JP3735420B2 - Co-based metallic glass alloy - Google Patents

Co-based metallic glass alloy Download PDF

Info

Publication number
JP3735420B2
JP3735420B2 JP23324396A JP23324396A JP3735420B2 JP 3735420 B2 JP3735420 B2 JP 3735420B2 JP 23324396 A JP23324396 A JP 23324396A JP 23324396 A JP23324396 A JP 23324396A JP 3735420 B2 JP3735420 B2 JP 3735420B2
Authority
JP
Japan
Prior art keywords
alloy
metallic glass
based metallic
temperature
glass alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23324396A
Other languages
Japanese (ja)
Other versions
JPH1081944A (en
Inventor
明久 井上
晃弘 勝矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP23324396A priority Critical patent/JP3735420B2/en
Publication of JPH1081944A publication Critical patent/JPH1081944A/en
Application granted granted Critical
Publication of JP3735420B2 publication Critical patent/JP3735420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はCo系金属ガラス合金に係り、特に従来のアモルファス合金の薄帯等に比べてはるかに大きな厚みのあるバルク状合金として得られかつ優れた磁気特性も有しているCo系金属ガラス合金に関する。
【0002】
【従来の技術】
従来より多元素合金のある種のものは、結晶化の前に過冷却液体の状態にある広い温度領域を有し、これらは金属ガラス合金を構成することが知られている。そしてこの金属ガラス合金は、従来公知のアモルファス合金薄帯に比べてはるかに厚いバルク状(線,粒,リボン,薄帯,フィルム等の特定形状ではない塊)の合金となることも知られている。
【0003】
例えばこのような金属ガラス合金として、Ln−Al−TM(Lnはランタンド金属,TMは遷移金属を示す),Mg−Ln−TM,Zr−Al−TM,Hf−Al−TM,Ti−Zr−Be−TM系等の組成のものが知られている。
【0004】
【発明が解決しようとする課題】
上記以外の各種組成の合金においても、過冷却液体状態を示すものが存在するが、これら過冷却液体の温度間隔ΔTx、すなわち結晶化開始温度(Tx)とガラス遷移温度(Tg)との差(Tx−Tg)が著しく小さく、従って現実的に金属ガラス形成能に乏しく実用性に欠けるものであることを考慮すると、前述の金属ガラス合金のように広い過冷却液体の温度領域をもち、冷却によって金属ガラスを構成することのできる合金の存在は、従来の公知のアモルファス合金の薄帯としての厚みの制約を克服するもので、冶金学的には大いに注目されるものである。
【0005】
しかしながら従来知られていた上記金属ガラス合金は、いずれも室温(常温)において磁性をもつことはなく、この点において実用的および工業的な利用価値に大きな制約と限界があった。
【0006】
従ってこの発明の目的は、従来の金属ガラス合金の形態的な限界を克服し、バルク状体として製造可能で、しかも磁性材料としての利用が可能なCo系金属ガラス合金を提供することにある。
【0007】
【課題を解決するための手段】
この発明は、従来知られていないバルク状ガラス合金として製造することを可能とするものであり、あわせて、室温において優れた磁気特性を有する金属ガラス合金を提供するものである。
【0008】
上記の目的を果たすために開発されたこの発明の金属ガラス合金は、次式で表される過冷却液体の温度間隔ΔTxに関し、ΔTx=Tx−Tg(Txは結晶化開始温度、Tgはガラス遷移温度を示す)が40K以上のCo系合金からなり、その組成(原子百分率)が、Al=1〜10%,Ga=0.5〜4%,P=10〜17%,C=0.5〜7%,B=2〜10%,Cr=7%以下,残部がCoと0%以上の不可避的不純物である。
【0010】
従来よりCo系合金でガラス遷移が観察されているものは、いずれも過冷却液体の温度間隔ΔTxがいずれも25K以下ときわめて小さく、実際的に金属ガラス合金として構成することができない。これに対しこの発明は、過冷却液体の温度間隔ΔTxが40K以上というきわめて広い温度領域をもつものとして、従来のCo系合金からは全く予期されなかったものである。しかも、磁気特性についても優れているこの発明の合金は、従来のアモルファス合金の形態が薄帯としてしか現実的でなかったのに比べ、はるかに実用性および工業的に優れたものである。
【0013】
この発明におけるCo系金属ガラス合金は、過冷却液体の温度間隔ΔTxが、40K以上である。
上述したこの発明の金属ガラス合金を製造するには、溶製して鋳造するか、単ロール法もしくは双ロール法などの液体急冷法、あるいは液中紡糸法や溶液抽出法、高圧ガス噴射法などにより、バルク状体をはじめとして、リボン状体,線状体,粉末等の形状として製造することができる。そしてこのような製造法において、従来公知のアモルファス合金の場合に比較して、例えば5倍以上の厚さや径を有する嵩の大きな金属ガラス合金を得ることができる。
【0014】
上記の製造法について付言すると、合金の組成や製造法の種類あるいは製品の大きさ、形状等によって、好適な冷却速度が決まるが、通常は1〜102 K/秒程度の範囲を目安とすることができる。そして実際には、ガラス相に、結晶相としてのCo2 P,Co4 B,Co3 B等の相が析出するかどうかを確認することで冷却速度等を決めることができる。
【0015】
【発明の実施の形態】
[実施例1]
Co,Cr,AlおよびGaの金属と、Fe−C合金,Fe−P合金,およびFe−B合金を原料として、Ar雰囲気下においてこれら原料を誘導溶解し、原子組成比がCo70Cr3 Al5 Ga21514 の合金塊を製造した。この合金を用い、単ロール法によって、Ar雰囲気下で断面積が0.02×1.5mmのリボンを作製した。
【0016】
上記リボンをX線回折とTEM(Transmission Electron Microscope)で確認した結果、金属ガラス状態であることが確認された。またDSC(Differential Scanning Calorimeter )によってガラス遷移と結晶化について評価した。その結果、ガラス遷移温度(Tg)と結晶化開始温度(Tx)との差(Tx−Tg)で表される過冷却液体の温度間隔(ΔTx)は51Kであった。
【0017】
上記合金について、室温における磁気特性(Bs;飽和磁束密度、Hc;保磁力、μe;実効透磁率)を実験によって評価したところ、Bs=0.3T,Hc=4.5A/m,μe=5800(f=1kHz)と優れた値が示された。
[実施例2]
実施例1と同様にして、原子組成比がCo70Cr3 Al5 Ga21514 の合金を溶製した。この合金を用いて、Cu金型を使用して射出成形を行い、円形断面の棒状合金試料を作製した。試料の長さは約50mm,直径0.5mm、成形圧力は0.05MPaとした。
【0018】
試料の外観を観察したところ、滑らかな表面と良好な金属光沢を有しており、また成形性も良好であった。次いで、0.5%ふっ化水素酸および99.5%蒸留水の溶液により293Kで10秒間エッチングしたのち、その断面を光学顕微鏡により観察したところ、結晶相の存在は全く確認されず、ガラス相のみからなることがわかった。
また、X線回折の結果もブロードなピークが観察され、ガラス相単相であることが確認された。そして磁気特性は実施例1と同等の値であった。
【0019】
【発明の効果】
以上詳述したように本発明によれば、従来のアモルファス合金薄帯の厚さ等の制約が克服され、バルク状体として製作可能であり、しかも優れた磁気特性を有する磁性体として応用可能なCo系金属ガラス合金を提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Co-based metallic glass alloy, and more particularly, a Co-based metallic glass alloy obtained as a bulk alloy having a much larger thickness than a conventional amorphous alloy ribbon and the like and having excellent magnetic properties. About.
[0002]
[Prior art]
Conventionally, certain types of multi-element alloys have a wide temperature range that is in a supercooled liquid state prior to crystallization, and these are known to constitute metallic glass alloys. This metallic glass alloy is also known to be a much thicker bulk alloy (a lump that is not a specific shape such as wire, grain, ribbon, ribbon, film, etc.) than the conventionally known amorphous alloy ribbon. Yes.
[0003]
For example, as such a metallic glass alloy, Ln-Al-TM (Ln represents a lanthanide metal, TM represents a transition metal), Mg-Ln-TM, Zr-Al-TM, Hf-Al-TM, Ti-Zr- A composition of Be-TM type or the like is known.
[0004]
[Problems to be solved by the invention]
Other alloys having various compositions other than those described above exhibit a supercooled liquid state, but the temperature interval ΔTx of these supercooled liquids, that is, the difference between the crystallization start temperature (Tx) and the glass transition temperature (Tg) ( Considering that Tx−Tg) is remarkably small and therefore practically has poor ability to form metal glass and lacks practicality, it has a wide temperature range of a supercooled liquid like the aforementioned metal glass alloy, The existence of an alloy capable of constituting a metallic glass overcomes the limitation of the thickness of a conventionally known amorphous alloy as a ribbon, and has attracted much attention from the metallurgical viewpoint.
[0005]
However, none of the metal glass alloys known so far has magnetism at room temperature (room temperature), and there are significant restrictions and limitations on practical and industrial utility values in this respect.
[0006]
Accordingly, an object of the present invention is to provide a Co-based metallic glass alloy that overcomes the morphological limitations of conventional metallic glass alloys, can be produced as a bulk material, and can be used as a magnetic material.
[0007]
[Means for Solving the Problems]
This invention makes it possible to produce a bulk glass alloy that has not been known so far, and also provides a metallic glass alloy having excellent magnetic properties at room temperature.
[0008]
The metallic glass alloy of the present invention developed to achieve the above object is related to the temperature interval ΔTx of the supercooled liquid represented by the following formula: ΔTx = Tx−Tg (Tx is the crystallization start temperature, Tg is the glass transition temperature) shows the temperature) Ri is Do the 40K or more Co-based alloy, its composition (atomic percent), Al = 1~10%, Ga = 0.5~4%, P = 10~17%, C = 0. 5 to 7%, B = 2 to 10%, Cr = 7% or less, the balance being Co and 0% or more of inevitable impurities.
[0010]
Any of the Co-based alloys in which glass transition has been observed in the past has a very small temperature interval ΔTx of the supercooled liquid of 25 K or less, and cannot be actually configured as a metallic glass alloy. On the other hand, the present invention is completely unexpected from conventional Co alloys because it has a very wide temperature range where the temperature interval ΔTx of the supercooled liquid is 40K or more. Moreover, the alloy of the present invention, which is also excellent in magnetic properties, is far more practical and industrially superior to the conventional amorphous alloy which is practical only as a ribbon.
[0013]
In the Co-based metallic glass alloy according to the present invention, the temperature interval ΔTx of the supercooled liquid is 40K or more.
In order to produce the above-described metallic glass alloy of the present invention, it is melted and cast, or a liquid quenching method such as a single roll method or a twin roll method, or a submerged spinning method, a solution extraction method, a high pressure gas injection method, etc. Thus, it can be produced in the form of a bulk-like body, a ribbon-like body, a linear body, a powder or the like. And in such a manufacturing method, compared with the case of a conventionally well-known amorphous alloy, a bulky metallic glass alloy which has a thickness and a diameter 5 times or more can be obtained, for example.
[0014]
In addition to the above manufacturing method, a suitable cooling rate is determined depending on the composition of the alloy, the type of manufacturing method, the size and shape of the product, and the range of about 1 to 10 2 K / sec is generally used as a guide. be able to. In practice, the cooling rate and the like can be determined by checking whether or not a phase such as Co 2 P, Co 4 B, or Co 3 B as a crystal phase is precipitated in the glass phase.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
Co, Cr, Al, and Ga metals and Fe—C alloy, Fe—P alloy, and Fe—B alloy are used as raw materials, and these raw materials are inductively dissolved in an Ar atmosphere, and the atomic composition ratio is Co 70 Cr 3 Al. An alloy mass of 5 Ga 2 P 15 C 1 B 4 was produced. Using this alloy, a ribbon having a cross-sectional area of 0.02 × 1.5 mm was produced in an Ar atmosphere by a single roll method.
[0016]
As a result of confirming the ribbon with X-ray diffraction and TEM (Transmission Electron Microscope), it was confirmed that the ribbon was in a metallic glass state. Further, glass transition and crystallization were evaluated by DSC (Differential Scanning Calorimeter). As a result, the temperature interval (ΔTx) of the supercooled liquid represented by the difference (Tx−Tg) between the glass transition temperature (Tg) and the crystallization start temperature (Tx) was 51K.
[0017]
The magnetic properties at room temperature (Bs; saturation magnetic flux density, Hc: coercive force, μe; effective permeability) of the above alloy were evaluated by experiments. Bs = 0.3T, Hc = 4.5 A / m, μe = 5800 An excellent value (f = 1 kHz) was shown.
[Example 2]
In the same manner as in Example 1, an alloy having an atomic composition ratio of Co 70 Cr 3 Al 5 Ga 2 P 15 C 1 B 4 was melted. Using this alloy, injection molding was performed using a Cu mold to produce a rod-shaped alloy sample having a circular cross section. The length of the sample was about 50 mm, the diameter was 0.5 mm, and the molding pressure was 0.05 MPa.
[0018]
When the appearance of the sample was observed, it had a smooth surface, good metallic luster, and good moldability. Next, after etching for 10 seconds at 293 K with a solution of 0.5% hydrofluoric acid and 99.5% distilled water, the cross section was observed with an optical microscope. It turns out that it consists only of.
Moreover, a broad peak was also observed as a result of X-ray diffraction, and it was confirmed that the glass phase was a single phase. The magnetic characteristics were the same values as in Example 1.
[0019]
【The invention's effect】
As described above in detail, according to the present invention, limitations such as the thickness of the conventional amorphous alloy ribbon can be overcome, and it can be manufactured as a bulk material and can be applied as a magnetic material having excellent magnetic properties. A Co-based metallic glass alloy can be provided.

Claims (2)

ΔTx=Tx−Tg(Txは結晶化開始温度、Tgはガラス遷移温度を示す)が40K(K;絶対温度)以上のCo系合金からなり、その組成(原子百分率)が、Al=1〜10%,Ga=0.5〜4%,P=10〜17%,C=0.5〜7%,B=2〜10%,Cr=7%以下,残部がCoと0%以上の不可避的不純物であることを特徴とするCo系金属ガラス合金。ΔTx = Tx-Tg (Tx crystallization initiation temperature, Tg represents the glass transition temperature) is 40K; Ri Do from (K absolute temperature) or more Co-based alloy, the composition (atomic percent), Al =. 1 to 10%, Ga = 0.5-4%, P = 10-17%, C = 0.5-7%, B = 2-10%, Cr = 7% or less, balance is Co and 0% or more inevitable Co-based metallic glass alloy characterized in that it is a general impurity . 前記Co系合金の原子組成比がCo 70 Cr Al Ga 15 であることを特徴とする請求項1に記載のCo系金属ガラス合金。 2. The Co-based metallic glass alloy according to claim 1, wherein an atomic composition ratio of the Co-based alloy is Co 70 Cr 3 Al 5 Ga 2 P 15 C 1 B 4 .
JP23324396A 1996-09-03 1996-09-03 Co-based metallic glass alloy Expired - Fee Related JP3735420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23324396A JP3735420B2 (en) 1996-09-03 1996-09-03 Co-based metallic glass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23324396A JP3735420B2 (en) 1996-09-03 1996-09-03 Co-based metallic glass alloy

Publications (2)

Publication Number Publication Date
JPH1081944A JPH1081944A (en) 1998-03-31
JP3735420B2 true JP3735420B2 (en) 2006-01-18

Family

ID=16952022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23324396A Expired - Fee Related JP3735420B2 (en) 1996-09-03 1996-09-03 Co-based metallic glass alloy

Country Status (1)

Country Link
JP (1) JP3735420B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116448A1 (en) 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing molded body or wafer lens
JP5440492B2 (en) 2008-03-19 2014-03-12 コニカミノルタ株式会社 Wafer lens manufacturing method

Also Published As

Publication number Publication date
JPH1081944A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP3904250B2 (en) Fe-based metallic glass alloy
Inoue et al. Ferromagnetic bulk amorphous alloys
Inoue et al. Hard magnetic bulk amorphous Nd–Fe–Al alloys of 12 mm in diameter made by suction casting
US5368659A (en) Method of forming berryllium bearing metallic glass
US5288344A (en) Berylllium bearing amorphous metallic alloys formed by low cooling rates
Inoue et al. Ferromagnetic bulk glassy alloys
TWI512767B (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
WO1981000861A1 (en) Amorphous alloys
WO2005033350A1 (en) Fe-base in-situ composite alloys comprising amorphous phase
JP4721126B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
JP3442375B2 (en) Amorphous soft magnetic alloy
CA2157258A1 (en) Low boron amorphous alloy having excellent soft magnetic characteristics
JPH09256122A (en) Ferrous amorphous alloy
JP4358016B2 (en) Iron-based metallic glass alloy
JP3735420B2 (en) Co-based metallic glass alloy
Inoue et al. Soft magnetic properties of nanocystalline Fe-Si-B-Nb-Cu rod alloys obtained by crystallization of cast amorphous phase
JP2000178700A (en) HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JPS58210154A (en) Amorphous metal and product
JPS5633453A (en) Iron-base amorphous alloy having high magnetic flux density and small magnetostriction
JP3948898B2 (en) Fe-based amorphous alloy with high saturation magnetization and good soft magnetic properties
JP4317930B2 (en) Amorphous alloy particles
JP2001152301A (en) Soft magnetic glassy alloy
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees