JP3733153B2 - Multilayer printed wiring board - Google Patents

Multilayer printed wiring board Download PDF

Info

Publication number
JP3733153B2
JP3733153B2 JP31585494A JP31585494A JP3733153B2 JP 3733153 B2 JP3733153 B2 JP 3733153B2 JP 31585494 A JP31585494 A JP 31585494A JP 31585494 A JP31585494 A JP 31585494A JP 3733153 B2 JP3733153 B2 JP 3733153B2
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
multilayer printed
polycarbodiimide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31585494A
Other languages
Japanese (ja)
Other versions
JPH08148838A (en
Inventor
英治 佐々木
聡 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Nisshinbo Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Nisshinbo Industries Inc filed Critical Nisshinbo Holdings Inc
Priority to JP31585494A priority Critical patent/JP3733153B2/en
Publication of JPH08148838A publication Critical patent/JPH08148838A/en
Application granted granted Critical
Publication of JP3733153B2 publication Critical patent/JP3733153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電子機器に用いられる多層プリント配線板に関するものである。
【0002】
【従来の技術】
多層プリント配線板は、従来、回路を形成した複数枚のプリント配線板(内層基板)と、これらを接着すると共に絶縁層を形成する半硬化接着剤(プリプレグと称される)とを交互に重ねたものを加熱加圧して接着硬化させた後、プリント配線板間の導通を取るためのスルーホールを形成し、スルーホールメッキ等を実施して製作されている。
【0003】
このような多層プリント配線板に関しては、近年、電子機器、特に通信やコンピュータの分野で情報処理の高速化が要求されるに従い、小型化、高密度化が迫られていて、このような要求に対応するためには、絶縁層の薄層化と共に、低誘電率化や耐熱性の向上が必要とされている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来より使用されているプリプレグは、一般にガラスクロス等の基材にワニス状のエポキシ樹脂を含浸し、乾燥工程で溶剤等の揮発成分を除去すると共に、ある程度樹脂の硬化反応を進行させたものであり、シート(或いはロール)状にして保存又は作業に供されているが、ガラスクロス等の基材とワニス状のエポキシ樹脂よりなる複合材である以上、絶縁層の薄層化には限界があり、しかもエポキシ樹脂の低い耐熱性に関しては、全く考慮されていない。
【0005】
又、プリプレグの品質は、多層プリント配線板の特性や成形性に大きく影響するため、厳密な管理が必要とされるが、前記プリプレグにおけるエポキシ樹脂は、通常Bステージと呼ばれる半硬化の不安定な状態にあるので、保存中に室温での硬化反応の進行や吸湿のため変質し、作業性や製品品質の低下を来すことがある。
【0006】
一方、耐熱性に優れた樹脂材料として、近年ポリイミド樹脂が注目されているが、このポリイミド樹脂は、N−メチル−2−ピロリドンのような高沸点の特殊溶剤にしか溶けないため、脱溶剤や成形性、高温での後硬化の必要性等、作業性に多くの問題があり、しかも誘電率は必ずしも満足できるレベルにはなく、更に、単独では半硬化のフィルム状にはならないため、ガラスクロス等に含浸する複合構造とせざるを得ず、やはり絶縁層の薄層化には限界がある。
【0007】
本発明は、上記のような従来技術の難点を解消し、絶縁接着層の耐熱性を向上し、しかも低誘電率化及び薄層化を可能とした多層プリント配線板を提供することを目的としてなされた。
【0008】
上記目的を達成するために本発明が採用した多層プリント配線板の構成は、内層基板と絶縁接着層とを交互に積層且つ接着してなる多層プリント配線板において、前記絶縁接着層として
【化4】
(式中、R は水素原子、低級アルキル基又は低級アルコキシ基を表す)又は
【化5】
(式中、R及びRは水素原子、低級アルキル基又は低級アルコキシ基を、Xは酸素原子又はメチレン基をそれぞれ表す)又は
【化6】
(式中、R 及びR は水素原子、低級アルキル基又は低級アルコキシ基を表す)で表される有機ジイソシアネートから得られた、フィルム状のポリカルボジイミド樹脂を用いたことを特徴とするものである。
【0009】
以下に本発明を詳細に説明する。
【0010】
本発明で使用するポリカルボジイミド樹脂そのものはすでに公知であり、一般的には以下の反応式に示されるように、触媒の存在下にジイソシアナートの脱炭酸縮合反応により合成される。尚、下記の反応式におけるnは平均重合度を示しており、本発明で使用するポリカルボジイミド樹脂に関しては、10以上であれば十分である。
n(OCN−R−NCO)→(−R−N=C=N−)n+nCO2
【0011】
本発明で使用するポリカルボジイミド化合物の製造のための有機ジイソシアネートとしては、耐熱性の観点から芳香族系の有機ジイソシアネートを使用する。
【0012】
有機ジイソシアナート残基である上記式に於けるRとしては、従って芳香族ジイソシアナート残基が好適であり、このような有機ジイソシアナートとしては、例えば、
【化7】
(式中、R1は水素原子、低級アルキル基又は低級アルコキシ基を表す)又は
【化8】
(式中、R2及びR3は水素原子、低級アルキル基又は低級アルコキシ基を、Xは酸素原子又はメチレン基をそれぞれ表す)又は
【化9】
(式中、R4及びR5は水素原子、低級アルキル基又は低級アルコキシ基を表す)で表されるものを挙げることができる。
【0013】
更に具体的には、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメトキシ−4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルエーテルジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1−メトキシフェニル−2,4−ジイソシアネート、o−トリジンジイソシアネート又はそれらの混合物を例示することができるのである。
【0014】
前記の反応は、溶剤中又は無溶剤下でも進行するが、フィルム状のポリカルボジイミド樹脂を得るためには、適当な溶剤を選択して合成し、ワニス状にすることが望ましくこのような合成溶媒としては、例えば、テトラクロロエチレン、トリクロロエチレン、テトラヒドロフラン、1,4−ジオキサン、3,5−ジオキソラン、キシレン、トルエン又はクロロベンゼン等の単独又は混合溶媒を挙げることができるが、実際には、使用する原料としてのイソシアネートの種類及びフィルムの作成方法その他に応じ、適宜に選択して使用することができる。
【0015】
特に、キャスト法により強度の高いポリカルボジイミドフィルムを得ようとする場合は、沸点が80℃以上の塩素化脂肪族炭化水素又は脂環式エーテルを使用することが好ましい。
【0016】
又、前記反応において使用するカルボジイミド化触媒としては、例えば1−フェニル−2−ホスホレン−1−オキシド、3−メチル−2−ホスホレン−1−オキシド、1−エチル−3−メチル−2−ホスホレン−1−オキシド、或いはこれらの3−ホスホレン異性体等のホスホレンオキシドを使用することができる。
【0017】
而して、本発明の特徴は、上記のようにして得られるポリカルボジイミド樹脂の特性を、多層プリント配線板の作成に応用したことにあり、このポリカルボジイミド樹脂は、熱硬化性樹脂であると同時に特異な熱的挙動を示すものであり、即ち、熱硬化させる前のポリカルボジイミド樹脂は、常温では安定であり、加熱により一旦は軟化するが、ある温度以上の加熱を継続することにより、以下に示すように−NCN−部分が二量化、三量化し、内部架橋反応を起こして硬化するのであり、そして、硬化したポリカルボジイミド樹脂の耐熱性は、エポキシ樹脂よりもかなり高く、又、硬化後、多くの金属や樹脂との接着力に優れているのである。
【化10】
【化11】
【0018】
このような特徴を有するポリカルボジイミド樹脂は、前記合成溶剤の種類により溶液又は粉末状物として得ることができるが、本発明においては、このポリカルボジイミド樹脂をフィルム状とする
【0019】
溶液からのポリカルボジイミド樹脂フィルムの製造は、公知の方法、例えばコーターを用いてキャストし、溶剤を除去することにより容易に行うことができ、又、粉末状のものは、ポリカルボジイミド樹脂フィルムの軟化点が120℃以下であり、架橋反応が導入される温度より低い温度で成形できるので、例えば100〜110℃で数十秒〜数分にわたって加圧成形することにより、容易にポリカルボジイミド樹脂フィルムを製造することができ、例えば30μm程度に薄くフィルム化することも容易である。尚、薄層化や強度等の物性からは、キャスト法によるものが好ましい。
【0020】
この方法により得られたポリカルボジイミド樹脂フィルムの物性の一部を表1に例示する。この表1から明らかなように、ポリカルボジイミド樹脂フィルムは積層作業に必要充分な強度を有しており、又、硬化反応開始は一般的には120℃以上であり、室温では長期にわたり安定である。
【0021】
更に、樹脂の誘電率は、この分野での汎用樹脂(エポキシ樹脂)のレベルよりはかなり小さな値であり、この分野での要求に応え得るものといえる。
【0022】
又、各種有機溶媒、及び酸又はアルカリ溶液に1カ月浸漬した後においても、引張強さ、伸び、弾性率、重量、寸法にはほとんど変化がみられなかった(○)か、若干の変化があった(△)程度であり、耐薬品性にも優れているものである。
【0023】
【表1】
【0024】
上記ポリカルボジイミド樹脂フィルムを使用して本発明の多層プリント配線板を得るには、まず、適宜の基板の表面に周知の方法により回路を形成してプリント配線板とし、その複数枚を内層基板として準備する。
【0025】
別に、上記内層基板を接着すると共に絶縁層を形成する半硬化接着剤としての上記ポリカルボジイミド樹脂フィルムを準備し、前記内層基板とポリカルボジイミド樹脂フィルムを交互に重ねたものを加熱加圧して接着硬化させる。
【0026】
最後に、内層基板のプリント配線板間の導通を取るためのスルーホールを形成すると共に、スルーホールメッキ等を実施することにより、本発明の多層プリント配線板を製造することができるのであるが、これらの工程は従来の多層プリント配線板の製造方法と同様である。
【0027】
【実施例】
以下に本発明を実施例により更に詳細に説明する。
【0028】
(ポリカルボジイミド樹脂フィルムの製造例1)
2,4−トリレンジイソシアネート/2,6−トリレンジイソシアネートの混合物(混合割合=80:20[以下、TDIと略す])54gを、テトラクロロエチレン500ml中で、カルボジイミド化触媒(1−フェニル−3−メチル−2−ホスホレンオキシド)0.13gと共に120℃で4時間反応させ、ポリカルボジイミド溶液を得た。この溶液を用いて、コーターにて離型剤処理したPETフィルム上にキャストし、70℃で15時間加熱して溶媒を除去し、厚さ30μmのポリカルボジイミド樹脂フィルムを得た。
【0029】
(ポリカルボジイミド樹脂フィルムの製造例2)
4,4’−ジフェニルメタンジイソシアネート(以下、MDIと略す)50gを、テトラヒドロフラン(THF)700ml中で、カルボジイミド化触媒(1−フェニル−3−メチル−2−ホスホレンオキシド)0.1gと共に67℃で16時間反応させ、ポリカルボジイミド溶液を得た。この溶液を用いて、コーターにて離型剤処理したPETフィルム上にキャストし、室温で15時間、70℃で15時間加熱して溶媒を除去し、厚さ30μmのポリカルボジイミドフィルムを得た。
【0030】
(ポリカルボジイミド樹脂フィルムの製造例3)
o−トリジンジイソシアネート20gを、THF300ml中で、カルボジイミド化触媒(1−エチル−3−メチル−3−ホスホレンオキシド)0.03gと共にTHFのリフラックス下で70時間反応させ、ポリカルボジイミド溶液を得た。この溶液を用いて、コーターにて離型剤処理した離型紙上にキャストし、60℃で20時間加熱して溶媒を除去し、厚さ30μmのポリカルボジイミドフィルムを得た。
【0031】
(ポリカルボジイミド樹脂フィルムの製造例4)
TDI50g及びフェニルイソシアネート6.84gを、テトラクロロエチレン280ml中で、カルボジイミド化触媒(1−フェニル−3−メチル−2−ホスホレンオキシド)と共に120℃で4時間反応させ、ポリカルボジイミド溶液を得た。この溶液を用いて、コーターにて離型剤処理したPETフィルム上にキャストし、70℃で15時間加熱して溶剤の除去を行い、厚さ30μmのポリカルボジイミドフィルムを得た。
【0032】
(ポリカルボジイミド樹脂フィルムの製造例5)
MDI40g、TDI10g及びフェニルイソシアネート5.15gを、キシレン420ml中で、カルボジイミド化触媒(1−フェニル−3−メチル−2−ホスホレンオキシド)と共にキシレンのリフラックス下に5時間反応させた。その後、攪拌しながら室温まで冷却した。生成した沈殿物を減圧濾過で固液分離し、70℃で10時間乾燥して塊状物とした後、この塊状物を粉砕器にて粉末化し、目的のポリカルボジイミド粉末を得た。得られた粉末を110℃、1分、20kg/cm2の条件で加熱加圧成形して、厚さ50μmのポリカルボジイミドフィルムを得た。
【0033】
(比較例のためのプリプレグシートの製造例1)
ガラスクロス(旭シェーベル(株)製[商品番号:7628AS905])に下記組成のエポキシ樹脂ワニスを含浸し、半硬化状態に乾燥して、樹脂含有率42%のガラスクロス基材プリプレグシート(厚み0.1mm)を作成した。
〔比較例のためのプリプレグシートの製造例2〕
厚さ30μmのポリイミド樹脂シートの両面を、比較例1のエポキシ樹脂ワニスでコーティングして乾燥させ、半硬化の接着剤層を有するポリイミド樹脂シートを作成した。
【0034】
(内層基板)
市販の厚さ100μmのガラス布エポキシ樹脂基板を用いた。
【0035】
(実施例1)
内層基板の両面に製造例1のポリカルボジイミドフィルムを絶縁接着層として重ねたものを3枚積層し、更に外層に厚さ18μmの銅箔を重ね、成形圧力40kg/cm2、温度180℃で60分間成形して、銅張の多層プリント配線板とした。
【0036】
(実施例2〜5及び比較例1及び2〕
実施例1と同様にして、接着層のみ製造例2〜5及び比較例のためのプリプレグシート1及び2に変えて、それぞれ銅張の多層プリント配線板とした。
【0037】
(ピール強度の測定)
JIS C−6481に従い、所定サイズの試料を作成し、精密万能材料試験機2020型(インテスコ社製)を用いて、実施例及び比較例の多層プリント配線板について測定した。その結果を以下の表2に示す。
【0038】
(誘電率の測定)
JIS Cー6481に従い、LPインピーダンスアナライザー4194A(横河ヒューレットパッカード社製)を用いて、1MHzにおける値を実施例及び比較例の多層プリント配線板について測定した。その結果を以下の表2に示す。
【0039】
(接着層の保存安定性試験)
実施例1〜4、比較例1〜2の接着層となるシートを、光を遮断した状態で通常室温下に6ヶ月間放置した後、これを絶縁接着層に用いて多層プリント配線板を作成し、ピール強度を測定した。その結果を以下の表2に示す。
【0040】
【表2】
【0041】
【発明の効果】
本発明の多層プリント配線板は、内層基板と絶縁接着層とを交互に積層且つ接着してなる多層プリント配線板において、前記絶縁接着層としてポリカルボジイミド樹脂を用いており、このポリカルボジイミド樹脂は、前記表1から明らかなように、積層作業に必要充分な強度を有していると共に、硬化反応開始は一般的には120℃以上であり、室温では長期にわたり安定であり、しかも誘電率はこの分野での汎用樹脂であるエポキシ樹脂のレベルよりかなり小さな値であるということができる。
【0041】
又、上記本発明の多層プリント配線板は、前記表2から明らかなように、従来の多層プリント配線板と同程度のピール強度を示しながら、誘電率及び保持安定性に優れるものである。
[0001]
[Industrial application fields]
The present invention relates to a multilayer printed wiring board used for electronic equipment.
[0002]
[Prior art]
Conventionally, multilayer printed wiring boards are made by alternately stacking multiple printed wiring boards (inner layer substrates) on which circuits are formed, and semi-cured adhesive (called prepreg) that bonds them together and forms an insulating layer. After being heated and pressed to be cured by adhesion, through holes are formed to establish conduction between printed wiring boards, and through hole plating is performed.
[0003]
With regard to such multilayer printed wiring boards, in recent years, with the demand for high-speed information processing in the fields of electronic equipment, particularly communication and computers, miniaturization and high density have been urged. In order to respond, it is necessary to reduce the dielectric constant and improve the heat resistance as the insulating layer becomes thinner.
[0004]
[Problems to be solved by the invention]
However, conventionally used prepregs are generally impregnated with a varnish-like epoxy resin in a substrate such as a glass cloth, and removed volatile components such as a solvent in the drying process, and also allowed the resin curing reaction to proceed to some extent. Although it is a sheet (or roll) for storage or work, as long as it is a composite material consisting of a base material such as glass cloth and a varnish-like epoxy resin, the insulating layer is thinned There is a limit, and no consideration is given to the low heat resistance of epoxy resins.
[0005]
In addition, since the quality of the prepreg greatly affects the properties and moldability of the multilayer printed wiring board, strict management is required. However, the epoxy resin in the prepreg is usually an unstable semi-curing called B stage. Since it is in a state, it may deteriorate during storage due to the progress of the curing reaction or moisture absorption at room temperature, resulting in deterioration of workability and product quality.
[0006]
On the other hand, polyimide resin has recently attracted attention as a resin material having excellent heat resistance, but since this polyimide resin is soluble only in a high-boiling special solvent such as N-methyl-2-pyrrolidone, There are many problems in workability such as moldability and necessity of post-curing at high temperature, and the dielectric constant is not always satisfactory, and further, it is not a semi-cured film by itself. Therefore, there is a limit to the thinning of the insulating layer.
[0007]
An object of the present invention is to provide a multilayer printed wiring board that solves the problems of the prior art as described above, improves the heat resistance of the insulating adhesive layer, and enables a low dielectric constant and a thin layer. Was made.
[0008]
The configuration of the multilayer printed wiring board adopted by the present invention to achieve the above object is the multilayer printed wiring board formed by alternately laminating and bonding the inner layer substrate and the insulating adhesive layer, and as the insulating adhesive layer ,
[Formula 4]
(Wherein R 1 represents a hydrogen atom, a lower alkyl group or a lower alkoxy group) or
(Wherein R 2 and R 3 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group, and X represents an oxygen atom or a methylene group, respectively) or
(Wherein R 4 and R 5 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group), and a film-like polycarbodiimide resin obtained from an organic diisocyanate is used. is there.
[0009]
The present invention is described in detail below.
[0010]
The polycarbodiimide resin itself used in the present invention is already known and is generally synthesized by decarboxylation condensation reaction of diisocyanate in the presence of a catalyst as shown in the following reaction formula. In the following reaction formula, n represents the average degree of polymerization, and 10 or more is sufficient for the polycarbodiimide resin used in the present invention.
n (OCN-R-NCO) → (-R-N = C = N-) n + nCO 2
[0011]
As the organic diisocyanate for producing the polycarbodiimide compound used in the present invention, an aromatic organic diisocyanate is used from the viewpoint of heat resistance.
[0012]
As R in the above formula which is an organic diisocyanate residue, therefore, an aromatic diisocyanate residue is preferred, and as such an organic diisocyanate, for example,
[Chemical 7]
(Wherein R 1 represents a hydrogen atom, a lower alkyl group or a lower alkoxy group) or
(Wherein R 2 and R 3 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group, and X represents an oxygen atom or a methylene group, respectively) or
(Wherein R 4 and R 5 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group).
[0013]
More specifically, 4,4′-diphenylmethane diisocyanate, 3,3′-dimethoxy-4,4′-diphenylmethane diisocyanate, 3,3′-dimethyl-4,4′-diphenylmethane diisocyanate, 4,4′-diphenyl ether Diisocyanate, 3,3′-dimethyl-4,4′-diphenyl ether diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1-methoxyphenyl-2,4-diisocyanate, o-tolidine diisocyanate A mixture of these can be exemplified.
[0014]
The above reaction proceeds even in a solvent or in the absence of a solvent. However, in order to obtain a film-like polycarbodiimide resin, it is desirable to select and synthesize an appropriate solvent to form a varnish. As, for example, tetrachloroethylene, trichloroethylene, tetrahydrofuran, 1,4-dioxane, 3,5-dioxolane, xylene, toluene or chlorobenzene can be used alone or as a mixed solvent. Depending on the type of isocyanate and the film production method, etc., it can be appropriately selected and used.
[0015]
In particular, when a polycarbodiimide film having high strength is to be obtained by a casting method, it is preferable to use a chlorinated aliphatic hydrocarbon or alicyclic ether having a boiling point of 80 ° C. or higher.
[0016]
Examples of the carbodiimidization catalyst used in the above reaction include 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-3-methyl-2-phospholene- Phosphorene oxides such as 1-oxide or their 3-phospholene isomers can be used.
[0017]
Thus, the feature of the present invention is that the characteristics of the polycarbodiimide resin obtained as described above are applied to the production of a multilayer printed wiring board, and the polycarbodiimide resin is a thermosetting resin. At the same time, it exhibits a unique thermal behavior, that is, the polycarbodiimide resin before thermosetting is stable at room temperature and softens once by heating, but by continuing heating above a certain temperature, As shown in FIG. 2, the -NCN- moiety is dimerized and trimerized, and undergoes an internal cross-linking reaction to be cured, and the heat resistance of the cured polycarbodiimide resin is considerably higher than that of the epoxy resin. It has excellent adhesion to many metals and resins.
[Chemical Formula 10]
Embedded image
[0018]
Polycarbodiimide resin having such characteristics, can be obtained as the solution or powdery substance on the type of synthetic solvents, in the present invention, to the polycarbodiimide resin film.
[0019]
The production of the polycarbodiimide resin film from the solution can be easily carried out by casting using a known method, for example, a coater, and removing the solvent, and the powdered one is softened of the polycarbodiimide resin film. Since the point is 120 ° C. or lower and can be molded at a temperature lower than the temperature at which the crosslinking reaction is introduced, the polycarbodiimide resin film can be easily formed by, for example, pressing at 100 to 110 ° C. for several tens of seconds to several minutes For example, it is easy to form a film as thin as about 30 μm. From the viewpoint of physical properties such as thinning and strength, a casting method is preferred.
[0020]
Table 1 illustrates some of the physical properties of the polycarbodiimide resin film obtained by this method. As is apparent from Table 1, the polycarbodiimide resin film has sufficient strength necessary for the laminating operation, and the initiation of the curing reaction is generally 120 ° C. or higher, and is stable at room temperature for a long time. .
[0021]
Furthermore, the dielectric constant of the resin is considerably smaller than the level of general-purpose resin (epoxy resin) in this field, and it can be said that it can meet the demand in this field.
[0022]
Moreover, even after being immersed in various organic solvents and acid or alkali solutions for one month, there was little change in the tensile strength, elongation, elastic modulus, weight, and dimensions (◯) or slight changes. It is about (△), and has excellent chemical resistance.
[0023]
[Table 1]
[0024]
In order to obtain the multilayer printed wiring board of the present invention using the above polycarbodiimide resin film, first, a circuit is formed on the surface of an appropriate substrate by a known method to form a printed wiring board, and the plurality of sheets are used as inner layer boards. prepare.
[0025]
Separately, the above-mentioned polycarbodiimide resin film as a semi-curing adhesive for bonding the inner layer substrate and forming an insulating layer is prepared, and the inner layer substrate and the polycarbodiimide resin film alternately laminated are heated and pressurized to be adhesively cured. Let
[0026]
Finally, while forming a through hole for taking conduction between the printed wiring boards of the inner layer substrate, and performing through hole plating or the like, the multilayer printed wiring board of the present invention can be manufactured, These steps are the same as in the conventional method for producing a multilayer printed wiring board.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0028]
(Production Example 1 of Polycarbodiimide Resin Film)
54 g of a mixture of 2,4-tolylene diisocyanate / 2,6-tolylene diisocyanate (mixing ratio = 80: 20 [hereinafter abbreviated as TDI]) in 500 ml of tetrachloroethylene was subjected to a carbodiimidization catalyst (1-phenyl-3- Methyl-2-phospholene oxide) and 0.13 g were reacted at 120 ° C. for 4 hours to obtain a polycarbodiimide solution. Using this solution, it casted on the PET film which processed the mold release agent with the coater, it heated at 70 degreeC for 15 hours, the solvent was removed, and the 30-micrometer-thick polycarbodiimide resin film was obtained.
[0029]
(Production Example 2 of Polycarbodiimide Resin Film)
50 g of 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as MDI) in 67 ml of tetrahydrofuran (THF) together with 0.1 g of carbodiimidization catalyst (1-phenyl-3-methyl-2-phospholene oxide) at 67 ° C. It was made to react for 16 hours and the polycarbodiimide solution was obtained. Using this solution, it casted on the PET film which processed the mold release agent with the coater, it heated at room temperature for 15 hours, and 70 degreeC for 15 hours, the solvent was removed, and the 30-micrometer-thick polycarbodiimide film was obtained.
[0030]
(Production Example 3 of Polycarbodiimide Resin Film)
20 g of o-tolidine diisocyanate was reacted for 70 hours under reflux of THF with 0.03 g of a carbodiimidization catalyst (1-ethyl-3-methyl-3-phospholene oxide) in 300 ml of THF to obtain a polycarbodiimide solution. . Using this solution, it casted on the release paper which processed the release agent with the coater, and it heated at 60 degreeC for 20 hours, the solvent was removed, and the 30-micrometer-thick polycarbodiimide film was obtained.
[0031]
(Production Example 4 of Polycarbodiimide Resin Film)
50 g of TDI and 6.84 g of phenyl isocyanate were reacted with carbodiimidization catalyst (1-phenyl-3-methyl-2-phospholene oxide) in 280 ml of tetrachloroethylene at 120 ° C. for 4 hours to obtain a polycarbodiimide solution. Using this solution, it casted on the PET film which processed the mold release agent with the coater, it heated at 70 degreeC for 15 hours, the solvent was removed, and the 30-micrometer-thick polycarbodiimide film was obtained.
[0032]
(Production Example 5 of Polycarbodiimide Resin Film)
40 g of MDI, 10 g of TDI and 5.15 g of phenyl isocyanate were reacted in 420 ml of xylene together with a carbodiimidization catalyst (1-phenyl-3-methyl-2-phospholene oxide) under xylene reflux for 5 hours. Then, it cooled to room temperature, stirring. The produced precipitate was separated into solid and liquid by filtration under reduced pressure, dried at 70 ° C. for 10 hours to form a lump, and the lump was pulverized with a pulverizer to obtain the desired polycarbodiimide powder. The obtained powder was heated and pressed under conditions of 110 ° C., 1 minute, 20 kg / cm 2 to obtain a polycarbodiimide film having a thickness of 50 μm.
[0033]
(Production Example 1 of a prepreg sheet for a comparative example)
Glass cloth (Asahi Shovel Co., Ltd. [Product No .: 7628AS905]) was impregnated with an epoxy resin varnish having the following composition, dried to a semi-cured state, and a glass cloth substrate prepreg sheet having a resin content of 42% (thickness 0) 0.1 mm).
[Production Example 2 of Pre-preg Sheet for Comparative Example]
Both surfaces of the polyimide resin sheet having a thickness of 30 μm were coated with the epoxy resin varnish of Comparative Example 1 and dried to prepare a polyimide resin sheet having a semi-cured adhesive layer.
[0034]
(Inner layer substrate)
A commercially available glass cloth epoxy resin substrate having a thickness of 100 μm was used.
[0035]
Example 1
Three layers of the polycarbodiimide film of Production Example 1 laminated as an insulating adhesive layer were laminated on both sides of the inner layer substrate, and a copper foil having a thickness of 18 μm was further laminated on the outer layer, and a molding pressure of 40 kg / cm 2 and a temperature of 180 ° C. Molded for minutes to obtain a copper-clad multilayer printed wiring board.
[0036]
(Examples 2 to 5 and Comparative Examples 1 and 2)
In the same manner as in Example 1, only the adhesive layer was replaced with the prepreg sheets 1 and 2 for Production Examples 2 to 5 and Comparative Example, and copper-coated multilayer printed wiring boards were obtained.
[0037]
(Measurement of peel strength)
A sample of a predetermined size was prepared in accordance with JIS C-6481, and measurements were made on multilayer printed wiring boards of Examples and Comparative Examples using a precision universal material testing machine 2020 (manufactured by Intesco). The results are shown in Table 2 below.
[0038]
(Measurement of dielectric constant)
According to JIS C-6481, a value at 1 MHz was measured for the multilayer printed wiring boards of Examples and Comparative Examples using an LP impedance analyzer 4194A (manufactured by Yokogawa Hewlett-Packard Company). The results are shown in Table 2 below.
[0039]
(Storage stability test of adhesive layer)
After the sheets used as the adhesive layers of Examples 1 to 4 and Comparative Examples 1 and 2 were left at room temperature for 6 months in a state where light was blocked, a multilayer printed wiring board was prepared using this as an insulating adhesive layer The peel strength was measured. The results are shown in Table 2 below.
[0040]
[Table 2]
[0041]
【The invention's effect】
The multilayer printed wiring board of the present invention uses a polycarbodiimide resin as the insulating adhesive layer in the multilayer printed wiring board formed by alternately laminating and bonding the inner layer substrate and the insulating adhesive layer. As is apparent from Table 1, it has sufficient strength necessary for the laminating operation, the initiation of the curing reaction is generally 120 ° C. or higher, stable at room temperature for a long time, and the dielectric constant is It can be said that the value is considerably smaller than the level of epoxy resin, which is a general-purpose resin in the field.
[0041]
Further, as is apparent from Table 2, the multilayer printed wiring board of the present invention exhibits excellent dielectric constant and holding stability while exhibiting the same peel strength as the conventional multilayer printed wiring board.

Claims (2)

内層基板と絶縁接着層とを交互に積層且つ接着してなる多層プリント配線板において、前記絶縁接着層として
(式中、R は水素原子、低級アルキル基又は低級アルコキシ基を表す)又は
(式中、R及びRは水素原子、低級アルキル基又は低級アルコキシ基を、Xは酸素原子又はメチレン基をそれぞれ表す)又は
(式中、R 及びR は水素原子、低級アルキル基又は低級アルコキシ基を表す)で表される有機ジイソシアネートから得られた、フィルム状のポリカルボジイミド樹脂を用いたことを特徴とする多層プリント配線板。
In the multilayer printed wiring board formed by alternately laminating and bonding the inner layer substrate and the insulating adhesive layer, as the insulating adhesive layer ,
(Wherein R 1 represents a hydrogen atom, a lower alkyl group or a lower alkoxy group) or
(Wherein R 2 and R 3 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group, and X represents an oxygen atom or a methylene group, respectively) or
A multilayer print using a film-like polycarbodiimide resin obtained from an organic diisocyanate represented by the formula (wherein R 4 and R 5 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group) Wiring board.
1MHzにおける誘電率が3.7から3.9である請求項1に記載の多層プリント配線板。The multilayer printed wiring board according to claim 1, wherein the dielectric constant at 1 MHz is 3.7 to 3.9.
JP31585494A 1994-11-24 1994-11-24 Multilayer printed wiring board Expired - Fee Related JP3733153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31585494A JP3733153B2 (en) 1994-11-24 1994-11-24 Multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31585494A JP3733153B2 (en) 1994-11-24 1994-11-24 Multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH08148838A JPH08148838A (en) 1996-06-07
JP3733153B2 true JP3733153B2 (en) 2006-01-11

Family

ID=18070387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31585494A Expired - Fee Related JP3733153B2 (en) 1994-11-24 1994-11-24 Multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3733153B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097344A (en) * 2003-09-22 2005-04-14 Nisshinbo Ind Inc Lamination adhesive composition and adhesive film using the same
JP2005203674A (en) * 2004-01-19 2005-07-28 Nitto Denko Corp Method of manufacturing electronic-component built-in board
EP2751154B1 (en) * 2011-08-30 2019-08-21 Basf Se High molecular weight polycarbodiimide and method of producing same

Also Published As

Publication number Publication date
JPH08148838A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
US7790276B2 (en) Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto
JP4033909B2 (en) Maleimide-containing compounds and their uses
TWI777950B (en) Polyimide, polyimide-based adhesive, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for producing the same
US7989081B2 (en) Resin composite copper foil, printed wiring board, and production processes thereof
US20090314523A1 (en) Adhesive sheet with base for flexible printed wiring boards, production method therefor, multilayer flexible printed wiring board and flex-rigid printed wiring board
US20040176526A1 (en) Resin composition
US6387505B1 (en) Prepreg, multilayer printed wiring board and process for production of said multilayer printed wiring board
JP5092452B2 (en) Modified polyamideimide resin, adhesive using the same, and printed circuit board
EP1188778B1 (en) Thermosetting resin composition, and resin coated metal foil, prepreg and film-shaped adhesive all using the composition
JP3733153B2 (en) Multilayer printed wiring board
US6485833B1 (en) Resin-coated metal foil
EP0991306A1 (en) Film for flexible printed wiring board
US5932351A (en) Heat resistant resin composition and adhesive sheet using the same
JP2003292930A (en) Adhesive composition, adhesive sheet and printed circuit board using the same
JP5158397B2 (en) Heat-resistant adhesive sheet, metal foil-clad laminate, and wiring board for area array semiconductor package
JP2005162945A (en) Heat-resistant resin composition and resin and adhesive film produced therefrom
JPS6225126A (en) Addition-type imide resin prepolymer, prepreg and laminated board
JPH06256515A (en) Thermosetting adhesive sheet and copper-clad laminated board produced by using the sheet
WO2010041644A1 (en) Polyamideimide resin, adhesive composition using the resin, ink for printed circuit board using the adhesive composition, cover lay film, adhesive sheet and printed circuit board
JP2004051910A (en) Resin film and metal-clad laminated sheet
JP4378628B2 (en) Prepreg, laminated board and printed circuit board using them
JP2005281488A (en) Resin composition, prepreg and laminated plate
JPH10130400A (en) Production of adhesive film
JPH10139852A (en) Production of modified epoxy resin, modified epoxy resin composition, adhesive and adhesive film
JPH07138537A (en) Thermosetting adhesive sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees