JPH1081944A - Co-base metal-glass alloy - Google Patents

Co-base metal-glass alloy

Info

Publication number
JPH1081944A
JPH1081944A JP23324396A JP23324396A JPH1081944A JP H1081944 A JPH1081944 A JP H1081944A JP 23324396 A JP23324396 A JP 23324396A JP 23324396 A JP23324396 A JP 23324396A JP H1081944 A JPH1081944 A JP H1081944A
Authority
JP
Japan
Prior art keywords
alloy
metallic glass
glass alloy
based metallic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23324396A
Other languages
Japanese (ja)
Other versions
JP3735420B2 (en
Inventor
Akihisa Inoue
明久 井上
Akihiro Katsuya
晃弘 勝矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP23324396A priority Critical patent/JP3735420B2/en
Publication of JPH1081944A publication Critical patent/JPH1081944A/en
Application granted granted Critical
Publication of JP3735420B2 publication Critical patent/JP3735420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Co-base metal-glass alloy capable of being produced in bulk and utilization as a magnetic material at ordinary temps. SOLUTION: This alloy consists of a Co-base alloy for which ΔTx= Tx-Tg>=40 K (where Tx is a crystallization initiating temp., Tg is a glass transition temp., and K is a absolute temp.). This alloy consists essentially of Co and further may contain metals such as Al, Ga, In and Sn and metalloids such as P, C, B, Si and Ge besides Co. For example, the alloy is composed of 1-10 atomic % Al, 0.5-4% Ga, 10-17% P, 0.5-7% C, 2-10% B and the balance Co with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はCo系金属ガラス
合金に係り、特に従来のアモルファス合金の薄帯等に比
べてはるかに大きな厚みのあるバルク状合金として得ら
れかつ優れた磁気特性も有しているCo系金属ガラス合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Co-based metallic glass alloy, and more particularly to a Co-based metallic glass alloy which can be obtained as a bulk alloy having a thickness much larger than that of a conventional amorphous alloy ribbon and has excellent magnetic properties. A Co-based metallic glass alloy.

【0002】[0002]

【従来の技術】従来より多元素合金のある種のものは、
結晶化の前に過冷却液体の状態にある広い温度領域を有
し、これらは金属ガラス合金を構成することが知られて
いる。そしてこの金属ガラス合金は、従来公知のアモル
ファス合金薄帯に比べてはるかに厚いバルク状(線,
粒,リボン,薄帯,フィルム等の特定形状ではない塊)
の合金となることも知られている。
2. Description of the Related Art Some conventional multi-element alloys are
Prior to crystallization, it has a wide temperature range that is in a supercooled liquid state, and these are known to constitute metallic glass alloys. This metallic glass alloy has a much thicker bulk shape (lines, wires, etc.) than conventionally known amorphous alloy ribbons.
Non-specified lumps such as grains, ribbons, ribbons, films, etc.)
It is also known to be an alloy of

【0003】例えばこのような金属ガラス合金として、
Ln−Al−TM(Lnはランタンド金属,TMは遷移
金属を示す),Mg−Ln−TM,Zr−Al−TM,
Hf−Al−TM,Ti−Zr−Be−TM系等の組成
のものが知られている。
For example, as such a metallic glass alloy,
Ln-Al-TM (Ln is a lanthanide metal, TM is a transition metal), Mg-Ln-TM, Zr-Al-TM,
Compositions such as Hf-Al-TM and Ti-Zr-Be-TM are known.

【0004】[0004]

【発明が解決しようとする課題】上記以外の各種組成の
合金においても、過冷却液体状態を示すものが存在する
が、これら過冷却液体の温度間隔ΔTx、すなわち結晶
化開始温度(Tx)とガラス遷移温度(Tg)との差
(Tx−Tg)が著しく小さく、従って現実的に金属ガ
ラス形成能に乏しく実用性に欠けるものであることを考
慮すると、前述の金属ガラス合金のように広い過冷却液
体の温度領域をもち、冷却によって金属ガラスを構成す
ることのできる合金の存在は、従来の公知のアモルファ
ス合金の薄帯としての厚みの制約を克服するもので、冶
金学的には大いに注目されるものである。
Among alloys having various compositions other than those described above, some alloys exhibit a supercooled liquid state. However, the temperature interval ΔTx between these supercooled liquids, that is, the crystallization starting temperature (Tx) and the glass Considering that the difference (Tx-Tg) from the transition temperature (Tg) is remarkably small and therefore practically poor in metallic glass forming ability and lacks practicality, a wide supercooling like the metallic glass alloy described above is taken into consideration. The existence of an alloy that has a liquid temperature range and can form a metallic glass by cooling overcomes the limitation of the thickness of a conventionally known amorphous alloy as a ribbon, and has attracted much attention in metallurgy. Things.

【0005】しかしながら従来知られていた上記金属ガ
ラス合金は、いずれも室温(常温)において磁性をもつ
ことはなく、この点において実用的および工業的な利用
価値に大きな制約と限界があった。
However, none of the conventionally known metallic glass alloys has magnetism at room temperature (normal temperature), and in this respect, there are great restrictions and limits on practical and industrial use values.

【0006】従ってこの発明の目的は、従来の金属ガラ
ス合金の形態的な限界を克服し、バルク状体として製造
可能で、しかも磁性材料としての利用が可能なCo系金
属ガラス合金を提供することにある。
Accordingly, an object of the present invention is to provide a Co-based metallic glass alloy which can overcome the morphological limitations of conventional metallic glass alloys, can be manufactured as a bulk material, and can be used as a magnetic material. It is in.

【0007】[0007]

【課題を解決するための手段】この発明は、従来知られ
ていないバルク状ガラス合金として製造することを可能
とするものであり、あわせて、室温において優れた磁気
特性を有する金属ガラス合金を提供するものである。
SUMMARY OF THE INVENTION The present invention makes it possible to manufacture a bulk glass alloy, which has not been known, and provides a metallic glass alloy having excellent magnetic properties at room temperature. Is what you do.

【0008】上記の目的を果たすために開発されたこの
発明の金属ガラス合金は、次式で表される過冷却液体の
温度間隔ΔTxに関し、ΔTx=Tx−Tg(Txは結
晶化開始温度、Tgはガラス遷移温度を示す)が40K
以上のCo系合金からなることを特徴とする。
The metallic glass alloy of the present invention developed to fulfill the above object has a temperature interval ΔTx of a supercooled liquid represented by the following formula: ΔTx = Tx−Tg (Tx is a crystallization start temperature, Tg Indicates the glass transition temperature) is 40K
It is characterized by comprising the above-mentioned Co-based alloy.

【0009】この発明の態様としてCo以外に他の金属
と半金属元素とを含有してもよい。ここで他の金属元素
が原子周期表の第IIIB族および第IVB 族の金属元素の少
なくとも1種以上でもよいし、半金属元素がP,C,
B,SiおよびGeの少なくとも1種以上であってもよ
い。
As an embodiment of the present invention, other metals and metalloid elements may be contained in addition to Co. Here, the other metal element may be at least one of metal elements belonging to Group IIIB and Group IVB of the periodic table, and the metalloid element may be P, C, or
At least one of B, Si and Ge may be used.

【0010】従来よりCo系合金でガラス遷移が観察さ
れているものは、いずれも過冷却液体の温度間隔ΔTx
がいずれも25K以下ときわめて小さく、実際的に金属
ガラス合金として構成することができない。これに対し
この発明は、過冷却液体の温度間隔ΔTxが40K以上
というきわめて広い温度領域をもつものとして、従来の
Co系合金からは全く予期されなかったものである。し
かも、磁気特性についても優れているこの発明の合金
は、従来のアモルファス合金の形態が薄帯としてしか現
実的でなかったのに比べ、はるかに実用性および工業的
に優れたものである。
Conventionally, glass transitions have been observed in Co-based alloys.
Are extremely small at 25K or less, and cannot be practically constituted as a metallic glass alloy. On the other hand, the present invention, which has a very wide temperature range in which the temperature interval ΔTx of the supercooled liquid is 40 K or more, is completely unexpected from a conventional Co-based alloy. Moreover, the alloy of the present invention, which is also excellent in magnetic properties, is far more practical and industrially excellent than the conventional amorphous alloy, which was practical only as a ribbon.

【0011】この発明の金属ガラス合金の組成について
は、上記の通りCoを主成分とし、さらに他の金属と半
金属元素を含有したものとして示すことができる。この
うちの他の金属は、周期表の第IIA 族,第IIIAおよびII
IB族,第IVA およびIVB 族,第VA 族,第VIA 族および
第VIIA族のうちから選択できるものであるが、なかでも
第IIIB族,第IVB 族の金属元素(例えばAl,Ga,I
n,Sn)が好適なものとして示される。
The composition of the metallic glass alloy of the present invention can be described as containing Co as a main component as described above and further containing other metals and metalloid elements. Other metals are group IIA, IIIA and IIA of the periodic table.
It can be selected from the group IB, IVA and IVB, the group VA, the group VIA and the group VIIA. Among them, the metal elements of the group IIIB and the group IVB (for example, Al, Ga, I
n, Sn) are indicated as preferred.

【0012】さらにはTi,Zr,Hf,V,Nb,T
a,Cr,Mo,W,Mn,Fe,Ni,Cu等の金属
も配合することができる。半金属元素としては、例えば
P,C,Si,Ge,Bなどが例示される。組成につい
て、さらに具体的に例示すると、原子百分率でAlが1
〜10%,Gaが0.5〜4%,Pが10〜17%,C
が0.5〜7%,Bが2〜10%,残部がCoであっ
て、不可避的不純物が含有されていてもよい。また、
V,Nb,Ta,Cr,MoおよびWを7%以下含有す
る合金組成や、10%以下のNiおよび/または30%
以下(いずれも原子百分率)のFeが含有された組成も
例示される。
Further, Ti, Zr, Hf, V, Nb, T
Metals such as a, Cr, Mo, W, Mn, Fe, Ni, and Cu can also be blended. Examples of the metalloid element include, for example, P, C, Si, Ge, and B. More specifically, the composition is such that Al is 1 in atomic percentage.
-10%, Ga is 0.5-4%, P is 10-17%, C
Is 0.5 to 7%, B is 2 to 10%, and the balance is Co, and may contain unavoidable impurities. Also,
Alloy composition containing 7% or less of V, Nb, Ta, Cr, Mo and W, Ni of 10% or less and / or 30%
A composition containing the following (all in atomic percentage) Fe is also exemplified.

【0013】上記いずれの組成の場合も、この発明にお
けるCo系金属ガラス合金は、過冷却液体の温度間隔Δ
Txが、40K以上である。上述したこの発明の金属ガ
ラス合金を製造するには、溶製して鋳造するか、単ロー
ル法もしくは双ロール法などの液体急冷法、あるいは液
中紡糸法や溶液抽出法、高圧ガス噴射法などにより、バ
ルク状体をはじめとして、リボン状体,線状体,粉末等
の形状として製造することができる。そしてこのような
製造法において、従来公知のアモルファス合金の場合に
比較して、例えば5倍以上の厚さや径を有する嵩の大き
な金属ガラス合金を得ることができる。
In any of the above compositions, the Co-based metallic glass alloy of the present invention has a temperature difference Δ of the supercooled liquid.
Tx is 40K or more. In order to produce the above-mentioned metallic glass alloy of the present invention, it is possible to produce by melting and casting, a liquid quenching method such as a single roll method or a twin roll method, a liquid spinning method, a solution extraction method, a high pressure gas injection method, and the like. Thus, it can be manufactured in a shape such as a bulk material, a ribbon material, a linear material, and a powder. In such a manufacturing method, it is possible to obtain a bulky metallic glass alloy having, for example, a thickness and a diameter five times or more as compared with the case of a conventionally known amorphous alloy.

【0014】上記の製造法について付言すると、合金の
組成や製造法の種類あるいは製品の大きさ、形状等によ
って、好適な冷却速度が決まるが、通常は1〜102
/秒程度の範囲を目安とすることができる。そして実際
には、ガラス相に、結晶相としてのCo2 P,Co4
B,Co3 B等の相が析出するかどうかを確認すること
で冷却速度等を決めることができる。
In addition to the above-mentioned production method, a suitable cooling rate is determined by the composition of the alloy, the type of the production method, the size and the shape of the product, etc., but usually 1 to 10 2 K
/ Second range can be used as a guide. And actually, Co 2 P and Co 4 as crystal phases are added to the glass phase.
The cooling rate and the like can be determined by confirming whether a phase such as B, Co 3 B or the like precipitates.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施例1]Co,Cr,AlおよびGaの金属と、F
e−C合金,Fe−P合金,およびFe−B合金を原料
として、Ar雰囲気下においてこれら原料を誘導溶解
し、原子組成比がCo70Cr3 Al5 Ga2151
4 の合金塊を製造した。この合金を用い、単ロール法に
よって、Ar雰囲気下で断面積が0.02×1.5mm
のリボンを作製した。
Example 1 Co, Cr, Al and Ga metals and F
Using e-C alloy, Fe-P alloy, and Fe-B alloy as raw materials, these raw materials are induction-melted in an Ar atmosphere, and the atomic composition ratio is Co 70 Cr 3 Al 5 Ga 2 P 15 C 1 B.
An alloy block of No. 4 was produced. Using this alloy, the cross-sectional area is 0.02 × 1.5 mm in an Ar atmosphere by a single roll method.
Was produced.

【0016】上記リボンをX線回折とTEM(Transmis
sion Electron Microscope)で確認した結果、金属ガラ
ス状態であることが確認された。またDSC(Differen
tialScanning Calorimeter )によってガラス遷移と結
晶化について評価した。その結果、ガラス遷移温度(T
g)と結晶化開始温度(Tx)との差(Tx−Tg)で
表される過冷却液体の温度間隔(ΔTx)は51Kであ
った。
The ribbon is subjected to X-ray diffraction and TEM (Transmis
As a result, it was confirmed that the film was in a metallic glass state. Also DSC (Differen
The glass transition and crystallization were evaluated by a tialScanning Calorimeter. As a result, the glass transition temperature (T
g) and the temperature interval (ΔTx) of the supercooled liquid represented by the difference (Tx−Tg) between the crystallization onset temperature (Tx) and 51 K.

【0017】上記合金について、室温における磁気特性
(Bs;飽和磁束密度、Hc;保磁力、μe;実効透磁
率)を実験によって評価したところ、Bs=0.3T,
Hc=4.5A/m,μe=5800(f=1kHz)
と優れた値が示された。 [実施例2]実施例1と同様にして、原子組成比がCo
70Cr3 Al5 Ga21514の合金を溶製した。
この合金を用いて、Cu金型を使用して射出成形を行
い、円形断面の棒状合金試料を作製した。試料の長さは
約50mm,直径0.5mm、成形圧力は0.05MP
aとした。
The magnetic properties (Bs; saturation magnetic flux density, Hc; coercive force, μe; effective permeability) of the above alloy at room temperature were evaluated by experiments.
Hc = 4.5 A / m, μe = 5800 (f = 1 kHz)
And excellent values. [Example 2] In the same manner as in Example 1, the atomic composition ratio was Co.
The 70 Cr 3 alloy of Al 5 Ga 2 P 15 C 1 B 4 was melted.
Using this alloy, injection molding was performed using a Cu mold to prepare a rod-shaped alloy sample having a circular cross section. Sample length is about 50mm, diameter 0.5mm, molding pressure is 0.05MP
a.

【0018】試料の外観を観察したところ、滑らかな表
面と良好な金属光沢を有しており、また成形性も良好で
あった。次いで、0.5%ふっ化水素酸および99.5
%蒸留水の溶液により293Kで10秒間エッチングし
たのち、その断面を光学顕微鏡により観察したところ、
結晶相の存在は全く確認されず、ガラス相のみからなる
ことがわかった。また、X線回折の結果もブロードなピ
ークが観察され、ガラス相単相であることが確認され
た。そして磁気特性は実施例1と同等の値であった。
Observation of the appearance of the sample showed that it had a smooth surface, good metallic luster, and good moldability. Then 0.5% hydrofluoric acid and 99.5
% Was etched at 293K for 10 seconds, and the cross section was observed with an optical microscope.
The existence of a crystal phase was not confirmed at all, and it was found that it consisted of only a glass phase. In addition, a broad peak was observed in the result of X-ray diffraction, and it was confirmed that the glass phase was a single phase. The magnetic properties were equivalent to those of Example 1.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、従
来のアモルファス合金薄帯の厚さ等の制約が克服され、
バルク状体として製作可能であり、しかも優れた磁気特
性を有する磁性体として応用可能なCo系金属ガラス合
金を提供することができる。
As described above in detail, according to the present invention, the limitations such as the thickness of the conventional amorphous alloy ribbon can be overcome.
It is possible to provide a Co-based metallic glass alloy which can be manufactured as a bulk material and can be applied as a magnetic material having excellent magnetic properties.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ΔTx=Tx−Tg(Txは結晶化開始温
度、Tgはガラス遷移温度を示す)が40K(K;絶対
温度)以上のCo系合金からなることを特徴とするCo
系金属ガラス合金。
1. A Co-based alloy wherein ΔTx = Tx-Tg (Tx indicates a crystallization start temperature and Tg indicates a glass transition temperature) is 40 K (K; absolute temperature) or more.
-Based metallic glass alloy.
【請求項2】組成中に、Co以外の他の金属と半金属元
素とを含有する請求項1記載のCo系金属ガラス合金。
2. The Co-based metallic glass alloy according to claim 1, wherein the composition contains a metal other than Co and a metalloid element.
【請求項3】上記半金属元素が、P,C,B,Siおよ
びGeの少なくとも1種以上である請求項2記載のCo
系金属ガラス合金。
3. The Co according to claim 2, wherein the metalloid element is at least one of P, C, B, Si and Ge.
-Based metallic glass alloy.
【請求項4】上記他の金属元素が、元素周期表における
第IIIB族および第IVB 族の金属元素の少なくとも1種以
上である請求項2または3記載のCo系金属ガラス合
金。
4. The Co-based metallic glass alloy according to claim 2, wherein the other metal element is at least one of Group IIIB and IVB metal elements in the periodic table.
【請求項5】上記他の金属元素として、AlおよびG
a,InもしくはSnの少なくとも1種が含有されてい
る請求項2ないし4のうちいずれか1項に記載のCo系
金属ガラス合金。
5. The method according to claim 1, wherein the other metal elements are Al and G.
The Co-based metallic glass alloy according to any one of claims 2 to 4, wherein at least one of a, In, and Sn is contained.
【請求項6】組成(原子百分率)が、Al=1〜10
%,Ga=0.5〜4%,P=10〜17%,C=0.
5〜7%,B=2〜10%,残部がCoと0%以上の不
可避的不純物である請求項1ないし5のうちいずれか1
項に記載のCo系金属ガラス合金。
6. The composition (atomic percentage) of Al = 1 to 10
%, Ga = 0.5-4%, P = 10-17%, C = 0.
6. An apparatus according to claim 1, wherein 5 to 7%, B = 2 to 10%, and the balance is Co and 0% or more inevitable impurities.
The Co-based metallic glass alloy according to the item.
【請求項7】組成中に、V,Nb,Ta,Cr,Moお
よびWの少なくとも1種以上が原子百分率で7%以下含
有されている請求項1ないし6のうちいずれか1項に記
載のCo系金属ガラス合金。
7. The composition according to claim 1, wherein the composition contains at least one of V, Nb, Ta, Cr, Mo and W in an atomic percentage of 7% or less. Co-based metallic glass alloy.
【請求項8】原子百分率で10%以下のNiおよび/ま
たは30%以下のFeが含有されている請求項1ないし
7のうちいずれか1項に記載のCo系金属ガラス合金。
8. The Co-based metallic glass alloy according to claim 1, which contains 10% or less of Ni and / or 30% or less of Fe in atomic percentage.
JP23324396A 1996-09-03 1996-09-03 Co-based metallic glass alloy Expired - Fee Related JP3735420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23324396A JP3735420B2 (en) 1996-09-03 1996-09-03 Co-based metallic glass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23324396A JP3735420B2 (en) 1996-09-03 1996-09-03 Co-based metallic glass alloy

Publications (2)

Publication Number Publication Date
JPH1081944A true JPH1081944A (en) 1998-03-31
JP3735420B2 JP3735420B2 (en) 2006-01-18

Family

ID=16952022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23324396A Expired - Fee Related JP3735420B2 (en) 1996-09-03 1996-09-03 Co-based metallic glass alloy

Country Status (1)

Country Link
JP (1) JP3735420B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116371A1 (en) 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing wafer lens
WO2009116448A1 (en) 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing molded body or wafer lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116371A1 (en) 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing wafer lens
WO2009116448A1 (en) 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 Method for producing molded body or wafer lens
EP2759395A1 (en) 2008-03-19 2014-07-30 Konica Minolta Opto, Inc. Method for producing a wafer lens

Also Published As

Publication number Publication date
JP3735420B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP3904250B2 (en) Fe-based metallic glass alloy
US5368659A (en) Method of forming berryllium bearing metallic glass
US4668310A (en) Amorphous alloys
Inoue et al. Ferromagnetic bulk glassy alloys
JPH0336243A (en) Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability
WO1980002159A1 (en) Amorphous alloy containing iron family element and zirconium,and articles obtained therefrom
US6077367A (en) Method of production glassy alloy
US5876519A (en) Fe-based amorphous alloy
EP1482064B1 (en) Soft magnetic metallic glass alloy
US7223310B2 (en) Soft magnetic co-based metallic glass alloy
JP4515548B2 (en) Bulk amorphous alloy and high strength member using the same
JP2002226956A (en) Amorphous soft magnetic alloy
JP2000178700A (en) HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP2005290468A (en) Iron-based metallic glass alloy
JPH1081944A (en) Co-base metal-glass alloy
JP2001152301A (en) Soft magnetic glassy alloy
JP3948898B2 (en) Fe-based amorphous alloy with high saturation magnetization and good soft magnetic properties
JPH1171647A (en) Iron base soft magnetic metallic glass alloy
JP3749801B2 (en) Soft magnetic metallic glass alloy
JP3756405B2 (en) Soft magnetic, high strength Fe-Co-Ni based metallic glass alloy
JPH10324939A (en) Cobalt-base amorphous soft magnetic alloy
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JPH10102223A (en) Fe amorphous alloy
KR100550284B1 (en) Fe-based amorphous alloy compositions
JPS5953345B2 (en) High permeability amorphous alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051018

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051024

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees