JP3734979B2 - Silicon semiconductor substrate and manufacturing method thereof - Google Patents

Silicon semiconductor substrate and manufacturing method thereof Download PDF

Info

Publication number
JP3734979B2
JP3734979B2 JP07839399A JP7839399A JP3734979B2 JP 3734979 B2 JP3734979 B2 JP 3734979B2 JP 07839399 A JP07839399 A JP 07839399A JP 7839399 A JP7839399 A JP 7839399A JP 3734979 B2 JP3734979 B2 JP 3734979B2
Authority
JP
Japan
Prior art keywords
heat treatment
wafer
grown
single crystal
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07839399A
Other languages
Japanese (ja)
Other versions
JP2000264783A (en
Inventor
克彦 中居
政美 長谷部
渡 大橋
敦 碇
昭義 立川
博之 出合
秀樹 横田
Original Assignee
シルトロニック・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シルトロニック・ジャパン株式会社 filed Critical シルトロニック・ジャパン株式会社
Priority to JP07839399A priority Critical patent/JP3734979B2/en
Publication of JP2000264783A publication Critical patent/JP2000264783A/en
Application granted granted Critical
Publication of JP3734979B2 publication Critical patent/JP3734979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はシリコン単結晶及びその製造方法に関するものであって、酸化膜耐圧特性に優れた品質のシリコンウェハ及びその製造方法に関するものである。
【0002】
【従来の技術】
高集積MOSデバイスの基板として用いられるチョクラルスキー法(CZ法)により製造されるシリコン単結晶ウェハには、酸化膜耐圧特性などのデバイス特性に悪影響を与えないような高品質な結晶が求められている。
【0003】
近年、結晶育成直後のシリコン単結晶中に、酸化膜耐圧特性のうちの初期絶縁破壊特性(TZDB特性)を劣化させる結晶欠陥が存在することが明らかとなってきた。それらの結晶欠陥は選択エッチング法、アンモニア系のウェハ洗浄、あるいは赤外散乱・赤外干渉を用いた結晶欠陥評価法で検出されるものであり、総じてgrown−in欠陥と呼ばれる。これらの欠陥の実体はいずれも八面体ボイド欠陥であり、特にアンモニア系のウェハ洗浄後に八面体ボイド欠陥が表面にエッチピットとして顕在化したものはCOP(Crystal Originated Particle)と呼ばれている(J. Ryuta, E. Morita, T. Tanaka and Y. Shimanuki, Jpn. J.
Appl. Phys. 29, L1947(1990))。
【0004】
このCOP等のgrown−in欠陥を減らすことを目的とした結晶製造方法として、例えば、特開昭59−20264号公報で規定するような水素雰囲気100%中での熱処理を行うことで、ウェハ表面のCOPを低減できることが知られている。またこの水素雰囲気熱処理を施すシリコン基板として、特開平10−208987号公報で規定するような赤外トモグラフで検出されるgrown−in欠陥(Laser Scattering Tomography Defect; LSTD)密度が3×106/cm3以上、もしくはSeccoエッチング液で検出されるgrown−in欠陥(Flow Pattern Defect; FPD)が3×106/cm3以上存在するような基板を用いることで、表面のCOPがより顕著に低減できることが知られている。
【0005】
しかしこのような熱処理は欠陥低減に有効であるものの、水素という爆発の危険性のあるガスを取り扱うため、安全上の防護対策を施した特殊な炉が必要となり、ウェハのコストアップに繋がるものであった。
【0006】
【発明が解決しようとする課題】
従って、本発明は、半導体デバイス用のシリコン単結晶基板において、デバイス作成上問題になる結晶欠陥を、水素雰囲気等の熱処理を用いずに安価にしかも効率よく低減させてなるシリコン半導体基板、およびその製造方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、鋭意検討研究を行なった結果、特別な防護設備のない通常の熱処理炉を使用して、水素を用いない非酸化性雰囲気熱処理を用いた。また熱処理用シリコン基板として、内部に存在するgrown−in欠陥を結晶育成条件で制御することにより、熱処理で消滅しやすいような性質を持つgrown−in欠陥を作り込んだ。そして、grown−in欠陥の密度・サイズと熱処理温度・雰囲気・時間を変化させて試験を行った結果、表面COPが少なくなるような組み合わせを見いだし、本発明を完成したものである。
【0008】
すなわち、上記課題を解決する本発明は、(1)ウェハ表面から50μmより深い領域の直径換算で50nm以上の欠陥密度が3×106/cm3以上でかつ表面から1μmより浅い領域での0.1μm以上のCOP密度が3×105/cm3以下であることを特徴とするシリコンウェハである。
【0009】
本発明はまた、(2)CZ法により製造されたシリコン単結晶であって、結晶育成中の融液温度〜800℃までを2℃/分以上の冷却速度で育成した単結晶から切り出したシリコンウェハを、不純物5ppm以下の希ガスもしくは熱処理後の酸化膜厚が2nm以下に抑えられている非酸化性雰囲気中において1150℃以上で[73−0.06×温度(℃)]時間以上熱処理することを特徴とするシリコンウェハの製造方法である。
【0010】
本発明はさらに、(3)CZ法により製造されたシリコン単結晶であって、結晶育成中の融液温度〜800℃までを2℃/分以上の冷却速度で、かつ800℃〜400℃までを1℃/分以上の冷却速度で育成した単結晶から切り出したシリコンウェハを、不純物5ppm以下の希ガスもしくは熱処理後の酸化膜厚が2nm以下に抑えられている非酸化性雰囲気中において1150℃以上で[73−0.06×温度(℃)]時間以上熱処理することを特徴とするシリコンウェハの製造方法である。
【0011】
本発明はまた、(4)上記(1)記載のシリコンウェハを製造するために用いられるシリコン単結晶であって、as grownのホイドサイズ分布において140nm(球の直径換算)以上のサイズのものが105/cm3以下であることを特徴とするシリコン単結晶である。
【0012】
【発明の実施の形態】
本発明者らは、種々の育成条件で育成したシリコン半導体基板において、基板中に存在するgrown−in欠陥の密度・サイズを調査した。その結果、図1に示すように結晶育成中の冷却条件を急冷にすることで、grown−in欠陥の密度が増加し、サイズが低下することが明らかとなった。密度が増加する理由は、結晶育成条件が急冷になることで、grown−in欠陥の構成要素となる点欠陥の過飽和度が増加して、grown−in欠陥の核形成速度が高くなったためと解釈できる。またサイズが低下した原因は、結晶育成条件が急冷となることでgrown−in欠陥の成長に要する時間が短くなったためと解釈できる。これらの結晶を種々の条件で熱処理した後に、デバイス特性の指標である酸化膜耐圧特性を調べた結果、140nm以上のgrown−in欠陥が105/cm3以上存在していたシリコン単結晶基板は、どの条件でも特性が良くなかった。これは140nm以上のgrown−in欠陥は熱処理によって消滅しないためと考えられる。よって熱処理用基板としては140nm以上のgrown−in欠陥が105/cm3以下であるものが有効であることが分かった。このようなシリコン基板を製造するための結晶育成条件としては、融点〜800℃までの温度を2℃/分以上、より好ましくは2〜5℃/分、及び800〜400℃までの温度範囲を1℃/分以上、より好ましくは1〜3℃/分の冷却速度をもって育成することが有効である。このような条件で製造したシリコン基板の直径換算で50nm以上の欠陥密度は3×106/cm3以上になる。これは通常の結晶製造条件ではgrown−in欠陥の構成要素となる点欠陥の総量が常に一定となってしまうため、個々のgrown−in欠陥のサイズが小さくなった分だけgrown−in欠陥の個数が増えてしまうと解釈できる。
【0013】
なお本発明において、このようなシリコン単結晶を製造するためのCZ法におけるその他の条件としては特に限定されるものではなく、また通常のCZ法のみならず、例えば、磁場印可CZ法等の従来知られる種々の付加的要件を付したCZ法を用いることも可能である。
【0014】
さらに、上記で述べたようなgrown−in欠陥密度・サイズを制御した基板を用いて、酸化膜耐圧特性に優れたシリコン基板を製造できるような熱処理条件を詳細に検討した結果、温度については1150℃以上が有効であることが分かった。これは熱処理温度が低くなるほど熱処理中のgrown−in欠陥の収縮速度が小さくなるためである。時間については1150℃で4時間以上、1200℃では1時間以上ということから熱処理温度に対して[73−0.06×温度(℃)]時間以上の熱処理が有効であることが分かった。これは熱処理時間が高くなるほど熱処理中のgrown−in欠陥の収縮速度が大きくなるため、時間が短くても十分な特性が出るためと解釈できる。なお、熱処理温度の上限温度としては、1300℃程度である。このような温度以上では、酸素の外方拡散がおきにくく、シリコンウェハにスリップが入りやすくなる虞れがあるためである。
【0015】
熱処理雰囲気としては、非酸化性雰囲気であれば特に限定されるものではなくいずれを用いても良いが、アルゴンガスが安価であり、工業的には最も望ましい。ガス中の不純物、例えば酸素、水分は5ppm以下が望ましい。これは5ppm超の不純物が混入していると表面あれの原因となるためである。また熱処理後の酸化膜厚が2nm以下に抑えられているような条件では表面COP密度の低減効果が最も著しい。これは表面に酸化膜が付着することによって酸化膜から酸素が内部に拡散し、grown−in欠陥の内壁に取り付くことで内壁酸化膜が成長してしまうためと解釈される。
【0016】
上記に述べたようなシリコン基板、及び熱処理条件で作成したシリコン基板はいずれも、表面から1μmまでの深さの0.1μm以上のCOP密度が3×105/cm3以下で、かつ表面から50μmより深い位置のgrown−in欠陥密度が3×106/cm3以上になっていることが分かった。これは表面から1μm未満の深さにあるgrown−in欠陥は消滅して密度が105/cm3以下になり、表面から50μmより深い位置にあるgrown−in欠陥は消えずに残って熱処理によって大きくなったためと解釈できる。
【0017】
【実施例】
以下に本発明の実施例を挙げて説明するが、本発明はこれらの実施例の記載によって何ら限定されるものではない。
実施例1
本実施例では通常のCZ法によるシリコン単結晶製造に用いられる単結晶製造装置を利用して、融点から800℃までの冷却条件を表1のように制御してシリコン単結晶A、Bの引上成長を行った(なお、800℃未満の温度域での冷却速度はいずれも0.5℃/分であった。)。この条件で育成されたシリコン単結晶A、Bはいずれも、導電型p型(ボロンドープ)、結晶径150mm、抵抗率10Ωcmであった。
【0018】
このインゴットから切り出したウェハを、市販の縦型炉を用いて熱処理を行った。熱処理条件は温度を1100〜1200℃、時間を0.5〜8時間とした。雰囲気は不純物が5ppm以下のAr100%と、不純物が5ppm以下のArに0.01vol%酸素を混入した条件とした。酸素を0.01vol%混入した場合の熱処理後の酸化膜厚は2nm以上であった。
【0019】
熱処理後のウェハの表面COPを測定するため、H2O、H22、NH4OHを組成とするSCl洗浄液で洗浄し、0.11μm以上のパーティクルサイズとして検出されるCOPを表面異物計で測定した。COP体積密度はSClの繰り返し洗浄を行った時のCOP増加数と一回のSCl洗浄でのシリコンウェハのエッチング量から求めた(森田他、第39回応用物理学会春季予稿集第一分冊、p278、1992)。
【0020】
次にこのウェハの表面から50μm、100μm、300μmに存在するウェハ内部ボイド欠陥の平均密度を赤外干渉法で測定した。市販されている赤外干渉法による欠陥評価装置として、バイオラッド社のOPP(Optical Precipitate Profiler)を用いた。測定条件は、レーザーの二光束の焦点をウェハのミラー側表面からウェハ内部に入った位置50μm、100μm、300μmに設定し、ミラー面に対して平行にウェハを走査した。その時に二光束の位相差を電気的に信号処理して得られる強度が0.2V以上となる欠陥をカウントした。得られたサイズ分布からゴーストシグナルを除去した後に、それぞれの深さで欠陥の総密度を算出し、三箇所の平均値を求めた。なお、上記3カ所のウェハ内部ボイド欠陥密度はどの熱処理水準のウェハでも10%以内の誤差で一致しており、50μmより深い場所ではウェハ内部ボイド欠陥密度の変化は見られなかった。
【0021】
また酸化膜耐圧を評価するために、同時バッチで熱処理した別のウェハを用いて1000℃乾燥酸素中でウェハ上に250オングストロームのゲート酸化膜を積み、その上に厚み5000オングストローム、面積20mm3のボロンドープポリシリコン電極を積んだMOSキャパシターを作成した。上記MOSキャパシターに電界を印可し、判定電流が0.1A/cm2の時のゲート酸化膜にかかる平均電界が11MV/cm以上を示すMOSキャパシターの個数の割合を高Cモード合格率とした。
【0022】
ウェハの欠陥評価結果を表2に示す。また電気特性評価結果を表3に示す。この結果から結晶A、Bから切り出したウェハを、Ar100%で熱処理したもので、1150℃4時間以上、1200℃1時間以上熱処理したものは、ウェハ内部の欠陥密度は3×106/cm3以上、かつウェハ表面のCOP密度が3×105/cm3以下であり、高Cモード合格率が90%以上と良好であった。
【0023】
なお、結晶A、Bのas grown結晶から切り出したミラーウェハのミラー面から深さ300μmの位置に存在するボイド欠陥をOPPを用いて測定したところ、いずれも直径換算で140nm以上のボイドの密度が105/cm3以下であった。
実施例2
本実施例では実施例1と同様な単結晶製造装置を利用して、融点から800℃、800℃から400℃までの冷却条件を表1のように制御してシリコン単結晶C、Dの引上成長を行った。なお、シリコン単結晶Dの冷却条件は単結晶Bと同じである。この条件で育成されたシリコン単結晶は、導電型p型(ボロンドープ)、結晶径150mm、抵抗率10Ωcmであった。
【0024】
この単結晶から切り出したウェハについて実施例1と同様に熱処理を行った後の欠陥密度、熱処理後の酸化膜耐圧特性を評価した。その結果を表4、5に示す。この結果から結晶C、Dから切り出したウェハをAr100%で熱処理したもので、1150℃4時間以上、1200℃1時間以上熱処理したものは、ウェハ内部の欠陥密度は3×106/cm3以上、かつウェハ表面のCOP密度が3×105/cm3以下であり、高Cモード合格率が90%以上と良好であった。特に結晶Cにおいては、Ar100%で熱処理したもので、1150℃4時間以上、1200℃1時間以上熱処理したものは、高Cモード合格率が100%となり、結晶Dより更に改善されていた。
【0025】
なお、結晶C、Dのas grown結晶から切り出したミラーウェハのミラー面から深さ300μmの位置に存在するボイド欠陥をOPPを用いて測定したところ、いずれも直径換算で140nm以上のボイドの密度が105/cm3以下であった。
比較例1
この比較例では実施例1と同様な単結晶製造装置を利用して、融点から800℃、800℃から400℃までの冷却条件を表1のように制御してシリコン単結晶E、Fの引上成長を行った。この条件で育成されたシリコン単結晶は、導電型p型(ボロンドープ)、結晶径150mm、抵抗率10Ωcmであった。
【0026】
この単結晶から切り出したウェハについて実施例1と同様の熱処理及び評価を行った。その結果を表6、7に示す。いずれの熱処理条件でもウェハ内部の欠陥密度は3×106/cm3未満、かつウェハ表面のCOP密度が3×105/cm3超であり、高Cモード合格率が90%未満となり、実施例1と比べて劣るものであった。
【0027】
なお、結晶E、Fのas grown結晶から切り出したミラーウェハのミラー面から深さ300μmの位置に存在するボイド欠陥をOPPを用いて測定したところ、いずれも直径換算で140nm以上のボイドの密度が105/cm3超であった。
【0028】
【表1】

Figure 0003734979
【0029】
【表2】
Figure 0003734979
【0030】
【表3】
Figure 0003734979
【0031】
【表4】
Figure 0003734979
【0032】
【表5】
Figure 0003734979
【0033】
【表6】
Figure 0003734979
【0034】
【表7】
Figure 0003734979
【0035】
【発明の効果】
本発明の製造方法によるシリコンウェハは、COP欠陥が少なく、酸化膜耐圧特性に優れたものであり、高集積度の高い信頼性を要求されるMOSデバイス用ウェハを製造するのに最適な結晶である。
【図面の簡単な説明】
【図1】は、赤外干渉法によるボイド欠陥密度・サイズの観察例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon single crystal and a method for manufacturing the same, and more particularly, to a silicon wafer having a quality excellent in oxide film withstand voltage characteristics and a method for manufacturing the same.
[0002]
[Prior art]
Silicon single crystal wafers manufactured by the Czochralski method (CZ method) used as a substrate for highly integrated MOS devices are required to have high-quality crystals that do not adversely affect device characteristics such as oxide breakdown voltage characteristics. ing.
[0003]
In recent years, it has become clear that a silicon single crystal immediately after crystal growth has crystal defects that degrade the initial dielectric breakdown characteristics (TZDB characteristics) of the oxide film breakdown voltage characteristics. These crystal defects are detected by a selective etching method, ammonia-based wafer cleaning, or a crystal defect evaluation method using infrared scattering / infrared interference, and are generally referred to as grown-in defects. All of these defects are octahedral void defects. In particular, an octahedral void defect manifested as an etch pit on the surface after ammonia-based wafer cleaning is called COP (Crystal Originated Particle) (J Ryuta, E. Morita, T. Tanaka and Y. Shimanuki, Jpn. J.
Appl. Phys. 29, L1947 (1990)).
[0004]
As a crystal manufacturing method aiming at reducing grown-in defects such as COP, for example, by performing a heat treatment in a hydrogen atmosphere 100% as defined in Japanese Patent Application Laid-Open No. 59-20264, the wafer surface It is known that COP can be reduced. Further, as a silicon substrate subjected to the heat treatment in the hydrogen atmosphere, the density of grown-in defects (Laser Scattering Tomography Defect; LSTD) detected by an infrared tomograph as defined in JP-A-10-208987 is 3 × 10 6 / cm. The surface COP can be significantly reduced by using a substrate having 3 or more or 3 × 10 6 / cm 3 or more of a grown-in defect (Flow Pattern Defect; FPD) detected by a Secco etchant. It has been known.
[0005]
However, although such heat treatment is effective in reducing defects, a special furnace with safety protection measures is required to handle the hydrogen explosive gas, leading to increased wafer costs. there were.
[0006]
[Problems to be solved by the invention]
Accordingly, the present invention provides a silicon semiconductor substrate in which a crystal defect that is a problem in device fabrication in a silicon single crystal substrate for a semiconductor device can be reduced inexpensively and efficiently without using a heat treatment such as a hydrogen atmosphere, and its It is an object to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and studies. As a result, a non-oxidizing atmosphere heat treatment without hydrogen was used using a normal heat treatment furnace without special protective equipment. Further, as a silicon substrate for heat treatment, a grown-in defect having such a property that it easily disappears by heat treatment was formed by controlling the grown-in defect existing in the crystal growth condition. As a result of testing by changing the density / size of the grown-in defects and the heat treatment temperature / atmosphere / time, a combination that reduces the surface COP was found, and the present invention was completed.
[0008]
That is, the present invention for solving the above problems is as follows: (1) The defect density of 50 nm or more in terms of the diameter of the region deeper than 50 μm from the wafer surface is 3 × 10 6 / cm 3 or more and 0 in the region shallower than 1 μm from the surface. A silicon wafer having a COP density of 1 μm or more and 3 × 10 5 / cm 3 or less.
[0009]
The present invention also provides (2) a silicon single crystal produced by the CZ method, which is cut from a single crystal grown from a melt temperature during crystal growth to 800 ° C. at a cooling rate of 2 ° C./min or more. The wafer is heat-treated at 1150 ° C. or higher for [73−0.06 × temperature (° C.)] time in a non-oxidizing atmosphere in which the impurity is 5 ppm or less or the oxide film thickness after heat treatment is suppressed to 2 nm or less. This is a method for producing a silicon wafer.
[0010]
The present invention further includes (3) a silicon single crystal produced by the CZ method, wherein the melt temperature during crystal growth is from 800 ° C. to 800 ° C. at a cooling rate of 2 ° C./min and from 800 ° C. to 400 ° C. 1150 ° C. in a non-oxidizing atmosphere in which a silicon wafer cut out from a single crystal grown at a cooling rate of 1 ° C./min or higher is a noble gas with impurities of 5 ppm or less or an oxide film thickness after heat treatment is suppressed to 2 nm or less. The silicon wafer manufacturing method is characterized in that the heat treatment is performed for [73−0.06 × temperature (° C.)] time or more.
[0011]
The present invention also provides (4) a silicon single crystal used for producing the silicon wafer described in (1) above, wherein the as-grown weed size distribution has a size of 140 nm or more (converted to a sphere diameter) of 10 or more. It is a silicon single crystal characterized by being 5 / cm 3 or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors investigated the density and size of grown-in defects present in a silicon semiconductor substrate grown under various growth conditions. As a result, as shown in FIG. 1, it was found that the density of grown-in defects increases and the size decreases by rapidly cooling the cooling conditions during crystal growth. The reason for the increase in density is that the crystal growth conditions are rapidly cooled, which increases the degree of supersaturation of point defects, which are components of grown-in defects, and increases the nucleation rate of grown-in defects. it can. The reason why the size is reduced can be interpreted as that the time required for growing a grown-in defect is shortened by rapid cooling of the crystal growth conditions. After heat-treating these crystals under various conditions, and examining the oxide film breakdown voltage characteristics, which is an index of device characteristics, a silicon single crystal substrate having grown-in defects of 140 nm or more of 10 5 / cm 3 or more was obtained. The characteristics were not good under any conditions. This is presumably because the grown-in defects of 140 nm or more are not eliminated by the heat treatment. Therefore, it was found that a substrate having a grown-in defect of 140 nm or more of 10 5 / cm 3 or less is effective as the substrate for heat treatment. As a crystal growth condition for manufacturing such a silicon substrate, the temperature from the melting point to 800 ° C. is 2 ° C./min or more, more preferably 2 to 5 ° C./min, and the temperature range from 800 to 400 ° C. It is effective to grow at a cooling rate of 1 ° C./min or more, more preferably 1 to 3 ° C./min. The defect density of 50 nm or more in terms of diameter of the silicon substrate manufactured under such conditions is 3 × 10 6 / cm 3 or more. This is because the total amount of point defects that are components of grown-in defects is always constant under normal crystal manufacturing conditions, so the number of grown-in defects is reduced by the size of each grown-in defect. Can be interpreted as increasing.
[0013]
In the present invention, the other conditions in the CZ method for producing such a silicon single crystal are not particularly limited, and are not limited to the usual CZ method, for example, a conventional magnetic field applied CZ method or the like. It is also possible to use the CZ method with various known additional requirements.
[0014]
Furthermore, as a result of detailed examination of heat treatment conditions that can produce a silicon substrate having excellent oxide film withstand voltage characteristics using a substrate with controlled growth density and size as described above, the temperature is 1150. It has been found that a temperature of ℃ or higher is effective. This is because the shrinkage rate of grown-in defects during heat treatment decreases as the heat treatment temperature decreases. Regarding the time, 1150 ° C. is 4 hours or more, and 1200 ° C. is 1 hour or more. Therefore, it was found that heat treatment for [73−0.06 × temperature (° C.)] time or more is effective with respect to the heat treatment temperature. This can be interpreted that the longer the heat treatment time, the greater the shrinkage rate of grown-in defects during the heat treatment, so that sufficient characteristics can be obtained even if the time is short. The upper limit temperature of the heat treatment temperature is about 1300 ° C. This is because, when the temperature is higher than this temperature, the outward diffusion of oxygen hardly occurs, and slipping may easily occur in the silicon wafer.
[0015]
The heat treatment atmosphere is not particularly limited as long as it is a non-oxidizing atmosphere, and any of them may be used, but argon gas is inexpensive and is most desirable industrially. Impurities such as oxygen and moisture in the gas are desirably 5 ppm or less. This is because if impurities of more than 5 ppm are mixed, it causes surface roughness. In addition, the effect of reducing the surface COP density is most remarkable under conditions where the oxide film thickness after heat treatment is suppressed to 2 nm or less. This is interpreted as the fact that the oxide film adheres to the surface, oxygen diffuses from the oxide film to the inside, and the inner wall oxide film grows by attaching to the inner wall of the grown-in defect.
[0016]
Both the silicon substrate as described above and the silicon substrate prepared under the heat treatment conditions have a COP density of 0.1 μm or more at a depth of 1 μm from the surface to 3 × 10 5 / cm 3 or less, and from the surface. It was found that the grown-in defect density at a position deeper than 50 μm was 3 × 10 6 / cm 3 or more. This is because the grown-in defects at a depth of less than 1 μm from the surface disappear and the density becomes 10 5 / cm 3 or less, and the grown-in defects at a position deeper than 50 μm from the surface remain without disappearing. It can be interpreted as having become larger.
[0017]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to the description of these examples.
Example 1
In this example, a single crystal manufacturing apparatus used for manufacturing a silicon single crystal by an ordinary CZ method is used, and the cooling conditions from the melting point to 800 ° C. are controlled as shown in Table 1 to pull the silicon single crystals A and B. The top growth was carried out (note that the cooling rate in the temperature range below 800 ° C. was 0.5 ° C./min). All of the silicon single crystals A and B grown under these conditions were of the conductivity type p-type (boron doped), the crystal diameter was 150 mm, and the resistivity was 10 Ωcm.
[0018]
The wafer cut out from this ingot was heat-treated using a commercially available vertical furnace. The heat treatment conditions were a temperature of 1100 to 1200 ° C. and a time of 0.5 to 8 hours. The atmosphere was such that Ar 100% with impurities of 5 ppm or less and 0.01 vol% oxygen mixed with Ar with impurities 5 ppm or less. The oxide film thickness after heat treatment when oxygen was mixed at 0.01 vol% was 2 nm or more.
[0019]
In order to measure the surface COP of the wafer after the heat treatment, the wafer is cleaned with an SCl cleaning solution having a composition of H 2 O, H 2 O 2 , and NH 4 OH, and the COP detected as a particle size of 0.11 μm or more is measured on the surface foreign matter meter. Measured with The COP volume density was obtained from the number of COP increases when repeatedly cleaning SCl and the amount of silicon wafer etched by one SCl cleaning (Morita et al., 39th JSAP Spring Proceedings Vol. 1, p278 1992).
[0020]
Next, the average density of void defects in the wafer existing at 50 μm, 100 μm, and 300 μm from the surface of the wafer was measured by infrared interference. Biorad OPP (Optical Precipitate Profiler) was used as a commercially available defect evaluation apparatus using infrared interferometry. Measurement conditions were set such that the focal points of the two laser beams were 50 μm, 100 μm, and 300 μm from the mirror side surface of the wafer to the inside of the wafer, and the wafer was scanned parallel to the mirror surface. At that time, defects having an intensity of 0.2 V or more obtained by electrically processing the phase difference between the two light beams were counted. After removing the ghost signal from the obtained size distribution, the total density of defects was calculated at each depth, and the average value at three locations was obtained. The three wafer internal void defect densities coincided with each other within 10% of errors in any heat treatment level wafer, and no change in the wafer internal void defect density was observed at locations deeper than 50 μm.
[0021]
In order to evaluate the breakdown voltage of the oxide film, a 250 angstrom gate oxide film was stacked on the wafer in dry oxygen at 1000 ° C. using another wafer heat-treated in the same batch, and the thickness was 5000 angstrom and the area was 20 mm 3 . A MOS capacitor with a boron-doped polysilicon electrode was fabricated. An electric field was applied to the MOS capacitor, and the ratio of the number of MOS capacitors having an average electric field applied to the gate oxide film of 11 MV / cm or more when the determination current was 0.1 A / cm 2 was defined as a high C mode pass rate.
[0022]
Table 2 shows the wafer defect evaluation results. In addition, Table 3 shows the evaluation results of electrical characteristics. From these results, wafers cut from crystals A and B were heat-treated at 100% Ar, and those heat-treated at 1150 ° C. for 4 hours or more and 1200 ° C. for 1 hour or more had a defect density of 3 × 10 6 / cm 3 inside the wafer. As described above, the COP density on the wafer surface was 3 × 10 5 / cm 3 or less, and the high C mode pass rate was 90% or more.
[0023]
In addition, when the void defect which exists in the position of 300 micrometers in depth from the mirror surface of the mirror wafer cut out from the as-grown crystal of crystals A and B was measured using OPP, both had a density of voids of 140 nm or more in terms of diameter. It was 10 5 / cm 3 or less.
Example 2
In this example, the same single crystal manufacturing apparatus as in Example 1 was used, and the cooling conditions from the melting point to 800 ° C. and from 800 ° C. to 400 ° C. were controlled as shown in Table 1 to pull the silicon single crystals C and D. Growing up. The cooling conditions for the silicon single crystal D are the same as those for the single crystal B. The silicon single crystal grown under these conditions was a conductive p-type (boron doped), a crystal diameter of 150 mm, and a resistivity of 10 Ωcm.
[0024]
The wafers cut out from this single crystal were evaluated for defect density after heat treatment in the same manner as in Example 1, and oxide film breakdown voltage characteristics after heat treatment. The results are shown in Tables 4 and 5. From this result, the wafer cut from the crystals C and D was heat-treated at 100% Ar, and the one that was heat-treated at 1150 ° C. for 4 hours or more and 1200 ° C. for 1 hour or more had a defect density of 3 × 10 6 / cm 3 or more. In addition, the COP density on the wafer surface was 3 × 10 5 / cm 3 or less, and the high C mode pass rate was 90% or more. In particular, the crystal C was heat-treated at 100% Ar, and heat-treated at 1150 ° C. for 4 hours or more and 1200 ° C. for 1 hour or more had a high C mode pass rate of 100%, which was further improved from the crystal D.
[0025]
In addition, when the void defect which exists in the position of the depth of 300 micrometers from the mirror surface of the mirror wafer cut out from the asgrown crystal of crystals C and D was measured using OPP, the density of voids of 140 nm or more was calculated in terms of diameter. It was 10 5 / cm 3 or less.
Comparative Example 1
In this comparative example, the same single crystal manufacturing apparatus as in Example 1 was used, and the cooling conditions from the melting point to 800 ° C. and from 800 ° C. to 400 ° C. were controlled as shown in Table 1 to pull the silicon single crystals E and F. Growing up. The silicon single crystal grown under these conditions was a conductive p-type (boron doped), a crystal diameter of 150 mm, and a resistivity of 10 Ωcm.
[0026]
The wafer cut from this single crystal was subjected to the same heat treatment and evaluation as in Example 1. The results are shown in Tables 6 and 7. Under any heat treatment conditions, the defect density inside the wafer is less than 3 × 10 6 / cm 3 , the COP density on the wafer surface is more than 3 × 10 5 / cm 3 , and the high C mode pass rate is less than 90%. It was inferior to Example 1.
[0027]
In addition, when the void defect which exists in the position of 300 micrometers deep from the mirror surface of the mirror wafer cut out from the asgrown crystal of crystals E and F was measured using OPP, the density of voids of 140 nm or more in terms of diameter was found in both cases. It was more than 10 5 / cm 3 .
[0028]
[Table 1]
Figure 0003734979
[0029]
[Table 2]
Figure 0003734979
[0030]
[Table 3]
Figure 0003734979
[0031]
[Table 4]
Figure 0003734979
[0032]
[Table 5]
Figure 0003734979
[0033]
[Table 6]
Figure 0003734979
[0034]
[Table 7]
Figure 0003734979
[0035]
【The invention's effect】
The silicon wafer produced by the production method of the present invention has few COP defects and excellent oxide film withstand voltage characteristics, and is an optimum crystal for producing a wafer for a MOS device that requires high integration and high reliability. is there.
[Brief description of the drawings]
FIG. 1 is an example of observation of void defect density and size by infrared interferometry.

Claims (1)

チョクラルスキー法により製造されたシリコン単結晶であって、結晶育成中の融液温度〜800℃までを2℃/分以上の冷却速度で、かつ800℃〜400℃までを1℃/分以上の冷却速度で育成したシリコン単結晶であって、as grownのホイドサイズ分布において140nm(球の直径換算)以上のサイズのものが10 /cm 以下であるシリコン単結晶から切り出したシリコンウェハを、不純物5ppm以下の希ガスもしくは熱処理後の酸化膜厚が2nm以下に抑えられている非酸化性雰囲気中において1150℃以上で[73−0.06×温度(℃)]時間以上熱処理することを特徴とするシリコンウェハの製造方法。A silicon single crystal produced by the Czochralski method, wherein the melt temperature during crystal growth is from 800 ° C to 800 ° C at a cooling rate of 2 ° C / min or more, and from 800 ° C to 400 ° C is 1 ° C / min or more. of a silicon single crystal grown at a cooling rate, a silicon wafer 140nm more than the size (diameter in terms of sphere) is cut out from a silicon single crystal is 10 5 / cm 3 or less at Hoidosaizu distribution of the as grown, Heat treatment is performed at 1150 ° C. or higher for [73−0.06 × temperature (° C.)] time in a non-oxidizing atmosphere in which an impurity is 5 ppm or less or the oxide film thickness after heat treatment is suppressed to 2 nm or less. A method for manufacturing a silicon wafer.
JP07839399A 1999-03-23 1999-03-23 Silicon semiconductor substrate and manufacturing method thereof Expired - Fee Related JP3734979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07839399A JP3734979B2 (en) 1999-03-23 1999-03-23 Silicon semiconductor substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07839399A JP3734979B2 (en) 1999-03-23 1999-03-23 Silicon semiconductor substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000264783A JP2000264783A (en) 2000-09-26
JP3734979B2 true JP3734979B2 (en) 2006-01-11

Family

ID=13660781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07839399A Expired - Fee Related JP3734979B2 (en) 1999-03-23 1999-03-23 Silicon semiconductor substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3734979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1356139B1 (en) * 2001-01-26 2006-08-09 MEMC Electronic Materials, Inc. Low defect density silicon substantially free of oxidation induced stacking faults having a vacancy-dominated core
JP2003002785A (en) * 2001-06-15 2003-01-08 Shin Etsu Handotai Co Ltd Silicon single crystal wafer having layer free from void defect at surface layer part and diameter of not less than 300 mm, and method for producing the same

Also Published As

Publication number Publication date
JP2000264783A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP5072460B2 (en) Silicon wafer for semiconductor and manufacturing method thereof
US6191009B1 (en) Method for producing silicon single crystal wafer and silicon single crystal wafer
JP5537802B2 (en) Silicon wafer manufacturing method
KR100871626B1 (en) Expitaxial wafer and method for production of epitaxial wafer
US7846252B2 (en) Silicon wafer for IGBT and method for producing same
JP4670224B2 (en) Silicon wafer manufacturing method
JP5121139B2 (en) Annealed wafer manufacturing method
KR20100070989A (en) Annealed wafer and method for producing annealed wafer
JP5217245B2 (en) Silicon single crystal wafer and manufacturing method thereof
KR20140001815A (en) Method of manufacturing silicon substrate, and silicon substrate
EP1154048B1 (en) Method of manufacture of a silicon epitaxial wafer
JP2003055088A (en) Silicon semiconductor substrate and method of manufacturing the same
JP5678211B2 (en) Annealed wafer manufacturing method
EP1343200A1 (en) Anneal wafer manufacturing method and anneal wafer
JP3734979B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP4276764B2 (en) Silicon single crystal substrate and manufacturing method thereof
JP4510997B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP3735002B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP4107700B2 (en) Silicon single crystal and method for producing and evaluating the same
JP4089137B2 (en) Method for producing silicon single crystal and method for producing epitaxial wafer
JP4615785B2 (en) Method for producing epitaxial wafer having no epitaxial layer defect using nitrogen-added substrate
JPH1143393A (en) Silicon single crystal wafer and its production
JP5227586B2 (en) Manufacturing method of annealed silicon wafer
JP2004331496A (en) Silicon semiconductor substrate and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees