JP3738229B2 - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP3738229B2
JP3738229B2 JP2002104692A JP2002104692A JP3738229B2 JP 3738229 B2 JP3738229 B2 JP 3738229B2 JP 2002104692 A JP2002104692 A JP 2002104692A JP 2002104692 A JP2002104692 A JP 2002104692A JP 3738229 B2 JP3738229 B2 JP 3738229B2
Authority
JP
Japan
Prior art keywords
film
iridium oxide
memory device
semiconductor memory
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002104692A
Other languages
English (en)
Other versions
JP2003051583A (ja
Inventor
徹 那須
能久 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002104692A priority Critical patent/JP3738229B2/ja
Publication of JP2003051583A publication Critical patent/JP2003051583A/ja
Application granted granted Critical
Publication of JP3738229B2 publication Critical patent/JP3738229B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化イリジウム膜、特にスタック型強誘電体メモリセルの電極として用いられる酸化イリジウム膜およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、動作電圧が低いと共に高速で書き込み及び読み出しが可能な不揮発性RAMの実用化を目指し、自発分極特性を有する強誘電体膜に関する研究開発が盛んに行われている。
【0003】
これら高誘電体膜又は強誘電体膜を容量絶縁膜として用いる半導体メモリにおいて、メガビット級の高集積メモリを実現する場合には、従来のプレーナ型メモリセルに代えて、スタック型のメモリセルが用いられる。
【0004】
このスタック型のメモリセルにおける課題は、電界効果型トランジスタを覆う層間絶縁膜に形成されたコンタクトプラグと、層間絶縁膜の上に形成された容量素子の下部電極との接触面が、強誘電体膜又は高誘電体膜を構成する絶縁性金属酸化物を結晶化する際に必要な酸素雰囲気での高温の熱処理時に酸化される事態を防止することである。
【0005】
そこで、通常、コンタクトプラグと下部電極との間に、酸素バリア膜として、導電性酸化物である酸化イリジウム膜が設けられる。
【0006】
酸化イリジウム膜を形成する方法としては、イリジウムよりなる金属ターゲットをスパッタリングし、スパッタリングされたイリジウムを基板近傍で酸化させる反応性スパッタリング法が提案されている(日本写真学会(1988)、Vol.51, No.1, P.3)。
【0007】
【発明が解決しようとする課題】
しかしながら、前述の文献においては、反応性スパッタリング法により形成される酸化イリジウム膜の酸素バリア性を向上させるための具体的な条件については検討されていない。
【0008】
このため、従来においては、酸化イリジウム膜の酸素バリア性を確実に向上させることができないという問題がある。
【0009】
前記に鑑み、本発明は、容量素子の電極が酸素バリア膜として有している酸化イリジウム膜のバリア性を確実に向上させることを目的とする。
【0010】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る第1の半導体記憶装置は、半導体基板上に形成された層間絶縁膜と、層間絶縁膜に形成されたコンタクトプラグと、層間絶縁膜の上に形成され、電極がコンタクトプラグと接続された容量素子とを備え、電極は酸素バリア膜として酸化イリジウム膜を有し、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径は酸化イリジウム膜の厚さの1/2以下である。
【0011】
本発明に係る第1の半導体記憶装置によると、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径は該酸化イリジウム膜の厚さの1/2以下であるから、酸化イリジウム膜における酸素原子の拡散パスは屈曲しており、酸素原子は結晶粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は確実に向上する。
【0012】
第1の半導体記憶装置において、酸化イリジウム膜の膜厚は200nm以下であることが好ましい。
【0013】
このようにすると、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径を、酸化イリジウム膜の厚さの1/2以下に確実にすることができる。
【0014】
本発明に係る第2の半導体記憶装置は、半導体基板上に形成された層間絶縁膜と、層間絶縁膜に形成されたコンタクトプラグと、層間絶縁膜の上に形成され、電極がコンタクトプラグと接続された容量素子とを備え、電極は酸素バリア膜として酸化イリジウム膜を有し、該酸化イリジウム膜は、平均結晶粒径が互いに異なる複数の層を有している。
【0015】
本発明に係る第2の半導体記憶装置によると、酸素バリア膜となる酸化イリジウム膜は、平均結晶粒径が互いに異なる複数の層を有しているため、酸素原子は、平均結晶粒径が小さい方の層を構成する結晶の粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は向上する。一方、平均結晶粒径が大きい方の層は、酸素バリア膜と接する膜との密着性を向上させる。
【0016】
第2の半導体記憶装置において、複数の層を構成する下層の平均結晶粒径は相対的に大きく、且つ複数の層を構成する上層の平均結晶粒径は相対的に小さいことが好ましい。
【0017】
このようにすると、酸素バリア膜の上方から接近してくる酸素原子の拡散を上層が阻止すると共に、酸素バリア膜の下側に形成される膜との密着性を下層が向上させることができる。
【0018】
この場合、下層の膜厚は30nm以下であり、且つ上層の膜厚は200nm以下であることが好ましい。
【0019】
このようにすると、上層が酸素原子の拡散を確実に阻止すると共に、下層が酸素バリア膜の下側に形成される膜との密着性を確実に向上させることができる。
【0020】
本発明に係る第3の半導体記憶装置は、半導体基板上に形成された電界効果型トランジスタと、電界効果型トランジスタを覆うように形成された層間絶縁膜と、層間絶縁膜に形成され、電界効果型トランジスタのソース領域又はドレイン領域と接続されたコンタクトプラグと、層間絶縁膜の上に形成され、下部電極がコンタクトプラグと接続された容量素子とを備え、下部電極は酸素バリア膜として酸化イリジウム膜を有し、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径は酸化イリジウム膜の厚さの1/2以下である。
【0021】
本発明に係る第3の半導体記憶装置によると、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径は該酸化イリジウム膜の厚さの1/2以下であるから、酸化イリジウム膜における酸素原子の拡散パスは屈曲しており、酸素原子は結晶粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は確実に向上する。
【0022】
第3の半導体記憶装置において、酸化イリジウム膜の膜厚は200nm以下であることが好ましい。
【0023】
このようにすると、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径を、酸化イリジウム膜の厚さの1/2以下に確実にすることができる。
【0024】
本発明に係る第4の半導体記憶装置は、半導体基板上に形成された電界効果型トランジスタと、電界効果型トランジスタを覆うように形成された層間絶縁膜と、層間絶縁膜に形成され、電界効果型トランジスタのソース領域又はドレイン領域と接続されたコンタクトプラグと、層間絶縁膜の上に形成され、下部電極がコンタクトプラグと接続された容量素子とを備え、下部電極は酸素バリア膜として酸化イリジウム膜を有し、該酸化イリジウム膜は平均結晶粒径が互いに異なる複数の層を有している。
【0025】
本発明に係る第4の半導体記憶装置によると、酸素バリア膜となる酸化イリジウム膜は、平均結晶粒径が互いに異なる複数の層を有しているため、酸素原子は、平均結晶粒径が小さい方の層を構成する結晶の粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は向上する。一方、平均結晶粒径が大きい方の層は、酸素バリア膜と接する膜との密着性を向上させる。
【0026】
第4の半導体記憶装置において、複数の層を構成する下層の平均結晶粒径は相対的に大きく、且つ複数の層を構成する上層の平均結晶粒径は相対的に小さいことが好ましい。
【0027】
このようにすると、酸素バリア膜の上方から接近してくる酸素原子の拡散を上層が阻止すると共に、酸素バリア膜の下側に形成される膜との密着性を下層が向上させることができる。
【0028】
この場合、下層の膜厚は30nm以下であり、且つ上層の膜厚は200nm以下であることが好ましい。
【0029】
このようにすると、上層が酸素原子の拡散を確実に阻止すると共に、下層が酸素バリア膜の下側に形成される膜との密着性を確実に向上させることができる。
【0030】
本発明に係る第1の半導体記憶装置の製造方法は、半導体基板上に形成された層間絶縁膜と、層間絶縁膜に形成されたコンタクトプラグと、層間絶縁膜の上に形成され、電極がコンタクトプラグと接続された容量素子とを備え、電極は酸素バリア膜として酸化イリジウム膜を有する半導体記憶装置の製造方法を対象とし、イリジウムを含むターゲットが配置された反応室に酸素ガス及びアルゴンガスを導入して行なう反応性スパッタリング法により酸化イリジウム膜を成膜する工程を備え、反応性スパッタリング法は、反応室内の酸素ガスの実際の分圧をxとし、反応室内のアルゴンガスの実際の分圧をyとしたときにx/(x+y)>0.5の関係が成り立つ条件で行なわれる。
【0031】
本発明に係る第2の半導体記憶装置の製造方法は、半導体基板上に形成された電界効果型トランジスタと、電界効果型トランジスタを覆うように形成された層間絶縁膜と、層間絶縁膜に形成され、電界効果型トランジスタのソース領域又はドレイン領域と接続されたコンタクトプラグと、層間絶縁膜の上に形成され、下部電極がコンタクトプラグと接続された容量素子とを備え、下部電極は酸素バリア膜として酸化イリジウム膜を有する半導体記憶装置の製造方法を対象とし、イリジウムを含むターゲットが配置された反応室に酸素ガス及びアルゴンガスを導入して行なう反応性スパッタリング法により酸化イリジウム膜を成膜する工程を備え、反応性スパッタリング法は、反応室内の酸素ガスの実際の分圧をxとし、反応室内のアルゴンガスの実際の分圧をyとしたときにx/(x+y)>0.5の関係が成り立つ条件で行なわれる。
【0032】
本発明に係る第1又は第2の半導体記憶装置の製造方法によると、反応室内に導入されるガスにおける、アルゴン原子に対する酸素ガスの割合が大きくなるため、ターゲットに衝突してスパッタリングを起こす原子がアルゴン原子から酸素原子に変わるので、スパッタリングされた粒子の運動エネルギーが小さくなり、これに伴って、酸化イリジウム膜を構成する粒子の平均結晶粒径が小さくなる。
【0033】
従って、第1又は第2の半導体記憶装置の製造方法によると、酸化イリジウム膜における酸素原子の拡散パスは屈曲するため、酸素原子は結晶粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は確実に向上する。
【0034】
また、基板を室温以上の温度に保った状態で酸化イリジウム膜を成膜できるので、コンタクトプラグと容量素子の下部電極との密着性が向上する。
【0035】
本発明に係る第3の半導体装置の製造方法は、半導体基板上に形成された層間絶縁膜と、層間絶縁膜に形成されたコンタクトプラグと、層間絶縁膜の上に形成され、電極がコンタクトプラグと接続された容量素子とを備え、電極は、酸素バリア膜として平均結晶粒径が互いに異なる多層からなる酸化イリジウム膜を有する半導体記憶装置の製造方法を対象とし、イリジウムを含むターゲットが配置された反応室に酸素ガス及びアルゴンガスを導入して行なう反応性スパッタリング法により酸化イリジウム膜を成膜する工程を備え、反応性スパッタリング法は、反応室内の酸素ガスの実際の分圧をxとし、反応室内のアルゴンガスの実際の分圧をyとしたときに、第1段階は、x/(x+y)<0.5の関係が成り立つ条件で行なわれ、その後に行なわれる第2段階は、x/(x+y)>0.5の関係が成り立つ条件で行なわれる。
【0036】
本発明に係る第4の半導体記憶装置の製造方法は、半導体基板上に形成された電界効果型トランジスタと、電界効果型トランジスタを覆うように形成された層間絶縁膜と、層間絶縁膜に形成され、電界効果型トランジスタのソース領域又はドレイン領域と接続されたコンタクトプラグと、層間絶縁膜の上に形成され、下部電極がコンタクトプラグと接続された容量素子とを備え、下部電極は酸素バリア膜として平均結晶粒径が互いに異なる多層からなる酸化イリジウム膜を有する半導体記憶装置の製造方法を対象とし、イリジウムを含むターゲットが配置された反応室に酸素ガス及びアルゴンガスを導入して行なう反応性スパッタリング法により酸化イリジウム膜を成膜する工程を備え、反応性スパッタリング法は、反応室内の酸素ガスの実際の分圧をxとし、反応室内のアルゴンガスの実際の分圧をyとしたときに、第1段階は、x/(x+y)<0.5の関係が成り立つ条件で行なわれ、その後に行なわれる第2段階は、x/(x+y)>0.5の関係が成り立つ条件で行なわれる。
【0037】
本発明に係る第3又は第4の半導体記憶装置の製造方法によると、反応性スパッタリング工程の第1段階においては、x/(x+y)<0.5の関係が成り立つ条件で行なうため、スパッタリングされる粒子の運動エネルギーが大きくなるので、コンタクトプラグと下部電極との密着性が向上し、反応性スパッタリング工程の第2段階においては、x/(x+y)>0.5の関係が成り立つ条件で行なうため、スパッタリングされる粒子の運動エネルギーが小さくなるので、酸化イリジウム膜を構成する粒子の平均結晶粒径が小さくなる。
【0038】
従って、第3又は第4の半導体記憶装置の製造方法によると、コンタクトプラグと容量素子の電極との密着性が向上すると共に、酸化イリジウム膜の酸素バリア性が向上する。
【0039】
本発明に係る第1〜第4の半導体記憶装置の製造方法において、酸化イリジウム膜に対して、窒素雰囲気中における500℃〜600℃の温度下で熱処理を施す工程をさらに備えていることが好ましい。
【0040】
このようにすると、熱処理により酸化イリジウム膜の緻密性が向上するので、酸化イリジウム膜の酸素バリア性が一層向上する。
【0041】
【発明の実施の形態】
(第1の実施形態)
以下、本発明の第1の実施形態に係る半導体記憶装置及びその製造方法について、図1〜図6を参照しながら説明する。
【0042】
図1に示すように、半導体基板10の表面部にはソース領域11及びドレイン領域12が形成されていると共に、半導体基板10の上にはゲート電極13が形成されており、これらソース領域11、ドレイン領域12及びゲート電極13によって電界効果型トランジスタが構成されている。
【0043】
半導体基板10の上には、電界効果型トランジスタを覆うように層間絶縁膜14が形成されており、該層間絶縁膜14にはドレイン領域12と接続されるように、ポリシリコンよりなるコンタクトプラグ15が形成されている。
【0044】
層間絶縁膜14の上にはコンタクトプラグ15と接続されるように、容量素子の下部電極16が形成されており、該下部電極16は、下から順に形成された第1の導電性バリア膜16a、第2の導電性バリア膜16b及び金属膜16cから構成されている。
【0045】
第1の導電性バリア膜16aは、下から順に堆積された、例えば20nmの厚さを有するチタン膜、例えば40nmの厚さを有する窒化チタンアルミニウム膜及び例えば100nmの厚さを有するイリジウム膜よりなり、コンタクトプラグ15を構成するポリシリコンの拡散を防止する機能を有する。
【0046】
第2の導電性バリア膜16bは、例えば160nmの厚さを有する酸化イリジウム膜よりなり、第1の導電性バリア膜16aの側面及び上面を覆っている。第2の導電性バリア膜16bは、後述する容量絶縁膜17を構成する絶縁性金属酸化物を結晶化するための酸素雰囲気での高温の熱処理時に第1の導電性バリア膜16aが酸化することを防止する機能を有する。
【0047】
金属膜16cは、例えば50nmの厚さを有する白金膜よりなる。
【0048】
層間絶縁膜14の上には、下部電極16を覆うように例えば160nmの厚さを有する容量絶縁膜17が形成されており、該容量絶縁膜17は例えばビスマス層状ペロブスカイト構造を有するSrBi2(Ta1-xNbx)O9(但し、0≦x≦1)よりなる。
【0049】
容量絶縁膜17の上には、例えば100nmの厚さを有する白金膜よりなる容量素子の上部電極18が形成されている。
【0050】
以下、本実施形態の特徴として、酸素バリア膜としての第2の導電性バリア膜16bの構成について説明する。
【0051】
ところで、酸素は酸素バリア膜を構成する結晶の粒界を通じて拡散するので、酸素バリア膜のバリア性を向上させるためには、(1) 酸素バリア膜を配向性が強い大きな柱状結晶により構成して、酸素原子の拡散パスとなる結晶粒界の緻密度を向上させる方法と、(2) 酸素バリア膜を構成する結晶の粒径を小さくして、酸素原子の拡散パスを屈曲させる方法とが考えられる。
【0052】
ところが、酸化イリジウム膜をスパッタリング法により堆積する場合には、配向性の悪い膜しか得られないので、酸化イリジウムの酸素バリア性を向上させるためには、(1) の方法は適当ではなく(2) の方法が適している。
【0053】
(2) の方法を採用する場合において、酸素原子の拡散パスを屈曲させるためには、平均結晶粒径が膜厚の1/2以下であることが必要になる。
【0054】
図2(a)は、本実施形態に係る第2の導電性バリア膜16bの断面構造を示し、図2(b)は、従来の酸素バリア膜(本実施形態に係る第2の導電性バリア膜16bに相当する)の断面構造を示している。尚、第2の導電性バリア膜16bの膜厚及び従来の酸素バリア膜の膜厚はいずれも、200nm以下である。
【0055】
図2(b)に示す従来の酸素バリア膜においては、平均結晶粒径と酸素バリア膜の膜厚が等しいので、酸素原子の拡散パスは直線状である。これに対して、本実施形態に係る第2の導電性バリア膜16bにおいては、平均結晶粒径が酸素バリア膜の膜厚の1/2であるから、酸素原子の拡散パスは屈曲している。このため、酸素原子は結晶粒界を拡散し難いので、第2の導電性バリア膜16bの酸素バリア性は向上する。
【0056】
図3は、第2の導電性バリア膜16bにおける(平均結晶粒径/膜厚)と、コンタクト抵抗との関係を示している。コンタクト抵抗の測定は、図1に示す半導体記憶装置を複数個用いて、ドレイン領域12、コンタクトプラグ15及び下部電極16によりコンタクトチェーンを形成し、このコンタクトチェーンにおけるコンタクト抵抗を評価することにより行なった。尚、図3の縦軸は、コンタクトチェーンにおける1つのコンタクト抵抗の値を示している。
【0057】
図3から分かるように、(平均結晶粒径/膜厚)が50%以下であると、コンタクト抵抗は、デバイスの動作上で問題にならない2kΩ以下になると共にばらつきも少ない。これに対して、(平均結晶粒径/膜厚)が50%を超えると、コンタクト抵抗のばらつきが大きくなり、(平均結晶粒径/膜厚)が60%を超えると、コンタクト抵抗のばらつきは極めて大きくなる。
【0058】
以下、本発明の第1の実施形態に係る半導体記憶装置における第2の導電性バリア膜(酸化イリジウム膜)16bの製造方法について説明する。
【0059】
(第1の実施形態に係る半導体記憶装置の第1の製造方法)
第1の製造方法は、平行平板型DCマグネトロンスパッタ装置を用いて反応性スパッタリングにより酸化イリジウム膜を成膜する方法であって、基板上に、粒状結晶よりなり、平均結晶粒径が膜厚の半分以下である酸化イリジウム膜を堆積する。この場合、反応室に導入するガスとしては、不活性ガスとしてアルゴンガスを用い、活性ガスとして酸素を用いる。
【0060】
結晶の粒径を小さくするためには、基板上に到達した後、基板表面で動き回る粒子の運動エネルギーを小さくすることが好ましい。
【0061】
そこで、第1の製造方法は、基板温度を室温よりも低くするものである。具体的には、基板を液体窒素等で例えば10℃程度に冷却すると、基板上に到達した粒子の運動エネルギーが確実に小さくなるため、平均結晶粒径が80nm以下になるので、平均結晶粒径を膜厚の1/2以下にすることができる。
【0062】
ところが、基板を室温よりも低い温度に保った状態で、反応性スパッタリング法により成膜された酸化イリジウム膜は剥がれやすいという問題がある。
【0063】
(第1の実施形態に係る半導体記憶装置の第2の製造方法)
第2の製造方法も、平行平板型DCマグネトロンスパッタ装置を用いて反応性スパッタリングにより形成するものであって、基板上に、粒状結晶よりなり、平均結晶粒径が膜厚の半分以下である酸化イリジウム膜を堆積する。この場合、反応室に導入するガスとしては、不活性ガスとしてアルゴンガスを用い、活性ガスとして酸素を用いる。
【0064】
第2の製造方法は、基板上に到達した粒子の運動エネルギーを小さくするために、アルゴンガスに対する酸素ガスの割合を多くして、イリジウム原子を質量が小さい酸素原子よりスパッタリングするものである。この方法では、装置の種類、反応室の圧力及びスパッタリング電力の大きさ等の条件により、アルゴンガスに対する酸素ガスの導入割合を調整する必要がある。その理由は、スパッタリングされて飛行しているイリジウムが酸素原子と結びつく現象(いわゆるゲッター効果)が起きるからである。
【0065】
図4は、基板温度が400℃に設定され、圧力が0.67Paに設定され、スパッタリング電力が1kWに設定された反応室に、O2 ガス及びArガスを導入して行なう反応性スパッタリングにより酸化イリジウム膜(膜厚=160nm)を成膜したときにおける、O2 ガスの流量/(O2 ガスの流量+Arガスの流量)(以下、単に酸素ガス比と称する)と、酸化イリジウム膜のシート抵抗との関係、つまり、シート抵抗の酸素ガス比依存性を示している。この場合、膜厚が160nmである酸化イリジウム膜を構成する粒状結晶の平均結晶粒径が膜厚の1/2以下になるためのシート抵抗は9Ω/□以上である。
【0066】
図4において、領域Aでは、酸素原子がゲッター効果により消費されてしまうので、第2の導電性バリア膜16bは、実質的にイリジウム膜になり、シート抵抗は低い。
【0067】
領域Bでは、ゲッター効果が飽和するため、反応室内の酸素原子が増加していくので、ターゲットの表面が酸化され、これにより、O2 ガスの増加に伴って第2の導電性バリア膜16bのシート抵抗が急激に高くなる。
【0068】
領域Cでは、ターゲットの表面が完全に酸化されるため、第2の導電性バリア膜16bは完全に酸化イリジウム膜になるので、O2 ガスが増加しても第2の導電性バリア膜16bのシート抵抗は殆ど変化しない。
【0069】
領域Dでは、反応室内におけるAr原子に対するO2 原子の割合が大きくなるため、ターゲットに衝突してスパッタリングを起こす原子がAr原子からO2 原子に変わる。O2 原子はAr原子に比べて、質量が小さく運動量が小さいため、スパッタリングされる粒子の割合が低くなるので、堆積レートが小さくなる。また、スパッタリングされた粒子の運動エネルギーも小さくなるため、第2の導電性バリア膜16bを構成する粒子の粒径が小さくなると共にシート抵抗が増大する。
【0070】
領域Eでは、Arガスの流量が極めて少なくなるので放電が起こらなくなる。
【0071】
従って、領域Dの条件でスパッタリングを行なうと、小さい粒径を持つ粒状結晶よりなる酸化イリジウム膜を確実に得ることができる。
【0072】
ところで、スパッタリングの条件の1つであるスパッタリング電力を大きくすると、スパッタリングの電流密度が増加するので、ゲッター効果が顕著に現われる。
【0073】
図5は、圧力が0.67Paに設定された反応室にO2 ガス及びArガスを導入して行なう反応性スパッタリングにより酸化イリジウム膜を成膜したときにおける、スパッタリング電力と酸素ガス比との関係、つまり酸素ガス比の電力依存性を示している。
【0074】
図5から分かるように、スパッタリング電力が大きくなると、領域Aつまりゲッター効果により酸素原子が消費されてしまう領域が大きくなるため、領域Aから領域Bに変化する酸素ガス比が大きくなり、これに伴って、領域Bから領域Cに変化する酸素ガス比及び領域Cから領域Dに変化する酸素ガス比も大きくなる。
【0075】
図6は、スパッタリング電力が1kWに設定された反応室にO2 ガス及びArガスを導入して行なう反応性スパッタリングにより酸化イリジウム膜を成膜したときにおける、反応室の圧力と酸素ガス比との関係、つまり酸素ガス比の圧力依存性を示している。
【0076】
図6から分かるように、スパッタリングの条件の1つである反応室の圧力を高くすると、ゲッター効果の影響が小さくなるので、領域Aから領域Bに変化する酸素ガス比が小さくなり、これに伴って、領域Bから領域Cに変化する酸素ガス比及び領域Cから領域Dに変化する酸素ガス比も小さくなる。
【0077】
ここで、領域D、つまり小さい粒径を持つ粒状結晶よりなる酸化イリジウム膜を確実に得ることができる領域を規定する。
【0078】
まず、酸化イリジウムを形成するために用いられる酸素ガスの量は、反応室に導入されたO2 ガスの量から領域AのO2 ガスの量を減じた値であるから、図4におけるxに相当し、Arガスの量は図4におけるyに相当する。
【0079】
従って、領域Dはx/(x+y)>0.5を満たす領域であると言えるから、この関係式を満たす範囲内で反応性スパッタリングを行なうと、小さい粒径を持つ粒状結晶よりなり酸素バリア性の高い酸化イリジウム膜を確実に成膜することができる。
【0080】
また、基板を室温以上の温度に保った状態で酸化イリジウム膜を成膜できるので、酸化イリジウム膜の密着性も向上する。
【0081】
(第2の実施形態)
以下、本発明の第2の実施形態に係る半導体記憶装置及びその製造方法について、図1及び図7を参照しながら説明する。
【0082】
第2の実施形態に係る半導体記憶装置の基本構造は、第1の実施形態に係る半導体記憶装置と同様であって、図1に示すように、半導体基板10の表面部にはソース領域11及びドレイン領域12が形成されていると共に、半導体基板10の上にはゲート電極13が形成されており、これらソース領域11、ドレイン領域12及びゲート電極13によって電界効果型トランジスタが構成されている。
【0083】
半導体基板10の上には、電界効果型トランジスタを覆うように層間絶縁膜14が形成されており、該層間絶縁膜14にはドレイン領域12と接続されるように、ポリシリコンよりなるコンタクトプラグ15が形成されている。
【0084】
層間絶縁膜14の上にはコンタクトプラグ15と接続されるように、容量素子の下部電極16が形成されており、該下部電極16は、下から順に形成された第1の導電性バリア膜16a、第2の導電性バリア膜16b及び金属膜16cから構成されている。
【0085】
図7は、第2の導電性バリア膜16bの断面構造を示しており、第2の導電性バリア膜16bは、酸素バリア層として機能する上層16baと、第1の導電性バリア膜16aとの密着性を向上させる下層16bbとの積層構造を有している。
【0086】
上層16baの結晶構造は粒状結晶である。下層16bbの結晶構造は粒状結晶でも柱状結晶でもよいが、下層16bbの平均結晶粒径D2 は、上層16baの平均結晶粒径D1 よりも大きいという特徴を有している。尚、図7に示すように、下層16bbの厚さが結晶粒径よりも小さくなる場合があるので、ここでいう平均結晶粒径D1、D2とは、第2の導電性バリア膜16bの平面方向の値を用いる。
【0087】
また、上層16baの平均結晶粒径D1 は、上層16baの膜厚の1/2以下である。
【0088】
ところで、下層16bbは、密着層として働くが酸素バリア性は乏しい。従って、下層16bbの膜厚は、密着性を確保できる範囲内においてできるだけ小さいことが好ましい。下層16bbの膜厚は、具体的には5nm〜30nm程度で、好ましくは10nm程度である。
【0089】
上層16baの膜厚は、酸素バリア層として働くため、成膜が可能な範囲内においてできるだけ大きいことが好ましい。上層16baの膜厚は、具体的には、上層16baの平均結晶粒径D1 の2倍以上で且つ200nm以下であることが好ましい。
【0090】
(第2の実施形態に係る半導体記憶装置の製造方法)
以下、本発明の第2の実施形態に係る半導体記憶装置における第2の導電性バリア膜(酸化イリジウム膜)16bの製造方法について説明する。
【0091】
第2の実施形態における第2の導電性バリア膜16bの製造方法も、平行平板型DCマグネトロンスパッタ装置を用いて反応性スパッタリングにより形成するものであって、基板上に、粒状結晶よりなり、平均結晶粒径が膜厚の半分以下である酸化イリジウム膜を堆積する。この場合、反応室に導入するガスとしては、不活性ガスとしてアルゴンガスを用い、活性ガスとして酸素を用いる。
【0092】
ところで、基板の到達した粒子の運動エネルギーを小さくすると、結晶粒径を小さくできるが、このようにすると、スパッタリングされた粒子が基板に打ち込れ難くなるため、酸化イリジウム膜と基板との間に密着層が形成されず、これによって酸化イリジウム膜の密着性が悪くなるという問題がある。
【0093】
そこで、スパッタリング工程の第1段階では、スパッタリングされる粒子の運動エネルギーが大きくなるような条件でスパッタリングを行なって密着層を形成し、スパッタリング工程の第2段階では、スパッタリングされる粒子の運動エネルギーが小さくなるような条件でスパッタリングを行なって結晶粒径を小さくすることが好ましい。
【0094】
具体的には、第1段階では、x/(x+y)<0.5の条件でスパッタリングを行ない、その後、第2段階では、x/(x+y)>0.5の条件でスパッタリングを行なうことが好ましい。この場合、第1段階で成膜される酸化イリジウム膜は酸素バリア性が良くないため、できるだけ薄い方が好ましい。具体的には、第1段階で成膜される酸化イリジウム膜の厚さは、30nm以下が好ましく、20nm程度がより好ましい。
【0095】
尚、第1〜第3の製造方法によると、平均結晶粒径が膜厚の半分以下である酸化イリジウム膜を成膜できるが、スパッタリングにより形成された酸化イリジウム膜に対して、500℃〜600℃の温度下、例えば550℃の温度下で熱処理を施して、酸化イリジウム膜を緻密化することが好ましい。この場合、500℃以上の温度が好ましい理由は、充分な焼き締めを行なって膜質を緻密化するためであり、600℃以下の温度が好ましい理由は、未反応のイリジウムの酸化による表面モフォロジー荒れを防ぐためである。
【0096】
従って、スパッタリング後に、酸化イリジウム膜に対して500℃〜600℃の温度の熱処理を施すと、酸素原子の拡散パスとなる結晶粒界の緻密度が向上するので、酸化イリジウム膜の酸素バリア性が一層向上する。
【0097】
【発明の効果】
本発明に係る第1又は第3の半導体記憶装置によると、酸化イリジウム膜を構成する粒状結晶の平均結晶粒径が膜厚の1/2以下であるから、酸化イリジウム膜における酸素原子の拡散パスが屈曲するため、酸素原子は結晶粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は確実に向上する。
【0098】
本発明に係る第2又は第4の半導体記憶装置によると、酸化イリジウム膜は、平均結晶粒径が互いに異なる複数の層を有するため、酸素原子は、平均結晶粒径が小さい方の層を構成する結晶の粒界を拡散し難いので、酸化イリジウム膜の酸素バリア性は向上すると共に、平均結晶粒径が大きい方の層は、酸素バリア膜と接する膜との密着性を向上させる。
【0099】
本発明に係る第1又は第3の半導体記憶装置の製造方法によると、反応室内に導入されるガスにおける、アルゴン原子に対する酸素ガスの割合が大きくなるため、スパッタリングされた粒子の運動エネルギーが小さくなり、これに伴って、酸化イリジウム膜を構成する粒子の平均結晶粒径が小さくなると共に、基板を室温以上の温度に保った状態で酸化イリジウム膜を成膜することができる。このため、酸化イリジウム膜の酸素バリア性が確実に向上すると共にコンタクトプラグと下部電極との密着性も向上する。
【0100】
本発明に係る第2又は第4の半導体記憶装置の製造方法によると、反応性スパッタリング工程の第1段階においては、スパッタリングされる粒子の運動エネルギーが大きくなるため、コンタクトプラグと下部電極との密着性が向上し、反応性スパッタリング工程の第2段階においては、スパッタリングされる粒子の運動エネルギーが小さくなるので、酸化イリジウム膜を構成する粒子の平均結晶粒径が小さくなる。このため、酸化イリジウム膜の酸素バリア性が確実に向上すると共にコンタクトプラグと下部電極との密着性も向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る半導体記憶装置の断面図である。
【図2】(a)は、本発明の第1の実施形態に係る半導体記憶装置における第2の導電性バリア膜(酸素バリア膜)の断面図であり、(b)は、従来の半導体記憶装置における酸素バリア膜の断面図である。
【図3】本発明の第1の実施形態に係る半導体記憶装置における第2の導電性バリア膜(酸素バリア膜)における(平均結晶粒径/膜厚)とコンタクト抵抗との関係を示す図である。
【図4】本発明の第1の実施形態に係る半導体記憶装置の製造方法により酸化イリジウム膜を成膜したときにおける、O2 ガスの流量/(O2 ガスの流量+Arガスの流量)と、酸化イリジウム膜のシート抵抗との関係を示す図である。
【図5】本発明の第1の実施形態に係る半導体記憶装置の製造方法により酸化イリジウム膜を成膜したときにおける、スパッタリング電力と酸素ガス比との関係を示す図である。
【図6】本発明の第1の実施形態に係る半導体記憶装置の製造方法により酸化イリジウム膜を成膜したときにおける、反応室の圧力と酸素ガス比との関係を示す図である。
【図7】本発明の第2の実施形態に係る半導体記憶装置における第2の導電性バリア膜(酸素バリア膜)の断面図である。
【符号の説明】
10 半導体基板
11 ソース領域
12 ドレイン領域
13 ゲート電極
14 層間絶縁膜
15 コンタクトプラグ
16 下部電極
16a 第1の導電性バリア膜
16b 第2の導電性バリア膜(酸素バリア膜)
16ba 第2の導電性バリア膜の上層(酸素バリア膜)
16bb 第2の導電性バリア膜の下層(密着層)
16c 金属膜
17 容量絶縁膜
18 上部電極

Claims (10)

  1. 半導体基板上に形成された層間絶縁膜と、
    前記層間絶縁膜に形成されたコンタクトプラグと、
    前記層間絶縁膜の上に形成され、電極が前記コンタクトプラグと接続された容量素子とを備え、
    前記電極は酸素バリア膜として酸化イリジウム膜を有し、
    前記酸化イリジウム膜は、平均結晶粒径が互いに異なる複数の層から構成されており、
    前記複数の層を構成する上層の平均結晶粒径は、前記上層の膜厚の1/2以下であり且つ前記複数の層を構成する下層の平均結晶粒径よりも小さいことを特徴とする半導体記憶装置。
  2. 半導体基板上に形成された電界効果型トランジスタと、
    前記電界効果型トランジスタを覆うように形成された層間絶縁膜と、
    前記層間絶縁膜に形成され、前記電界効果型トランジスタのソース領域又はドレイン領域と接続されたコンタクトプラグと、
    前記層間絶縁膜の上に形成され、前記コンタクトプラグと接続する下部電極、前記下部電極上に形成された容量絶縁膜、及び上部電極から構成された容量素子とを備え、
    前記下部電極は酸素バリア膜として酸化イリジウム膜を有し、
    前記酸化イリジウム膜は、平均結晶粒径が互いに異なる複数の層から構成されており、
    前記複数の層を構成する上層の平均結晶粒径は、前記上層の膜厚の1/2以下であり且つ前記複数の層を構成する下層の平均結晶粒径よりも小さいことを特徴とする半導体記憶装置。
  3. 前記下層の膜厚は30nm以下であり、且つ前記上層の膜厚は200nm以下であることを特徴とする請求項1又は2に記載の半導体記憶装置。
  4. 前記下部電極は、前記酸素バリア膜の下に、前記コンタクトプラグと接続する導電性バリア膜を有していることを特徴とする請求項2項に記載の半導体記憶装置。
  5. 前記導電性バリア膜は、下から順に形成された、チタン膜、窒化チタンアルミニウム膜及びイリジウム膜よりなる積層膜であることを特徴とする請求項4に記載の半導体記憶装置。
  6. 前記下部電極は、最上層に金属膜を有していることを特徴とする請求項2に記載の半導体記憶装置。
  7. 前記金属膜は、白金膜よりなることを特徴とする請求項6に記載の半導体記憶装置。
  8. 半導体基板上に形成された層間絶縁膜と、前記層間絶縁膜に形成されたコンタクトプラグと、前記層間絶縁膜の上に形成され、電極が前記コンタクトプラグと接続された容量素子とを備え、前記電極は、酸素バリア膜として平均結晶粒径が互いに異なる複数の層からなる酸化イリジウム膜を有する半導体記憶装置の製造方法であって、
    イリジウムを含むターゲットが配置された反応室に酸素ガス及びアルゴンガスを導入して行なう反応性スパッタリング法により前記酸化イリジウム膜を成膜する工程を備え、
    前記反応性スパッタリング法は、前記反応室内の酸素ガスの実際の分圧をxとし、前記反応室内のアルゴンガスの実際の分圧をyとしたときに、第1段階は、x/(x+y)<0.5の関係が成り立つ条件で行なわれ、その後に行なわれる第2段階は、x/(x+y)>0.5の関係が成り立つ条件で行なわれることを特徴とする半導体記憶装置の製造方法。
  9. 半導体基板上に形成された電界効果型トランジスタと、前記電界効果型トランジスタを覆うように形成された層間絶縁膜と、前記層間絶縁膜に形成され、前記電界効果型トランジスタのソース領域又はドレイン領域と接続されたコンタクトプラグと、前記層間絶縁膜の上に形成され、前記コンタクトプラグと接続する下部電極、前記下部電極上に形成された容量絶縁膜、及び上部電極から構成された容量素子とを備え、前記下部電極は酸素バリア膜として平均結晶粒径が互いに異なる複数の層からなる酸化イリジウム膜を有する半導体記憶装置の製造方法であって、
    イリジウムを含むターゲットが配置された反応室に酸素ガス及びアルゴンガスを導入して行なう反応性スパッタリング法により前記酸化イリジウム膜を成膜する工程を備え、
    前記反応性スパッタリング法は、前記反応室内の酸素ガスの実際の分圧をxとし、前記反応室内のアルゴンガスの実際の分圧をyとしたときに、第1段階は、x/(x+y)<0.5の関係が成り立つ条件で行なわれ、その後に行なわれる第2段階は、x/(x+y)>0.5の関係が成り立つ条件で行なわれることを特徴とする半導体記憶装置の製造方法。
  10. 前記酸化イリジウム膜に対して、500℃〜600℃の温度下で熱処理を施す工程をさらに備えていることを特徴とする請求項8又は9に記載の半導体記憶装置の製造方法。
JP2002104692A 2001-05-30 2002-04-08 半導体記憶装置及びその製造方法 Expired - Fee Related JP3738229B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002104692A JP3738229B2 (ja) 2001-05-30 2002-04-08 半導体記憶装置及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001162901 2001-05-30
JP2001-162901 2001-05-30
JP2002104692A JP3738229B2 (ja) 2001-05-30 2002-04-08 半導体記憶装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005115889A Division JP3738269B2 (ja) 2001-05-30 2005-04-13 半導体記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2003051583A JP2003051583A (ja) 2003-02-21
JP3738229B2 true JP3738229B2 (ja) 2006-01-25

Family

ID=26615993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002104692A Expired - Fee Related JP3738229B2 (ja) 2001-05-30 2002-04-08 半導体記憶装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP3738229B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977402B2 (en) 2003-03-25 2005-12-20 Sanyo Electric Co., Ltd. Memory device having storage part and thin-film part
US7892205B2 (en) 2003-06-06 2011-02-22 Boston Scientific Scimed, Inc. Device and method for delivering micronized therapeutic agents in the body
JP2007221156A (ja) * 2003-10-22 2007-08-30 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005252069A (ja) * 2004-03-05 2005-09-15 Tdk Corp 電子デバイス及びその製造方法
JP4509868B2 (ja) * 2005-06-07 2010-07-21 株式会社東芝 半導体装置の製造方法
JP5347381B2 (ja) 2008-08-28 2013-11-20 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5819585B2 (ja) 2009-12-15 2015-11-24 セイコーエプソン株式会社 液滴噴射ヘッド及び液滴噴射装置

Also Published As

Publication number Publication date
JP2003051583A (ja) 2003-02-21

Similar Documents

Publication Publication Date Title
US6180974B1 (en) Semiconductor storage device having a capacitor electrode formed of at least a platinum-rhodium oxide
JP3661850B2 (ja) 半導体装置およびその製造方法
JP4046588B2 (ja) キャパシタの製造方法
JP4160638B2 (ja) 半導体装置
JP3209175B2 (ja) 薄膜キャパシタの製造方法
EP0821415A2 (en) A capacitor and method of manufacture thereof
JP3832617B2 (ja) 多層状電極の鉛ゲルマネート強誘電体構造およびその堆積方法
JP2003174146A (ja) 強誘電体キャパシタおよびその製造方法
US6380580B1 (en) Method of making a thin film capacitor with an improved top electrode
JPH0936332A (ja) キャパシタ及びその製造方法
JP3738229B2 (ja) 半導体記憶装置及びその製造方法
KR100253866B1 (ko) 다이나믹 랜덤 억세스 메모리장치 및 그 반도체장치의 제조방법
JP2785126B2 (ja) 誘電体薄膜形成方法及びこれを用いた半導体装置の製造方法
US6781179B2 (en) Semiconductor device having a capacitor comprising an electrode with an iridium oxide film as an oxygen barrier film
JP3738269B2 (ja) 半導体記憶装置及びその製造方法
JP3242732B2 (ja) キャパシタ
JPH0982915A (ja) 半導体装置の製造方法
JP2000077629A (ja) 拡散障壁が設けられた積層キャパシタ
EP1077478B1 (en) Method of making a ferroelectric thin film, a ferroelectric capacitor, and a ferroelectric memory
KR100614576B1 (ko) 캐패시터 제조 방법
JP3874521B2 (ja) 強誘電体メモリ用電極の形成方法
US9305998B2 (en) Adhesion of ferroelectric material to underlying conductive capacitor plate
JPH11354732A (ja) 薄膜キャパシタ及びその製造方法
JP2001077326A (ja) 半導体装置およびその製造方法
JPH11168200A (ja) キャパシタを有する半導体装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees