JP3733444B2 - Curved surface processing equipment - Google Patents

Curved surface processing equipment Download PDF

Info

Publication number
JP3733444B2
JP3733444B2 JP13944497A JP13944497A JP3733444B2 JP 3733444 B2 JP3733444 B2 JP 3733444B2 JP 13944497 A JP13944497 A JP 13944497A JP 13944497 A JP13944497 A JP 13944497A JP 3733444 B2 JP3733444 B2 JP 3733444B2
Authority
JP
Japan
Prior art keywords
curved surface
tool
processing
pressing force
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13944497A
Other languages
Japanese (ja)
Other versions
JPH10315111A (en
Inventor
英利 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP13944497A priority Critical patent/JP3733444B2/en
Publication of JPH10315111A publication Critical patent/JPH10315111A/en
Application granted granted Critical
Publication of JP3733444B2 publication Critical patent/JP3733444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、レンズ,ミラー,金型等の被加工物の曲面形状部を超精密に仕上げ加工する曲面加工装置に係り、特に、被加工物の加工面の微少なうねりを除去して高品質の仕上げ面を得ることができる曲面加工装置に関する。
【0002】
【従来の技術】
被加工物の曲面を精密に加工仕上げする曲面加工装置に関する公知技術は数多く存在する。曲面金型の鏡面仕上げには弾性変形し易く、且つ被加工面(被研磨面)になじみ易い低弾性係数の加工具をポリシャとして用いる工法が実用化されている。また、このポリシャは通常ダイヤモンドパウダーやシリカ等の遊離砥粒と組み合わせて研磨加工に用いられるものが多い。
【0003】
これ等の加工具を用いて高い形状精度の仕上げ加工を行う公知技術として特開昭61−265257号公報に開示の「精密曲面加工法」が挙げられる。加工具の工具押し付け力を一定に保持する定圧を維持する機構としては特開昭61−265657号公報に開示する方法の他、特開平7−100751号公報および特開平8−197404号公報等に開示するものが挙げられる。
【0004】
また、以上の公知技術では加圧機構としてはバネや錘を用いているが特開平7−68456号公報や特開平7−241766号公報等では、エアシリンダ,ピエゾ素子,ボールねじ送り機構のような能動的な加工機構を用いるものである。また、この加圧機構の場合には、加工具からワーク側に負荷されている押し付け力を検出し、この押し付け力を一定にするようなフィードバック制御も行われている。
【0005】
【発明が解決しようとする課題】
前記した公知技術は夫々特徴を有するものであり、前加工面の形状をくずさずに表面を精密仕上げし得る機能を有するものであるが、例えば、1[mm]程度の波長の表面粗さ曲線に比べて長い周期のうねりを有する粗さ曲線の前記うねりを有効に除去することができない問題点がある。そのため、従来技術では、被加工物に対する加工具の工具接触領域を大きくして極力うねりを除去する加工方法が採用されるに過ぎなかった。
【0006】
しかしながら、この加工方法では、凹面と凸面とが混在する曲面のうねりを除去することは困難であった。即ち、曲面加工においては、曲面の粗さとうねりとの双方を加工修正することが精密曲面仕上げには必要であるが、従来技術ではこの双方を満足させる技術はなかった。
【0007】
本発明は、以上の事情に鑑みて創案されたものであり、表面粗さを高精度に仕上げるように形状調整された加工具により、該加工具の接触長さよりも長い周期のうねりを容易に除去して高精度の曲面加工ができる曲面加工装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
以上の目的を達成するために、請求項1に記載の曲面加工装置は、被加工物の表面に加工具を倣い動作しつつ曲面加工を行う加工装置であって、該装置は、制御装置によって直交3軸(X,Y,Z軸)方向に被加工物を移動し被加工物の表面の曲面の形状に見合った位置に位置決め制御される3軸直動スライド部と、前記3軸のうちの1軸に平行に移動し前記加工具を固持する1軸直動スライド部と、該1軸直動スライド部に推力を与えて前記加工具により被加工物に工具押し付け力を負荷する推力発生機構部と、該推力発製機構部により被加工物に負荷された工具押し付け力を検知する力センサと、該力センサの出力値と目標工具押し付け力とを参照し、その差分を基にして演算した制御パラメータにより前記推力発生機構部による工具押し付け力を制御する制御機構部とを設けることを特徴とする。
【0009】
請求項2に記載の曲面加工装置は、前記推力発生機構部の推力が複室式エアシリンダにより負荷されるものであることを特徴とする。
【0010】
請求項3に記載の曲面加工装置は、請求項2に記載の曲面加工装置において、前記複室式エアシリンダの各室に高圧エア源から供給される空気圧は電磁弁によりコントロールされ、その分解能は0.05[kgf/cm]以下に感度調整されることを特徴とする。
【0011】
請求項4に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記制御パラメータが、ある時刻における前記工具押し付け力と前記目標工具押し付け力との差分にオペレータの調整可能な比例係数を乗じたものからなることを特徴とする。
【0012】
請求項5に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記制御パラメータが、ある時刻とそれよりやや前の時刻範囲における前記工具押し付け力と目標工具押し付け力との差分の積分値にオペレータの調整可能な比例常数を乗じたものからなることを特徴とする。
【0013】
請求項6に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記制御パラメータが、ある時刻とそれよりやや前の時刻における前記工具押し付け力と目標工具押し付け力との差分の傾きにオペレータの調整可能な比例常数を乗じたものからなることを特徴とする。
【0014】
請求項7に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記制御パラメータが、ある時刻における前記工具押し付け力と前記目標工具押し付け力との差分にオペレータの調整可能な比例係数を乗じた制御パラメータと、ある時刻とそれよりやや前の時刻範囲における前記工具押し付け力と目標工具押し付け力との差分の積分値にオペレータの調整可能な比例常数を乗じた制御パラメータと、ある時刻とそれよりやや前の時刻における前記工具押し付け力と目標工具押し付け力との差分の傾きにオペレータの調整可能な比例常数を乗じた制御パラメータのうちの少なくとも2つの制御パラメータを組み合わせたものからなることを特徴とする。
【0015】
請求項8に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記加工具が、加工部と、該加工部を工具スピンドルに保持するための軸部とからなり、前記加工部が、フェルト,ナイロン,綿,絹の繊維質にポリウレタン樹脂を含浸させたものからなることを特徴とする。
【0016】
請求項9に記載の曲面加工装置は、請求項8に記載の曲面加工装置において、前記加工部の被加工物との接触する部位が円弧状に形成されることを特徴とする。
【0017】
請求項10に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記加工具が、加工部と、該加工部を工具スピンドルに保持するための軸部とからなり、前記加工部が、ポリビニルアセタールを主成分とする弾性砥石からなり、その表層から水分を含浸させて最表層を半溶解状態して使用することを特徴とする。
【0018】
請求項11に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記3軸直動スライド部が、その切り込み方向軸以外の2軸のうちのいずれか1軸のまわりに回動可能な傾斜機構部を付設するものであることを特徴とする。
【0019】
請求項12に記載の曲面加工装置は、請求項1に記載の曲面加工装置において、前記3軸直動スライド部が、その切り込み方向軸以外の2軸まわりに回動可能な傾斜機構部を付設することを特徴とする。
【0020】
例えば、加工具を被加工物の加工面の曲面にならって移動すべく被加工物を3軸直動スライド部上に載置すると共に、加工具を1軸直動スライド部により前記3軸のうちの1軸と平行の方向に沿って移動し得るように構成する。推力発生機構部により加工具に工具押し付け力を与えて被加工物に推力を負荷すると共に、該推力を力センサにより検出し、その検出信号を基にして工具押し付け力と目標工具押し付け力との差分を基にして求められる制御パラメータにより加工具の推力を自動制御して被加工物の表面粗さおよびうねりを加工仕上げして高精度曲面仕上げを行うものである。なお、加工具の加工部の材質を夫々工夫したり前記3軸以外の1軸は2軸を形成して複雑な形状の曲面を有する被加工物の精密加工仕上げを行うようにしている。
【0021】
【発明の実施の形態】
以下、本発明の曲面加工装置の実施の形態を図面を参照して詳述する。まず、図1により、本発明の曲面加工装置の実施の形態の概要構成を説明する。
曲面加工装置1は大別して、被加工物7を載置する3軸直動スライド部2と、加工具8を固持すると共に、前記3軸のうちの1つの1軸に沿って移動する1軸直動スライド部3と、1軸直動スライド部3に推力を与えて被加工物7に工具押し付け力を負荷する推力発生機構部4と、前記工具押し付け力を検知する力センサ5と、力センサ5の出力値と目標工具押し付け力とを参照して制御パラメータを演算し、前記加工具8による工具押し付け力を調整制御する制御機構部6等とからなる。
【0022】
3軸直動スライド部2は、X,Y,Z軸に沿って直動し得る構造のものからなり、図略の制御装置によりコントロールされる。3軸直動スライド部2により被加工物7はその表面の曲面9の形状に見合った位置に位置決め制御される。本例では3軸直動スライド部2の上に力センサ5が搭載され、力センサ5の上に被加工物7が搭載される。
【0023】
本例では1軸直動スライド部3は、Z軸方向に沿って移動するものからなり、加工具8を固持してZ軸方向に移動する本体機構部3aを有するものからなる。なお、加工具8は被加工物7の曲面9に当接する加工部8aとこれを工具スピンドル8bに保持するための支軸8c等とからなる。
【0024】
推力発生機構部4は、本例では複室式エアシリンダ10と、第1の電磁弁11,第2の電磁弁12および高圧空気源13等とからなる。なお、複室式エアシリンダ10は、前進駆動室10aと後退駆動室10bとからなり、両室10a,10bを区切るピストン14は1軸直動スライド部3に連結される。また、第1および第2の電磁弁11,12の分解能は0.05[kgf/cm]に感度調整される。被加工物7の曲面9と加工具8とが点接触する場合において、曲面形状をくずさずに表層より1[μm]厚み以下の微少量の加工を実現するためには前記した分解能が必要となる。
【0025】
力センサ5は所謂ロードセルであり、ロードセルアンプ15を介して制御機構部6のパソコン6aに連結される。力センサ5によって検出された加工具8の工具押し付け力が力センサによりリアルタイムに検出され、この検出信号はロードセルアンプ15を介してパソコン6に入力されて記憶される。また、パソコン6からは第1および第2の電磁弁11,12を開閉する制御信号1,2が送られる。なお、制御信号1はPID制御信号(比例,積分,微分)であり、制御信号2はコンスタントの制御信号である。
【0026】
パソコン6aは、後に詳述する制御パラメータを演算するものである。パソコン6による演算は加工具8の工具押し付け力が標準工具押し付け力と相違する場合にその差分を求めると共に予め定められた制御パラメータの演算方法によって制御パラメータを求めるもので、この制御パラメータに基づく制御信号1,2が発せられる。これにより、第1および第2の電磁弁11,12の開閉調整が行われ、高圧空気源13からの高圧空気が前進駆動室10及び/又は後進駆動室10bに送られる。
【0027】
これにより、1軸直動スライド部3が作動し、加工具8による工具押し付け力を調整制御することができる。この調整制御の方法を適宜前記制御パラメータを用いて調整することにより各種形状の曲面9の高精度加工が可能になる。
特に、本発明の曲面加工装置1では、3軸直動スライド部2の他に1軸直動スライド部3を有するため、3軸直動スライド部2の動きは関係なく、Z軸方向の移動が自由にでき、表面粗さの高精度加工のみならず、うねりの除去が容易に行われる。
【0028】
次に、図2乃至図4により、3種類の制御パラメータの求め方を説明する。図2は制御値Aからなる制御パラメータを示す。図において横軸は加工経過時間Tを示し、縦軸は押し付け力Fを示し、曲線Faは加工具8による工具押し付け力の変化を示すものである。また、F0 は目標押し付け力を示す。
なお、本例ではF0 は一定値としているがこれに限定するものではない。ある任意の時刻T1 における曲線Fa上の工具押し付け力をP1 とし、P1 のF0 からの差(偏差量)をDとする。前記制御値Aは偏差量Dに比例係数K1 を垂らしたものからなる。なお、比例係数K1 はオペレータ調整可能の係数であり、オペレータが希望する曲面精度やうねりの除去度を可能にする得るための自由裁量の調整係数に相当するものである。なお、制御量Aによる制御は即応性と応答性の向上を図るものである。
【0029】
図3は制御値Bからなる制御パラメータの算出方法を示す。ある任意の時刻T1 から指定された時間ΔT2 だけ遡り、時刻T1 とΔT2 だけ遡った位置における曲線Fa上の工具押し付け力をP1 およびP2 とし、これ等の値と目標工具押し付け力F0 との間の時間ΔT2 内における面積Sを求める。制御量Bはこの面積Sに比例係数K2 を乗じたものから求められる。
なお、比例係数K2 は前記の比例係数K1 と同様にオペレータの自由裁量の調整係数である。この制御量Bにより、加工具8の曲面9への追従動作をうねりの位相に対して遅らせる調整が容易にできる。
【0030】
図4は制御値Cからなる制御パラメータの算出方法を示す。任意の時刻T1 から指定された時間ΔT3 だけデータを遡り、その時の時刻をT0 とする。時刻T1 とT0 とにおける工具押し付け力をP1 とP3 とし、P3 とP2 とを結ぶ線分P3 1 と目標工具押し付け力F0 のラインとの傾斜角θを求め、このtanθを求める。制御量Cは前記tanθに比例係数K3 を乗じたものである。なお、比例係数K3 は前記のK1 ,K2 と同様にオペレータの自由裁量の調整係数である。この制御量Cにより加工具8の曲面9への追従動作をうねりの位相に対して早める調整が容易に行われる。
【0031】
加工具8により被加工物7を加工することにより前記のA,B,Cの各制御量がパソコン6aにより演算される。パソコン6aから第1および第2の電磁弁11,12に対して制御信号1,2が指令されるが、本発明では制御量A,B,Cを夫々単独に制御指令値として発することも勿論可能であるが、制御量A,B,Cの値を合計して第1および第2の電磁弁に制御指令値が発せられる。この場合、比例常数K1 ,K2 ,K3 の値をどのように調整するかは加工の目的によって適宜設定される。即ち、前加工面の形状を維持して表面粗さのみを向上することを目的とする場合や、表面粗さを向上させつつ特定周期のうねりを除去することを目的とする場合等について調整制御の形態は相異する。
【0032】
図5は表面粗さを向上させる基本的の加工形態を示す模式図であり、図6は表面粗さの向上と共にうねりを除去する加工形態を示す模式図である。図6において曲線Eは被加工物7の曲面9を示し、曲線Fは加工具8の工具軌跡を示す。
加工具8の工具軌跡を図示のようにするように前記の制御量A,B,Cを調整して第1および第2の電磁弁11,12を介して加工具8の動作をコントロールすることにより加工具8を図示の重合部Gに強く接触させて除去することができる。また、逆に重合しない谷部に対して加工具8を弱く接触させる制御が可能になる。即ち、本発明は被加工物7の曲面形状に合わせて制御量A,B,Cを調整制御することにより所望の加工精度の仕上げ曲面を得ることができる。
【0033】
なお、図5において推力発生機構部4の加工具8の押圧手段として複室式エアシリンダ10の他にスプリング16が示されているが、加工具8における加工時の振動を吸収するためのものであり、図1の場合においても勿論適用されても構わない。
【0034】
前記したように、加工具8は被加工物7の曲面9に接触する加工部8aと軸部8cからなるが、加工部8aとしては曲面9に接触する接触面積が大きくとれ、且つ曲面になじみ易いものが望ましい。このため、加工部8aは弾性部材からなり、その形状も弧状のものが一例として挙げられる。発砲ウレタン樹脂は加工液とのぬれ性が低く、加工液の水質上に加工具8が浮き上り易く、能率が上がりにくい欠点を有する。
また、フェルトは研磨能率は高いが、加工時における工具形状の摩耗と変形が著しく曲面9の形状をくずし易い欠点を有する。このため、本発明では、例えば、フェルト,ナイロン,綿,絹の繊維質にポリウレタン樹脂を含浸させたものを用いている。
【0035】
一方、特に、研磨加工においては固定砥粒の砥石を用いることが高精度加工のため望ましい。本発明では、ポリビニルアセタールを主成分とする弾性砥石を一例として採用する。固定砥粒の砥石を用いたものは、ダイヤペーストなどの遊離砥粒工具を用いるものに比べて工具回転数の上昇,工具上の砥粒分布の物質性,加工後の洗浄の容易等において優れ、効能率,高精度の加工が可能になる。また、前記の本発明における弾性砥石は、使用時にはその表層から水分を含浸させて最表層を半溶解状態にして使用する。
一般に従来のPVA砥石そのものの場合、例えば、鏡面仕上げ用の#3000よりも細かい微細粒の場合には目詰まりし易く切れ味が低下し、スクラッチが生ずる欠点があった。これに対し、本発明の弾性砥石は、最表層を半溶融状態にあることにより鏡面研磨に適した砥粒保持力を得ることができ、適度の砥石の自生が生じ、目詰まり,スクラッチの発生を大幅に低減させることができる。
【0036】
図7(a),(b)は本発明の曲面加工装置の他の実施の形態を示すものである。図示では図1に示した制御機構部6や3軸直動スライド部2,第1および第2の電磁弁11,12等は示されていないが、勿論適用される。また、1軸直動スライド部3にその重量保持用の吊り下げ具17が設けられるが、図1においても吊り下げ具17は当然適用される。
本例の曲面加工装置1aは図示のようなシリンダ形状の被加工物7aを研磨加工するのに適したものであり、Y軸まわりに回動するためのB軸を有する傾斜テーブル18を設けた点に特徴を有する。なお、傾斜テーブル18を使用する関係上、力センサ5aは図示の位置に配置される。前記B軸を有する傾斜テーブル18を設けることにより4軸制御が可能になる。B軸は、加工具8の回転軸と被加工物7の曲面9aとのなす角度を常に一定に保持するためのものであり、これにより、加工具8の同一周速部を常に曲面9aに接触させることができ、工具押し付け力を精度よく検知できるメリットがある。研磨による形状精度の劣化が問題視される場合に特に有効である。
【0037】
図8(a),(b)は本発明の曲面加工装置の更に別の実施の形態を示すものである。この曲面加工装置1bは直交する2方向に異なる曲率半径を有するトーリック形状の被加工物7bや自由曲面を有する被加工物の研磨加工等に適するものである。構造上の特徴としてはX軸まわりの回動を可能とするためのA軸を有する傾斜テーブル19が採用される点である。また、加工具としては図示のようなタイヤ形状の弾性加工具20が使用される。なお、A軸を有する傾斜テーブル19は、弾性加工具20の回転軸が、被加工物7bのYZ断面曲線となす角度を加工点において常に一定とするためである。これによって、弾性加工具20上の同一周速部を常に被加工物7bの曲面9bに接触させることができ、曲面9bへの工具押し付け力を精度よく検知できるメリットを有する。また、特に研磨による形状精度の劣化が問題視される場合に有効である。
【0038】
【発明の効果】
1)本発明の請求項1に記載の曲面加工装置によれば、倣い動作手段とこれと別途の工具軌跡を発生させる手段とを設けることにより、目標の理想形状に対する加工面(曲面)のうねりを力センサにより検出することが可能になり、また、工具押し付け力の波形を演算評価して倣い動作の応答特性を所望の状態に調整することが可能になる。このため、曲率の精度向上の仕上げ加工に加えて曲面のうねりを除去することができる。
【0039】
2)本発明の請求項2に記載の曲面加工装置によれば、複室式エアシリンダを用いることにより衝撃的加圧をさけることができ、且つシリンダの機械的摩擦による応答速度の低さをカバーすることができる。
【0040】
3)本発明の請求項3に記載の曲面加工装置によれば、複室式シリンダの各室のエア圧を独立に制御することができるため、応答性の向上や自由度の向上が図れる。また、分解能を0.05[kgf/cm]以下にすることにより曲面形状をくずさないで表層より1[μm]厚み以下の微少研磨が可能になる。
【0041】
4)本発明の請求項4に記載の曲面加工装置によれば、この制御パラメータを用いることにより加圧の即応性と応答性の調整が容易に行われる。
【0042】
5)本発明の請求項5に記載の曲面加工装置によれば、この制御パラメータを用いることにより、加工具の加工物への追従動作をうねりの位相に対して遅らせる調整が容易にできる。
【0043】
6)本発明の請求項6に記載の曲面加工装置によれば、この制御パラメータを用いることにより加工具の加工面への追従動作をうねりの位相に対して早める調整が容易にできる。
【0044】
7)本発明の請求項7に記載の曲面加工装置によれば、請求項4,5,6の制御パラメータを組み合わせて使用するため、加工具の加工面への追従動作の自由度を高めることができ、異なる周期のうねりが混在する実際上の加工において効率的なうねり除去ができる。
【0045】
8)本発明の請求項8に記載の曲面加工装置によれば、加工具の加工部にフェル等の繊維質にポリウレタン樹脂を含浸したものを使用することにより曲面形状をくずさないで効果的な加工ができ、且つ加工具の寿命の向上が図れる。
【0046】
9)本発明の請求項9に記載の曲面加工装置によれば、加工具の曲面に接触する加工部の部位を円弧状に形成することにより被加工物との接触面積の向上となじみ性の向上が図れ、高精度の加工を行うことができる。
【0047】
10)本発明の請求項10に記載の曲面加工装置によれば、本発明の弾性砥石を用いることにより、高能率,高精度の加工ができ、目詰まりやスクラッチの発生を大幅に低減させることができる。
【0048】
11)本発明の請求項11に記載の曲面加工装置によれば、シリンダ形状の加工面の高精度加工が可能になる。
【0049】
12)本発明の請求項12に記載の曲面加工装置によれば、トロイダル面や自由曲面の高精度加工が可能になる。
【図面の簡単な説明】
【図1】本発明の曲面加工装置の全体構成図。
【図2】制御量Aの演算方法を説明するための時間,工具押し付け力線図。
【図3】制御量Bの演算方法を説明するための時間,工具押し付け力線図。
【図4】制御量Cの演算方法を説明するための時間,工具押し付け力線図。
【図5】本発明の曲面加工装置による曲率粗さに沿った加工を示す模式図。
【図6】本発明の曲面加工装置によるうねり除去の加工方法を説明するための模式図。
【図7】本発明の曲面加工装置の他の実施の形態を示す部分構成図。
【図8】本発明の曲面加工装置の更に別の実施の形態を示す部分構成図。
【符号の説明】
1 曲面加工装置
1a 曲面加工装置
1b 曲面加工装置
2 3軸直動スライド部
3 1軸直動スライド部
3a 本体機構部
4 推力発生機構部
5 力センサ
5a 力センサ
6 制御機構部
6a パソコン
7 被加工物
7a 被加工物
7b 被加工物
8 加工具
8a 加工部
8b 工具スピンドル
8c 軸部
9 曲面
9a 曲面
9b 曲面
10 複室式エアシリンダ
10a 前進駆動室
10b 後退駆動室
11 第1の電磁弁
12 第2の電磁弁
13 高圧空気源
14 ピストン
15 ロードセルアンプ
16 スプリング
17 吊り下げ具
18 傾斜テーブル
19 傾斜テーブル
20 弾性加工具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a curved surface processing apparatus for finishing a curved surface shape portion of a workpiece such as a lens, a mirror, and a mold, for example, in an ultra-precision manner, and in particular, removes slight waviness on the processed surface of the workpiece. The present invention relates to a curved surface processing apparatus capable of obtaining a high-quality finished surface.
[0002]
[Prior art]
There are many known techniques relating to a curved surface processing apparatus for precisely processing and finishing a curved surface of a workpiece. A mirror surface finish of a curved mold has been put to practical use using a low elastic modulus processing tool as a polisher that is easily elastically deformed and is easily adapted to the surface to be processed (surface to be polished). In addition, many of these polishers are usually used for polishing in combination with loose abrasive grains such as diamond powder and silica.
[0003]
As a known technique for performing finishing processing with high shape accuracy using these processing tools, there is a “precision curved surface processing method” disclosed in Japanese Patent Laid-Open No. 61-265257. In addition to the method disclosed in Japanese Patent Laid-Open No. 61-265657, as a mechanism for maintaining a constant pressure that keeps the tool pressing force of the processing tool constant, Japanese Patent Laid-Open No. 7-100751 and Japanese Patent Laid-Open No. 8-197404 What is disclosed.
[0004]
In the above-described known techniques, a spring or a weight is used as the pressurizing mechanism. However, in Japanese Patent Laid-Open Nos. 7-68456 and 7-241766, an air cylinder, a piezo element, a ball screw feed mechanism, and the like are used. A simple active processing mechanism is used. Further, in the case of this pressurizing mechanism, feedback control is performed in which the pressing force applied to the workpiece side from the processing tool is detected and the pressing force is made constant.
[0005]
[Problems to be solved by the invention]
Each of the above-described known techniques has characteristics, and has a function capable of precisely finishing the surface without destroying the shape of the pre-processed surface. For example, a surface roughness curve having a wavelength of about 1 [mm]. There is a problem that the undulation of the roughness curve having a long period of undulation cannot be effectively removed. For this reason, the conventional technique only employs a machining method in which the tool contact area of the work tool with respect to the work piece is enlarged to remove waviness as much as possible.
[0006]
However, with this processing method, it has been difficult to remove the waviness of the curved surface in which the concave surface and the convex surface are mixed. That is, in the curved surface processing, it is necessary for the precision curved surface finishing to correct both the roughness and the waviness of the curved surface, but there is no technology that satisfies both of them in the prior art.
[0007]
The present invention was devised in view of the above circumstances, and a processing tool whose shape is adjusted so as to finish the surface roughness with high accuracy makes it easy to swell with a period longer than the contact length of the processing tool. An object of the present invention is to provide a curved surface processing apparatus that can remove and perform highly accurate curved surface processing.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a curved surface processing apparatus according to claim 1 is a processing apparatus that performs curved surface processing while imitating a processing tool on the surface of a workpiece, and the apparatus is controlled by a control device. A three-axis linearly-moving slide portion that is controlled to be positioned at a position corresponding to the shape of the curved surface of the surface of the workpiece by moving the workpiece in the directions of three orthogonal axes (X, Y, Z axes); A single-axis linear slide portion that moves parallel to one axis of the workpiece and holds the processing tool, and a thrust generation that applies a thrust force to the workpiece by the processing tool by applying a thrust to the single-axis linear motion slide portion Refer to the mechanism, the force sensor for detecting the tool pressing force applied to the workpiece by the thrust generating mechanism, the output value of the force sensor and the target tool pressing force, and based on the difference Based on the calculated control parameters, the tool pushing by the thrust generating mechanism And providing a control mechanism for controlling the attaching force.
[0009]
The curved surface processing apparatus according to claim 2 is characterized in that the thrust of the thrust generating mechanism is loaded by a multi-chamber air cylinder.
[0010]
The curved surface processing apparatus according to claim 3 is the curved surface processing apparatus according to claim 2, wherein the air pressure supplied from the high pressure air source to each chamber of the multi-chamber air cylinder is controlled by a solenoid valve, and the resolution thereof is The sensitivity is adjusted to 0.05 [kgf / cm] or less.
[0011]
The curved surface machining apparatus according to claim 4 is the curved surface machining apparatus according to claim 1, wherein the control parameter is proportional to an operator adjustable to a difference between the tool pressing force and the target tool pressing force at a certain time. It consists of what multiplied the coefficient.
[0012]
The curved surface processing apparatus according to claim 5 is the curved surface processing apparatus according to claim 1, wherein the control parameter is a difference between the tool pressing force and a target tool pressing force in a time range slightly before and a certain time range. It is characterized in that it is obtained by multiplying the integral value of x by an operator-adjustable proportional constant.
[0013]
The curved surface processing apparatus according to claim 6 is the curved surface processing apparatus according to claim 1, wherein the control parameter is a difference between the tool pressing force and a target tool pressing force at a certain time and a slightly earlier time. It is characterized by comprising a slope multiplied by a proportional constant adjustable by the operator.
[0014]
The curved surface processing apparatus according to claim 7 is the curved surface processing apparatus according to claim 1, wherein the control parameter is proportional to an operator adjustable to a difference between the tool pressing force and the target tool pressing force at a certain time. A control parameter obtained by multiplying a coefficient, and a control parameter obtained by multiplying an integral value of a difference between the tool pressing force and the target tool pressing force at a certain time and a time range slightly before that by an operator's adjustable proportional constant. It consists of a combination of at least two control parameters among control parameters obtained by multiplying the slope of the difference between the tool pressing force and the target tool pressing force at a time and a time slightly before that by a proportional constant that can be adjusted by the operator. It is characterized by that.
[0015]
The curved surface processing apparatus according to claim 8 is the curved surface processing apparatus according to claim 1, wherein the processing tool includes a processing portion and a shaft portion for holding the processing portion on a tool spindle. The portion is made of a felt, nylon, cotton, or silk fiber impregnated with a polyurethane resin.
[0016]
A curved surface machining apparatus according to a ninth aspect is the curved surface machining apparatus according to the eighth aspect, wherein a portion of the machining portion that contacts the workpiece is formed in an arc shape.
[0017]
The curved surface processing apparatus according to claim 10 is the curved surface processing apparatus according to claim 1, wherein the processing tool includes a processing portion and a shaft portion for holding the processing portion on a tool spindle. The part is made of an elastic grindstone mainly composed of polyvinyl acetal, and is used by impregnating moisture from the surface layer and using the outermost layer in a semi-dissolved state.
[0018]
A curved surface machining apparatus according to an eleventh aspect is the curved surface machining apparatus according to the first aspect, wherein the three-axis linear motion slide portion is rotated around any one of two axes other than the cutting direction axis. A movable tilting mechanism is provided.
[0019]
A curved surface machining apparatus according to a twelfth aspect of the invention is the curved surface machining apparatus according to the first aspect, wherein the three-axis linear motion slide portion is provided with an inclination mechanism portion that can rotate around two axes other than the cutting direction axis. It is characterized by doing.
[0020]
For example, the work piece is placed on a three-axis linear motion slide portion so as to move the work tool along the curved surface of the work surface of the work piece, and the three-axis linear motion slide portion is used to place the work tool on the three-axis linear motion slide portion. It is configured to move along a direction parallel to one of the axes. The thrust generation mechanism applies a tool pressing force to the work tool to load the workpiece, and the thrust is detected by a force sensor. Based on the detection signal, the tool pressing force and the target tool pressing force High-precision curved surface finishing is performed by automatically controlling the thrust of the processing tool by the control parameter obtained based on the difference to finish the surface roughness and waviness of the workpiece. In addition, the material of the processing part of the processing tool is devised, or one axis other than the three axes is formed as two axes to perform precision machining finishing of a workpiece having a curved surface with a complicated shape.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the curved surface processing apparatus of the present invention will be described in detail with reference to the drawings. First, a schematic configuration of an embodiment of a curved surface processing apparatus of the present invention will be described with reference to FIG.
The curved surface processing apparatus 1 is roughly divided into a three-axis linear motion slide portion 2 on which a workpiece 7 is placed and a processing tool 8 and a single axis that moves along one of the three axes. A thrust generating mechanism unit 4 that applies a tool pressing force to the workpiece 7 by applying a thrust to the linear moving slide unit 3, the uniaxial linear moving slide unit 3, a force sensor 5 that detects the tool pressing force, It includes a control mechanism unit 6 that calculates a control parameter with reference to an output value of the sensor 5 and a target tool pressing force, and adjusts and controls the tool pressing force by the processing tool 8.
[0022]
The triaxial linearly moving slide portion 2 has a structure capable of linearly moving along the X, Y, and Z axes, and is controlled by a control device (not shown). The workpiece 7 is positioned and controlled at a position corresponding to the shape of the curved surface 9 on the surface by the triaxial linearly moving slide portion 2. In this example, the force sensor 5 is mounted on the triaxial linearly moving slide portion 2, and the workpiece 7 is mounted on the force sensor 5.
[0023]
In this example, the uniaxial linearly moving slide portion 3 is configured to move along the Z-axis direction, and includes a main body mechanism portion 3a that holds the processing tool 8 and moves in the Z-axis direction. The processing tool 8 includes a processing portion 8a that comes into contact with the curved surface 9 of the workpiece 7, a support shaft 8c for holding the processing portion 8a on the tool spindle 8b, and the like.
[0024]
In this example, the thrust generation mechanism unit 4 includes a multi-chamber air cylinder 10, a first electromagnetic valve 11, a second electromagnetic valve 12, a high-pressure air source 13, and the like. The multi-chamber air cylinder 10 includes a forward drive chamber 10a and a reverse drive chamber 10b, and a piston 14 that separates both the chambers 10a and 10b is connected to the uniaxial linearly moving slide portion 3. The sensitivity of the resolution of the first and second electromagnetic valves 11 and 12 is adjusted to 0.05 [kgf / cm]. When the curved surface 9 of the workpiece 7 and the processing tool 8 are in point contact, the above-described resolution is required to realize a minute amount processing of 1 [μm] thickness or less from the surface layer without destroying the curved surface shape. Become.
[0025]
The force sensor 5 is a so-called load cell, and is connected to the personal computer 6 a of the control mechanism unit 6 via the load cell amplifier 15. The tool pressing force of the processing tool 8 detected by the force sensor 5 is detected in real time by the force sensor, and this detection signal is input to the personal computer 6 via the load cell amplifier 15 and stored. The personal computer 6 sends control signals 1 and 2 for opening and closing the first and second electromagnetic valves 11 and 12. The control signal 1 is a PID control signal (proportional, integral, differential), and the control signal 2 is a constant control signal.
[0026]
PC 6a is for calculating a control parameter to be described later. In the calculation by the personal computer 6, when the tool pressing force of the processing tool 8 is different from the standard tool pressing force, the difference is calculated and the control parameter is determined by a predetermined control parameter calculation method. Control based on this control parameter is performed. Signals 1 and 2 are issued. Thereby, opening / closing adjustment of the 1st and 2nd solenoid valves 11 and 12 is performed, and the high pressure air from the high pressure air source 13 is sent to the forward drive chamber 10 and / or the reverse drive chamber 10b.
[0027]
Thereby, the uniaxial linearly-moving slide part 3 operates, and the tool pressing force by the processing tool 8 can be adjusted and controlled. By appropriately adjusting the adjustment control method using the control parameters, it is possible to process the curved surface 9 having various shapes with high accuracy.
In particular, since the curved surface processing apparatus 1 of the present invention has the 1-axis linear motion slide portion 3 in addition to the 3-axis linear motion slide portion 2, the movement in the Z-axis direction is independent of the movement of the 3-axis linear motion slide portion 2. Therefore, not only high-precision processing of the surface roughness but also undulation can be easily removed.
[0028]
Next, how to obtain three types of control parameters will be described with reference to FIGS. FIG. 2 shows a control parameter consisting of a control value A. In the figure, the horizontal axis represents the machining elapsed time T, the vertical axis represents the pressing force F, and the curve Fa represents the change in the tool pressing force by the processing tool 8. F 0 indicates a target pressing force.
In this example, F 0 is a constant value, but is not limited to this. A tool pressing force on the curve Fa at a certain arbitrary time T 1 is P 1, and a difference (deviation amount) of P 1 from F 0 is D. The control value A is obtained by subtracting the proportional coefficient K 1 from the deviation amount D. The proportional coefficient K 1 is a coefficient that can be adjusted by the operator, and corresponds to a discretionary adjustment coefficient that enables the curved surface accuracy desired by the operator and the degree of undulation to be obtained. Note that control by the control amount A is intended to improve responsiveness and responsiveness.
[0029]
FIG. 3 shows a method for calculating a control parameter composed of the control value B. Going back by the time [Delta] T 2 designated from a certain arbitrary time T 1, the tool pressing force on the curve Fa and P 1 and P 2 in only back position time T 1 and [Delta] T 2, the pressing value and a target tool which such The area S within the time ΔT 2 between the force F 0 is obtained. Control amount B is determined from multiplied by the proportional coefficient K 2 to the area S.
The proportional coefficient K 2 is an operator's discretionary adjustment coefficient as with the proportional coefficient K 1 . This control amount B makes it easy to adjust the follow-up operation of the processing tool 8 to the curved surface 9 with respect to the undulation phase.
[0030]
FIG. 4 shows a method for calculating a control parameter composed of the control value C. The data is traced back from the arbitrary time T 1 by the designated time ΔT 3 , and the time at that time is T 0 . The tool pressing force at time T 1 and T 0 Metropolitan and P 1 and P 3, obtains the inclination angle θ of the line of the line segment P 3 P 1 and the target tool pressing force F 0 connecting the P 3 and P 2, This tan θ is obtained. The control amount C is obtained by multiplying the tan θ by the proportional coefficient K 3 . The proportionality coefficient K 3 is an operator's discretionary adjustment coefficient, similar to K 1 and K 2 described above. This control amount C makes it easy to adjust the follow-up operation of the processing tool 8 to the curved surface 9 with respect to the undulation phase.
[0031]
By processing the workpiece 7 with the processing tool 8, the control amounts A, B, and C are calculated by the personal computer 6a. Although the control signals 1 and 2 are commanded from the personal computer 6a to the first and second solenoid valves 11 and 12, of course, in the present invention, the control amounts A, B and C are independently issued as control command values. Although possible, the control command values are issued to the first and second solenoid valves by summing the values of the control amounts A, B, and C. In this case, how to adjust the values of the proportional constants K 1 , K 2 , K 3 is appropriately set according to the purpose of processing. That is, adjustment control is performed for the purpose of maintaining only the surface roughness while maintaining the shape of the pre-machined surface, or for the purpose of removing waviness of a specific period while improving the surface roughness. The form of is different.
[0032]
FIG. 5 is a schematic diagram showing a basic processing mode for improving the surface roughness, and FIG. 6 is a schematic diagram showing a processing mode for removing waviness as the surface roughness is improved. In FIG. 6, a curve E indicates the curved surface 9 of the workpiece 7, and a curve F indicates the tool trajectory of the processing tool 8.
Adjusting the control amounts A, B and C so that the tool path of the processing tool 8 is as shown in the figure, and controlling the operation of the processing tool 8 via the first and second electromagnetic valves 11 and 12. Thus, the processing tool 8 can be removed by making it come into strong contact with the illustrated overlapping portion G. In contrast, it is possible to control the processing tool 8 to weakly contact the valleys that are not superposed. That is, according to the present invention, a finish curved surface with a desired machining accuracy can be obtained by adjusting and controlling the control amounts A, B, and C in accordance with the curved surface shape of the workpiece 7.
[0033]
In FIG. 5, a spring 16 is shown in addition to the multi-chamber type air cylinder 10 as a pressing means for the processing tool 8 of the thrust generating mechanism section 4, but for absorbing vibration during processing in the processing tool 8. Of course, the present invention may be applied to the case of FIG.
[0034]
As described above, the processing tool 8 includes the processing portion 8a that contacts the curved surface 9 of the workpiece 7 and the shaft portion 8c. The processing portion 8a has a large contact area that contacts the curved surface 9 and is familiar with the curved surface. An easy one is desirable. For this reason, the process part 8a consists of an elastic member, and the shape is an arc-shaped thing as an example. The foamed urethane resin has low wettability with the processing liquid, and the processing tool 8 tends to float on the water quality of the processing liquid, and has a drawback that the efficiency is difficult to increase.
In addition, the felt has a high polishing efficiency, but has a defect that the tool shape is worn and deformed at the time of machining and the shape of the curved surface 9 is easily broken. For this reason, in this invention, what impregnated the polyurethane resin to the fiber of felt, nylon, cotton, and silk is used, for example.
[0035]
On the other hand, in particular, in the polishing process, it is desirable to use a fixed abrasive grindstone for high-precision processing. In this invention, the elastic grindstone which has polyvinyl acetal as a main component is employ | adopted as an example. Those using fixed abrasive wheels are superior to tools using loose abrasive tools such as diamond paste in terms of increased tool rotation speed, material distribution of abrasive distribution on the tool, and easy cleaning after processing. Efficient, high-precision processing becomes possible. Further, the elastic grindstone in the present invention is used by impregnating moisture from the surface layer of the elastic grindstone in a semi-dissolved state at the time of use.
In general, in the case of a conventional PVA grindstone itself, for example, in the case of fine particles finer than # 3000 for mirror finishing, there is a defect that clogging is easy and the sharpness is lowered and scratches are generated. On the other hand, the elastic grindstone of the present invention can obtain an abrasive grain holding force suitable for mirror polishing by having the outermost layer in a semi-molten state, resulting in proper generation of the grindstone, clogging, and generation of scratches. Can be greatly reduced.
[0036]
7 (a) and 7 (b) show another embodiment of the curved surface processing apparatus of the present invention. In the drawing, the control mechanism unit 6, the three-axis linear motion slide unit 2, the first and second electromagnetic valves 11, 12, and the like shown in FIG. 1 are not shown, but of course they are applied. Further, the suspending tool 17 for holding the weight is provided on the uniaxial linearly-moving slide portion 3, but the suspending tool 17 is naturally applied also in FIG.
The curved surface processing apparatus 1a of this example is suitable for polishing a cylindrical workpiece 7a as shown in the figure, and is provided with an inclined table 18 having a B axis for rotating around the Y axis. Characterized by points. In addition, the force sensor 5a is arrange | positioned in the position shown in figure on the relationship which uses the inclination table 18. FIG. By providing the tilt table 18 having the B-axis, 4-axis control can be performed. The B-axis is for always maintaining the angle formed by the rotation axis of the processing tool 8 and the curved surface 9a of the workpiece 7 so that the same peripheral speed portion of the processing tool 8 is always on the curved surface 9a. There is an advantage that the tool pressing force can be accurately detected. This is particularly effective when deterioration of shape accuracy due to polishing is regarded as a problem.
[0037]
8A and 8B show still another embodiment of the curved surface processing apparatus of the present invention. The curved surface processing apparatus 1b is suitable for polishing a toric-shaped workpiece 7b having different radii of curvature in two orthogonal directions and a workpiece having a free curved surface. As a structural feature, an inclined table 19 having an A axis for enabling rotation around the X axis is employed. Further, as the processing tool, an elastic processing tool 20 having a tire shape as illustrated is used. In addition, the inclination table 19 having the A axis is for always making the angle formed by the rotation axis of the elastic processing tool 20 and the YZ sectional curve of the workpiece 7b constant at the processing point. Thereby, the same peripheral speed part on the elastic processing tool 20 can always be brought into contact with the curved surface 9b of the workpiece 7b, and there is an advantage that the tool pressing force on the curved surface 9b can be accurately detected. In particular, this is effective when deterioration of shape accuracy due to polishing is regarded as a problem.
[0038]
【The invention's effect】
1) According to the curved surface machining apparatus of the first aspect of the present invention, the swell of the machining surface (curved surface) with respect to the target ideal shape is provided by providing a copying operation means and a means for generating a separate tool locus. Can be detected by the force sensor, and the waveform of the tool pressing force can be calculated and evaluated to adjust the response characteristic of the copying operation to a desired state. For this reason, the waviness of the curved surface can be removed in addition to the finishing process for improving the accuracy of curvature.
[0039]
2) According to the curved surface processing apparatus according to claim 2 of the present invention, impact pressure can be avoided by using a multi-chamber air cylinder, and the response speed due to mechanical friction of the cylinder is reduced. Can be covered.
[0040]
3) According to the curved surface processing apparatus of the third aspect of the present invention, since the air pressure in each chamber of the multi-chamber cylinder can be controlled independently, responsiveness and flexibility can be improved. Further, by setting the resolution to 0.05 [kgf / cm] or less, it is possible to perform fine polishing of 1 [μm] thickness or less from the surface layer without destroying the curved surface shape.
[0041]
4) According to the curved surface processing apparatus of the fourth aspect of the present invention, by using this control parameter, it is possible to easily adjust the responsiveness and responsiveness of pressurization.
[0042]
5) According to the curved surface processing apparatus of the fifth aspect of the present invention, by using this control parameter, it is possible to easily adjust the follow-up operation of the processing tool to the workpiece with respect to the undulation phase.
[0043]
6) According to the curved surface machining apparatus of the sixth aspect of the present invention, by using this control parameter, it is possible to easily adjust the speed of the follow-up operation of the machining tool to the machining surface with respect to the undulation phase.
[0044]
7) According to the curved surface machining apparatus of the seventh aspect of the present invention, since the control parameters of the fourth, fifth, and sixth aspects are used in combination, the degree of freedom of the tracking operation of the machining tool on the machining surface is increased. Therefore, efficient undulation removal can be performed in actual machining in which undulations of different periods are mixed.
[0045]
8) According to the curved surface processing apparatus according to claim 8 of the present invention, it is effective to use the processed part of the processing tool impregnated with a polyurethane resin in a fiber such as a fell without damaging the curved surface shape. Processing can be performed and the life of the processing tool can be improved.
[0046]
9) According to the curved surface processing apparatus according to claim 9 of the present invention, the contact area with the workpiece is improved and the conformability is improved by forming the portion of the processing portion in contact with the curved surface of the processing tool in an arc shape. Improvement can be achieved and high-precision machining can be performed.
[0047]
10) According to the curved surface processing apparatus according to claim 10 of the present invention, by using the elastic grindstone of the present invention, high-efficiency and high-precision processing can be performed, and the occurrence of clogging and scratches can be greatly reduced. Can do.
[0048]
11) According to the curved surface machining apparatus of the eleventh aspect of the present invention, high-precision machining of a cylinder-shaped machining surface is possible.
[0049]
12) According to the curved surface machining apparatus of the twelfth aspect of the present invention, high-precision machining of a toroidal surface and a free curved surface is possible.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a curved surface processing apparatus of the present invention.
FIG. 2 is a time and tool pressing force diagram for explaining a control amount A calculation method;
FIG. 3 is a time and tool pressing force diagram for explaining a method for calculating a control amount B;
FIG. 4 is a time and tool pressing force diagram for explaining a method of calculating a control amount C;
FIG. 5 is a schematic diagram showing processing along the curvature roughness by the curved surface processing apparatus of the present invention.
FIG. 6 is a schematic diagram for explaining a processing method for removing waviness by the curved surface processing apparatus of the present invention.
FIG. 7 is a partial configuration diagram showing another embodiment of the curved surface processing apparatus of the present invention.
FIG. 8 is a partial configuration diagram showing still another embodiment of the curved surface processing apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Curved surface processing apparatus 1a Curved surface processing apparatus 1b Curved surface processing apparatus 2 3 axis | shaft linear motion slide part 3 1 axis | shaft linear motion slide part 3a Main body mechanism part 4 Thrust generating mechanism part 5 Force sensor 5a Force sensor 6 Control mechanism part 6a Personal computer 7 Workpiece Object 7a Workpiece 7b Workpiece 8 Processing tool 8a Processing part 8b Tool spindle 8c Shaft part 9 Curved surface 9a Curved surface 9b Curved surface 10 Multi-chamber air cylinder 10a Forward drive chamber 10b Reverse drive chamber 11 First solenoid valve 12 Second Solenoid valve 13 High pressure air source 14 Piston 15 Load cell amplifier 16 Spring 17 Suspension tool 18 Inclination table 19 Inclination table 20 Elastic processing tool

Claims (12)

被加工物の表面に加工具を倣い動作しつつ曲面加工を行う加工装置であって、該装置は、制御装置によって直交3軸(X,Y,Z軸)方向に被加工物を移動し被加工物の表面の曲面の形状に見合った位置に位置決め制御される3軸直動スライド部と、前記3軸のうちの1軸に平行に移動し前記加工具を固持する1軸直動スライド部と、該1軸直動スライド部に推力を与えて前記加工具により被加工物に工具押し付け力を負荷する推力発生機構部と、該推力発製機構部により被加工物に負荷された工具押し付け力を検知する力センサと、該力センサの出力値と目標工具押し付け力とを参照し、その差分を基にして演算した制御パラメータにより前記推力発生機構部による工具押し付け力を制御する制御機構部とを設けることを特徴とする曲面加工装置。A processing apparatus for performing curved surface processing while following a processing tool on the surface of a workpiece, and the apparatus moves the workpiece in three orthogonal (X, Y, Z axis) directions by a control device. A three-axis linear motion slide portion that is positioned and controlled at a position corresponding to the shape of the curved surface of the workpiece, and a one-axis linear motion slide portion that moves parallel to one of the three axes and holds the processing tool. A thrust generating mechanism that applies a thrust to the workpiece by the processing tool by applying a thrust to the uniaxial linearly-moving slide, and a tool that is applied to the workpiece by the thrust generating mechanism A force sensor that detects force, a control mechanism unit that refers to an output value of the force sensor and a target tool pressing force, and controls the tool pressing force by the thrust generating mechanism unit based on a control parameter calculated based on the difference A curved surface characterized by the provision of Apparatus. 前記推力発生機構部の推力が複室式エアシリンダにより負荷されるものである請求項1に記載の曲面加工装置。  The curved surface processing apparatus according to claim 1, wherein the thrust of the thrust generation mechanism is loaded by a multi-chamber air cylinder. 前記複室式エアシリンダの各室に高圧エア源から供給される空気圧は電磁弁によりコントロールされ、その分解能は0.05[kgf/cm]以下に感度調整されることを特徴とする請求項2に記載の曲面加工装置。  3. The air pressure supplied from a high-pressure air source to each chamber of the multi-chamber air cylinder is controlled by a solenoid valve, and the sensitivity thereof is adjusted to 0.05 [kgf / cm] or less. The curved surface processing apparatus described in 1. 前記制御パラメータが、ある時刻における前記工具押し付け力と前記目標工具押し付け力との差分にオペレータの調整可能な比例係数を乗じたものからなることを特徴とする請求項1に記載の曲面加工装置。  The curved surface machining apparatus according to claim 1, wherein the control parameter is obtained by multiplying a difference between the tool pressing force and the target tool pressing force at a certain time by a proportional coefficient adjustable by an operator. 前記制御パラメータが、ある時刻とそれよりやや前の時刻範囲における前記工具押し付け力と目標工具押し付け力との差分の積分値にオペレータの調整可能な比例常数を乗じたものからなることを特徴とする請求項1に記載の曲面加工装置。  The control parameter is formed by multiplying an integral value of a difference between the tool pressing force and a target tool pressing force at a certain time and a slightly earlier time range by an operator-adjustable proportional constant. The curved surface processing apparatus according to claim 1. 前記制御パラメータが、ある時刻とそれよりやや前の時刻における前記工具押し付け力と目標工具押し付け力との差分の傾きにオペレータの調整可能な比例常数を乗じたものからなることを特徴とする請求項1に記載の曲面加工装置。  The control parameter is formed by multiplying a slope of a difference between the tool pressing force and a target tool pressing force at a certain time and a slightly earlier time by a proportional constant adjustable by an operator. The curved surface processing apparatus according to 1. 前記制御パラメータが、ある時刻における前記工具押し付け力と前記目標工具押し付け力との差分にオペレータの調整可能な比例係数を乗じた制御パラメータと、ある時刻とそれよりやや前の時刻範囲における前記工具押し付け力と目標工具押し付け力との差分の積分値にオペレータの調整可能な比例常数を乗じた制御パラメータと、ある時刻とそれよりやや前の時刻における前記工具押し付け力と目標工具押し付け力との差分の傾きにオペレータの調整可能な比例常数を乗じた制御パラメータのうちの少なくとも2つの制御パラメータを組み合わせたものからなることを特徴とする請求項1に記載の曲面加工装置。  The control parameter is a control parameter obtained by multiplying a difference between the tool pressing force and the target tool pressing force at a certain time by an operator-adjustable proportional coefficient, and the tool pressing at a certain time and a time range slightly before that. The control parameter obtained by multiplying the integral value of the difference between the force and the target tool pressing force by an operator-adjustable proportional constant, and the difference between the tool pressing force and the target tool pressing force at a certain time and slightly before that time. 2. The curved surface processing apparatus according to claim 1, wherein the curved surface machining apparatus is composed of a combination of at least two control parameters among control parameters obtained by multiplying an inclination by a proportional constant adjustable by an operator. 前記加工具が、加工部と、該加工部を工具スピンドルに保持するための軸部とからなり、前記加工部が、フェルト,ナイロン,綿,絹の繊維質にポリウレタン樹脂を含浸させたものからなることを特徴とする請求項1に記載の曲面加工装置。  The processing tool comprises a processing part and a shaft part for holding the processing part on a tool spindle, and the processing part is made of a felt, nylon, cotton, silk fiber impregnated with polyurethane resin. The curved surface processing apparatus according to claim 1, wherein: 前記加工部の被加工物との接触する部位が円弧状に形成されることを特徴とする請求項8に記載の曲面加工装置。  The curved surface processing apparatus according to claim 8, wherein a portion of the processing portion that contacts the workpiece is formed in an arc shape. 前記加工具が、加工部と、該加工部を工具スピンドルに保持するための軸部とからなり、前記加工部が、ポリビニルアセタールを主成分とする弾性砥石からなり、その表層から水分を含浸させて最表層を半溶解状態して使用することを特徴とする請求項1に記載の曲面加工装置。 The processing tool includes a processing portion and a shaft portion for holding the processing portion on a tool spindle, and the processing portion includes an elastic grindstone mainly composed of polyvinyl acetal, and impregnates moisture from the surface layer. The curved surface processing apparatus according to claim 1, wherein the outermost surface layer is used in a semi-molten state. 前記3軸直動スライド部が、その切り込み方向軸以外の2軸のうちのいずれか1軸のまわりに回動可能な傾斜機構部を付設するものであることを特徴とする請求項1に記載の曲面加工装置。  The three-axis linear motion slide portion is provided with a tilting mechanism portion that is rotatable around any one of two axes other than the cut-direction axis. Curved surface processing equipment. 前記3軸直動スライド部が、その切り込み方向軸以外の2軸まわりに回動可能な傾斜機構部を付設することを特徴とする請求項1に記載の曲面加工装置。  2. The curved surface processing apparatus according to claim 1, wherein the three-axis linearly-moving slide part is provided with a tilting mechanism part that is rotatable around two axes other than the cutting direction axis.
JP13944497A 1997-05-14 1997-05-14 Curved surface processing equipment Expired - Fee Related JP3733444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13944497A JP3733444B2 (en) 1997-05-14 1997-05-14 Curved surface processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13944497A JP3733444B2 (en) 1997-05-14 1997-05-14 Curved surface processing equipment

Publications (2)

Publication Number Publication Date
JPH10315111A JPH10315111A (en) 1998-12-02
JP3733444B2 true JP3733444B2 (en) 2006-01-11

Family

ID=15245354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13944497A Expired - Fee Related JP3733444B2 (en) 1997-05-14 1997-05-14 Curved surface processing equipment

Country Status (1)

Country Link
JP (1) JP3733444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293986A (en) * 2012-03-02 2013-09-11 深圳市蓝韵实业有限公司 One-key startup and shutdown control device for digital X-ray photography system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136373A (en) * 2001-10-31 2003-05-14 Ishikawa Seiki:Kk Copying work device
CN100387397C (en) * 2005-02-01 2008-05-14 朱志刚 Control method and device for crystal ball grinding / polishing machine
JP4550773B2 (en) 2006-06-05 2010-09-22 株式会社三井ハイテック Profile grinding machine
JP2010221396A (en) * 2010-05-24 2010-10-07 Mitsui High Tec Inc Profile grinder
CN101905438A (en) * 2010-07-13 2010-12-08 厦门大学 Polishing pressure detection device for heavy-calibre element
CN103878666B (en) * 2014-03-28 2016-06-29 中国科学院自动化研究所 A kind of free form surface robot polishing system
CN107052950B (en) * 2017-05-25 2018-10-12 上海莫亭机器人科技有限公司 A kind of complex-curved sanding and polishing system and method
CN113732781A (en) * 2021-09-09 2021-12-03 孚坤智能科技(上海)有限公司 Force-controlled floating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293986A (en) * 2012-03-02 2013-09-11 深圳市蓝韵实业有限公司 One-key startup and shutdown control device for digital X-ray photography system
CN103293986B (en) * 2012-03-02 2015-09-23 深圳市蓝韵实业有限公司 One-key startup and shutdown control device for digital X-ray photography system

Also Published As

Publication number Publication date
JPH10315111A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP3733444B2 (en) Curved surface processing equipment
KR102413618B1 (en) Method for shaping and finishing a workpiece
JP2002535151A5 (en)
JP2002535151A (en) Polishing apparatus and method
US20050186887A1 (en) Processing method and apparatus
KR100408170B1 (en) Optical polishing method and apparatus
EP1512493B1 (en) A curved surface machining method
JP2005279902A (en) Polishing device and polishing method
JPH10286772A (en) Polishing tool, and grinding tool
JP2005342875A (en) Curved surface machining device, optical element and optical element mold formed by using the device, and calibration method of parallel link mechanism
JPH0512108B2 (en)
JP4125894B2 (en) Polishing apparatus and method
JPH10175150A (en) Curved surface polishing method and device thereof
JP4216557B2 (en) Polishing apparatus and polishing method
JP2000135664A (en) Disk sander with elastic mechanism
JPS63232957A (en) Profile polisher
WO2023047437A1 (en) Processing estimation device
JPH0283152A (en) Polishing method for rotation symmetrical curved face
WO2024075284A1 (en) Contact dynamic stiffness calculation system, machining estimation device, and proccessing system
JP3222612B2 (en) Surface processing method
WO2023058107A1 (en) Machining device
JPH10109259A (en) Curved surface machining device
JPH04331058A (en) Concave lens finishing method and device
JPH0431820B2 (en)
JP2002200548A (en) Polishing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees