2000-04-17 Multi-speed transmission for automobile

Country Status (1)

Country Link
JP (1) JP3741355B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598998B2 (en) 2001-06-01 2004-12-08 日産自動車株式会社 Gear hammering prevention device for twin clutch type gear transmission
JP2004263708A (en) * 2003-01-14 2004-09-24 Kyowa Metal Work Co Ltd Twin clutch type transmission
JP3826888B2 (en) 2003-02-05 2006-09-27 日産自動車株式会社 Shift control device for multi-stage automatic transmission
JP3896976B2 (en) 2003-03-19 2007-03-22 日産自動車株式会社 Automatic transmission control device for manual transmission
JP3952977B2 (en) 2003-03-19 2007-08-01 日産自動車株式会社 Shift control device for multi-stage automatic transmission
DE10325647A1 (en) * 2003-06-06 2004-02-05 Daimlerchrysler Ag Dual clutch transmission, comprising components all positioned in order to achieve unit of compact size
DE10339758A1 (en) * 2003-08-27 2005-06-09 Daimlerchrysler Ag Double clutch transmission in winding arrangement
FR2881499B1 (en) * 2005-02-01 2008-10-10 Renault Sas COMPARTMENTED GEARBOX
JP4550612B2 (en) 2005-02-18 2010-09-22 日立オートモティブシステムズ株式会社 Control device, control method and control system for vehicle gear transmission
JP4698367B2 (en) * 2005-09-30 2011-06-08 本田技研工業株式会社 transmission
FR2893690B1 (en) * 2005-11-22 2009-05-15 Renault Sas GEARBOX WITH TWO SEPARATE REPORTS.
FR2895053B1 (en) * 2005-12-16 2009-05-22 Renault Sas MANUAL OR ROBOTIC SPEED BOX WITH PASSAGE UNDER COUPLE WITH FOUR PARALLEL TREES
JP4828929B2 (en) 2005-12-19 2011-11-30 日立オートモティブシステムズ株式会社 Automatic transmission control device, control method, and automatic transmission
JP2007333129A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Controller for automatic transmission
JP2008190701A (en) * 2007-02-08 2008-08-21 Hitachi Ltd Method and device for controlling automatic transmission
JP4986740B2 (en) * 2007-06-27 2012-07-25 日立オートモティブシステムズ株式会社 Shift control method for automobile
JP2009041601A (en) 2007-08-07 2009-02-26 Hitachi Ltd Controller and control method for automatic transmission
DE102010024580A1 (en) * 2010-06-22 2011-12-22 Schaeffler Technologies Gmbh & Co. Kg Drive unit for two-speed gear box in vehicle, has transmission including two geared connections, and clutch coaxial with drive shaft, where clutch is switchable between electric motor drive and respective geared connections
US10704678B2 (en) 2016-09-05 2020-07-07 Hitachi Automotive Systems, Ltd. Transmission control device

Also Published As

Publication number Publication date
JP2001295898A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3741355B2 (en) Multi-speed transmission for automobile
JP4793777B2 (en) Double clutch transmission
CN101251169B (en) Multi-speed transmission with countershaft gearing
JP4720928B2 (en) Manual transmission
KR20050036886A (en) Transmission
CN113795689B (en) Power transmission device
CN101216091A (en) Multi-speed double-clutch transmission with countershaft gearing
JP2000234654A (en) Transmission
JP4206312B2 (en) Parallel shaft type transmission
JP3731549B2 (en) Vehicle transmission
JP2008291892A (en) Twin-clutch type transmission
JP2000220700A (en) Parallel shaft type transmission
KR20100062642A (en) Power train of double clutch transmission
JP4922257B2 (en) transmission
JP2006132572A (en) Transmission device
JP2017171101A (en) Transmission for hybrid vehicle
KR101063616B1 (en) Double Clutch Transmission Powertrain
WO2013008544A1 (en) Transmission
US10309489B2 (en) Multi-speed dual clutch transmission
KR100364224B1 (en) Manual transmission
CN112343983B (en) Nine-speed dual clutch type automatic transmission and vehicle
JP3746222B2 (en) transmission
CN112343975B (en) Nine-speed dual clutch type automatic transmission and vehicle
CN113389853B (en) Ten-speed double-clutch transmission, gearbox and automobile
CN113389854B (en) Eight-speed double-clutch transmission and automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees