JPS6225126A - Addition-type imide resin prepolymer, prepreg and laminated board - Google Patents

Addition-type imide resin prepolymer, prepreg and laminated board

Info

Publication number
JPS6225126A
JPS6225126A JP16443085A JP16443085A JPS6225126A JP S6225126 A JPS6225126 A JP S6225126A JP 16443085 A JP16443085 A JP 16443085A JP 16443085 A JP16443085 A JP 16443085A JP S6225126 A JPS6225126 A JP S6225126A
Authority
JP
Japan
Prior art keywords
molecular weight
imide
prepreg
component
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16443085A
Other languages
Japanese (ja)
Other versions
JPH0412727B2 (en
Inventor
Atsuhiro Nakamoto
中本 篤宏
Yoshihisa Sugawa
美久 須川
Kenji Ogasawara
健二 小笠原
Masahiro Matsumura
松村 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP16443085A priority Critical patent/JPS6225126A/en
Publication of JPS6225126A publication Critical patent/JPS6225126A/en
Publication of JPH0412727B2 publication Critical patent/JPH0412727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Abstract

PURPOSE:To obtain the titled prepolymer suitable for the production of high- density multi-layer printed circuit board, by reacting an unsaturated bis-imide with a diamine in a manner to contain the residual unreacted raw material, a component having a molecular weight falling within a specific range and a high-molecular component at specific respective ratios. CONSTITUTION:The objective prepolymer can be produced by reacting an unsaturated bis-imide with a diamine in a manner to contain 15-55% residual unreacted raw material, 39-80% component having a molecular weight of 400-15,000 and 0.7-6.8% component having a molecular weight of >=15,000. The obtained objective prepolymer is impregnated in a substrate and semicured to obtain a prepreg wherein the contents of the unreacted raw material in the resin is 15-35%, the component having a molecular weight of 400-15,000 is 50-80% and the component having a molecular weight of >=15,000 is 1-15%. The prepreg is laminated to form a laminated board.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、プリント配線板の製造等に使用される付加
型イミド樹脂プレポリマー、プリプレグおよび積層板に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to addition-type imide resin prepolymers, prepregs, and laminates used for manufacturing printed wiring boards and the like.

〔背景技術〕[Background technology]

従来、多層プリント配線板製造用の樹脂として、優れた
接着性、耐薬品性、電気特性1機械特性等を有するエポ
キシ樹脂材料が多く使用されてきたが、高密度実装用の
高多層プリント配線板に使用した場合は、実装工程での
耐熱性の問題、またj/ジンスミアや厚み方向の熱膨張
などによる導通信頼性の低下が問題となる。これらの問
題点を材料面から解決するため、イミド樹脂などの耐熱
材料が開発され、実用化されている。特に、不飽和ビス
−イミドとジアミンとを反応させた付加型イミド樹脂は
、■高密度化するための細線化、?j11.細孔あけな
どの高精度加工が可能である、■厚み方向の熱膨張率が
小さく、スルーホールメッキによる導通信頼性が高い、
■ドリル加工工程でのスミア発生がない、■高温時の導
体密着力および硬度が高く、実装性が向」−する、■高
温(200℃)での連続使用に耐える等の特徴を有して
いることにより、多層プリント配線板材料用途に多く使
用されるようになってきた。
Conventionally, epoxy resin materials with excellent adhesive properties, chemical resistance, electrical properties, mechanical properties, etc. have often been used as resins for manufacturing multilayer printed wiring boards. When used for this purpose, there are problems with heat resistance during the mounting process, and a reduction in conduction reliability due to smear and thermal expansion in the thickness direction. In order to solve these problems from a material perspective, heat-resistant materials such as imide resins have been developed and put into practical use. In particular, addition-type imide resin made by reacting unsaturated bis-imide with diamine can be used to: ■ Thin wires for high density. j11. Possible for high-precision processing such as drilling small holes, ■Low coefficient of thermal expansion in the thickness direction, and high continuity reliability due to through-hole plating.
■No smear occurs during the drilling process, ■High conductor adhesion and hardness at high temperatures, improving mounting performance, and ■Can withstand continuous use at high temperatures (200℃). As a result, it has come to be widely used as a material for multilayer printed wiring boards.

しかしながら、近年、大型コンビ二−タ用等の多層プリ
ント板はより高密度実装化、高多層化される傾向にあり
、このために回路の微細化、スルーボール穴径の縮小の
要求が強い。この要求を実現するために、従来よりさら
に高いレベルの寸法安定性、密着性が基板に要求される
様になった。
However, in recent years, there has been a trend toward higher density packaging and higher multilayering of multilayer printed circuit boards for large combi-vinators, etc., and for this reason, there is a strong demand for miniaturization of circuits and reduction in the diameter of through ball holes. In order to meet this requirement, substrates are now required to have even higher levels of dimensional stability and adhesion than before.

すなわち、基板の寸法変化は多層板の内、外層回路の位
置的なズレに直接影響し、多層板サイズを大きくした場
合には特Qこ寸法変化のバラツキは極小におさえねばな
らない。このため、基板作製に際しては低い圧力で成形
加工を行うことが好ましい。高い圧力で成形を行うと寸
法安定性が悪くなるからである。他方、密着性に関して
は、回路の微細化により、回路と樹脂との密着性は当然
高くなければならないが、基材と樹脂との密着性も高く
なければならず、また、屓と屓の間の密着も高くなけれ
ばならない。なぜならば、密着性が低いと、多層板に穴
開は加工を行う等の各種の加工]L程において基材と樹
脂の間に微細な剥離が生じる、あるいは、基板内部の眉
間に剥離が発生するといった不都合が生じるからである
。一般に知られている付加型イミド樹脂は、大型コンピ
ュータ用等の多5Fiレベルでみれば、基材との密着性
が不充分であるために、ドリル加工による孔あけ工程で
微細な剥離が生じやすい。また、基板を作製するに際し
、プリプレグを低圧力で成形すればボイドが発生して均
一な基板が14られないので、必然的に高圧力で成形を
行う必要がある。このために、基板の寸法安定性も不充
分になる。
That is, the dimensional change of the board directly affects the positional deviation of the inner and outer layer circuits of the multilayer board, and when the multilayer board size is increased, the variation in the dimensional change must be kept to a minimum. For this reason, when manufacturing the substrate, it is preferable to perform the molding process at low pressure. This is because dimensional stability deteriorates when molding is performed under high pressure. On the other hand, regarding adhesion, as circuits become finer, the adhesion between the circuit and the resin must naturally be high, but the adhesion between the base material and the resin must also be high. The adhesion must also be high. This is because, if the adhesion is low, fine peeling will occur between the base material and the resin at the L stage, or peeling will occur between the eyebrows inside the board. This is because such inconveniences may occur. Generally known addition-type imide resins have insufficient adhesion to the base material when viewed at the multi-5Fi level for use in large computers, etc., so minute peeling tends to occur during the drilling process. . Furthermore, when producing a substrate, if the prepreg is molded at low pressure, voids will occur and a uniform substrate will not be obtained, so molding must necessarily be performed at high pressure. This also results in insufficient dimensional stability of the substrate.

〔発明の目的〕[Purpose of the invention]

この発明は、電子部品の高密度実装を可能にする高密度
高多層プリント板を得られることのできる付加型イミド
樹脂プレポリマー、プリプレグおよび積層板を提供する
ことを目的としている。
An object of the present invention is to provide an addition-type imide resin prepolymer, prepreg, and laminate from which a high-density, high-multilayer printed board that enables high-density mounting of electronic components can be obtained.

〔発明の開示〕[Disclosure of the invention]

前記のような目的を達成するため、発明者らは、まず、
一般に知られている付加型イミド樹脂ブし・ポリマーを
用いた場合、基材との密着性が不充分になり、低圧力で
成形するとボイドが発生ずる原因について研究した。そ
の結果、一般の付加型イミド樹脂プレポリマーが高分子
領域の成分を多く含有していることが原因であることが
わかワた。発明者らは、さらに研究を重ねた結果、基材
との密着性が充分で低圧力で成形してもボイドの発生し
ない組成の付加型イミド樹脂を見出し、ここに、以下の
、三つの発明を完成しi、:。
In order to achieve the above objectives, the inventors first
We investigated the causes of insufficient adhesion to the base material and the generation of voids when molded at low pressure when a commonly known addition-type imide resin binder/polymer is used. As a result, it was found that the cause was that the general addition type imide resin prepolymer contained a large amount of components in the high molecular region. As a result of further research, the inventors discovered an addition-type imide resin with a composition that has sufficient adhesion to the base material and does not generate voids even when molded under low pressure.The inventors have now developed the following three inventions. Completed i:.

才なわら、第1の発明は、不飽和ビス−イミドとジアミ
ンとを反応さゼでなる付加型イミド樹脂プレポリマーで
あって、残存する未反応原料を15〜55%2分子量4
00以上15000以下の成分を39〜80%1分子量
が15000を越える成分を0.7〜6.8%の範囲で
それぞれ含むことを特徴とする付加型イミド樹脂プレポ
リマー、第2の発明は、残存する未反応原料を15〜5
5%、分子量400以上15000以下の成分を39〜
80%1分子量が1soooを越える成分を0゜7〜6
.8%の範囲でそれぞれ含むようにして不飽f【】ビス
−イミドとジアミンとを反応させて得られる(=1 加
型イミド樹脂プレポリマーを基材に含浸させ、半硬化さ
せることにより、樹脂中の未反応原料が15〜35%1
分子量400以上15000以下の成分が50〜80%
9分子量が15000を越える成分が1〜15%となる
ようにしたプリプレグ、第3の発明は、プリプレグが積
層成形されてなる積層板であって、プリプレグとして、
残存する未反応原料を15〜55%1分子量400以上
15000以下の成分を39〜80%2分子量が150
00を越える成分を0.7〜6.8%の範囲でそれぞれ
含むようにして不飽和ビス−イミドとジアミンとを反応
させて得られる付加型イミド樹脂プレポリマーを基材に
含浸させ、半硬化させることにより、樹脂中の未反応原
料が15〜35%3分子量400以上15000以下の
成分が50〜80%1分子量が15000を越える成分
が1〜15%となるようにしたものが用いられているこ
とを特徴とする積層板をそれぞれ要旨としている。
However, the first invention is an addition type imide resin prepolymer made by reacting an unsaturated bis-imide with a diamine, and the remaining unreacted raw material is reduced to 15 to 55%2 molecular weight 4
The second invention is an addition-type imide resin prepolymer, characterized in that it contains 39 to 80% of components having a molecular weight of 00 to 15,000 and 0.7 to 6.8% of components having a molecular weight of more than 15,000. Reduce the remaining unreacted raw material to 15 to 5
5%, components with a molecular weight of 400 or more and 15,000 or less from 39 to
80% of components with a molecular weight exceeding 1 sooo 0°7~6
.. Obtained by reacting unsaturated f[ ] bis-imide and diamine with each content in the range of 8% (=1) By impregnating a base material with a moldable imide resin prepolymer and semi-curing, Unreacted raw material is 15-35%1
50-80% of components have a molecular weight of 400 or more and 15,000 or less
9 A prepreg in which the component having a molecular weight exceeding 15,000 is 1 to 15%.The third invention is a laminate formed by laminating and molding prepregs, and as a prepreg,
15% to 55% of remaining unreacted raw materials 39% to 80% of components with a molecular weight of 400 to 15000 2 Molecular weight of 150%
A base material is impregnated with an addition-type imide resin prepolymer obtained by reacting an unsaturated bis-imide and a diamine, each containing a component exceeding 0.00 in the range of 0.7 to 6.8%, and semi-cured. Accordingly, the amount of unreacted raw materials in the resin is 15 to 35%, 3 components with a molecular weight of 400 to 15,000 are 50 to 80%, 1 components with a molecular weight exceeding 15,000 are 1 to 15%. Each of the laminates is summarized as follows.

以下に、これらの発明の詳細な説明する。Below, these inventions will be explained in detail.

ここで、不飽和ビス−イミドは下記の式(I)、ジアミ
ンは下記の式(II)でそれぞれあられされる。
Here, the unsaturated bis-imide is represented by the following formula (I), and the diamine is represented by the following formula (II).

(式中りは炭素−炭素間の二重結合を含む2価の基を表
し、Aは少なくとも2個の炭素原子を含む2価の基を表
す) H2N−B−NR2(Il) (式中Bは30個以下の炭素原子を有する2価の基であ
る) 記号のAおよびBは、同一かまたは異なることができ、
また131[IJよりも少ない炭素原子を持っている直
鎖のもしくは分岐したアルキレン基か、環の中に5個も
しくは6個の炭素原子を持っている環状アルキレン基か
、O,NおよびS原子の少なくとも1個を含む異種環状
基か、またはフェニレンもしくは多環状芳香族基である
こともできる。これ等の種々の基は、反応条件のもとて
不必要な副反応を与えない置換基を持っていてもよい。
(In the formula, A represents a divalent group containing a carbon-carbon double bond, and A represents a divalent group containing at least two carbon atoms.) H2N-B-NR2(Il) (In the formula B is a divalent group having up to 30 carbon atoms) The symbols A and B can be the same or different,
Also 131[IJ is a linear or branched alkylene group having fewer carbon atoms, or a cyclic alkylene group having 5 or 6 carbon atoms in the ring, O, N and S atoms. or a phenylene or polycyclic aromatic group. These various groups may have substituents that do not give rise to unnecessary side reactions under the reaction conditions.

記号のAおよびBはまた、沢山のフェニレン基か、また
は脂環状の基を表すこともできる。この場合において、
となりあうフェニレン基または脂環状基は、直接に結合
されるほか、酸素もくしは硫黄などの2価の原子を介し
て結合されるか、または炭素原子1個から3個のアルキ
レン群もくしは以下の群の内の1つの群を介して結きさ
れることかある。こltらの原子または群が複数存在す
る場合には、それぞれが同じであってもよく、異なって
いてもよい。
The symbols A and B can also represent numerous phenylene groups or alicyclic groups. In this case,
Adjacent phenylene groups or alicyclic groups may be bonded directly, or may be bonded via a divalent atom such as oxygen or sulfur, or may be bonded via an alkylene group of 1 to 3 carbon atoms or May be connected through one of the following groups: When a plurality of these atoms or groups exist, each of them may be the same or different.

NR4−、−P (0)R3、N=N  。NR4-, -P (0) R3, N=N.

N=N  、  −Co−0−、−502。N=N, -Co-0-, -502.

5iR3R4、C0NH。5iR3R4, C0NH.

−N Y−CO−X −CO−N Y −。-N Y-CO-X -CO-N Y -.

−o−co−x−co−o−。-o-co-x-co-o-.

式中R3,R4およびYは、おのおの、炭素原子1個か
ら4個のアルキル基、環中に5個もしくは6個の炭素原
子を持つ環状アルキル基、またはフェニルもしくは多環
状芳香族基を表し、Xは、13個よりも少ない炭素原子
を持っている直鎖もしくは分岐したアルキレン基、環中
に5個もしくは6個の炭素原子をもっている環状アルキ
レン基、または単環もしくは多環状アリレン基を表す。
In the formula, R3, R4 and Y each represent an alkyl group having 1 to 4 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms in the ring, or phenyl or a polycyclic aromatic group, X represents a straight-chain or branched alkylene group having fewer than 13 carbon atoms, a cyclic alkylene group having 5 or 6 carbon atoms in the ring, or a monocyclic or polycyclic arylene group.

基りは式; のエチレン系無水物から誘導されるもので、例えばマレ
イン酸無水物、シトラコン酸無水物、テトラヒドロフタ
ル酸無水物、イタコン酸無水物、およびシクロジエンと
これ等の無水物の1つの間に起こるディールスアルダー
反応の生成物を表すこともできる。
The bases are derived from ethylenic anhydrides of the formula; such as maleic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, itaconic anhydride, and cyclodienes and one of these anhydrides. It can also represent the product of the Diels-Alder reaction that occurs between

式(1)であられされる不飽和ビス−イミドの好ましい
例には、次のものが挙げられる。マレインMN −N 
′−エチレンービスーイミド、マレイン酸N−N′−ヘ
キサメチレン−ビス−イミド、マレイン酸N −N ’
−メタフェニレンービスーイミド、マレイン酸N−N’
−パラフェニレン−ビス−イミド、マレイン酸N−N’
−4・4′−ジフェニルメタン−ビス−イミド(N −
N ′−メチレンビス(N−フェニルマレイミド)とも
言う〕、マレイン酸N−N’−4・4′−ジフェニルエ
ーテル−ビス−イミド、マレイン酸N −N ′−4・
4′−ジフェニルスルフォン−ビス−イミド、マレイン
酸N−N′−4・4′−ジシクロヘキシルメタル−ビス
−イミド、マレイン酸N −N ’ −α・α′−4・
4′−ジメチレンシクロヘキサン−ビス−イミド、マレ
イン酸N−N ’−メタキシリレンービスーイミド、お
よびマレイン酸N−N′−ジフェニルシクロヘキサン−
ビス−イミド。
Preferred examples of the unsaturated bis-imide represented by formula (1) include the following. Malene MN-N
'-Ethylene-bis-imide, maleic acid N-N'-hexamethylene-bis-imide, maleic acid N-N'
-Metaphenylene-bis-imide, maleic acid N-N'
-paraphenylene-bis-imide, maleic acid N-N'
-4,4'-diphenylmethane-bis-imide (N -
N'-methylenebis (also called N-phenylmaleimide)], maleic acid N-N'-4.4'-diphenyl ether-bis-imide, maleic acid N-N'-4.
4'-Diphenylsulfone-bis-imide, maleic acid N-N'-4・4'-dicyclohexylmetal-bis-imide, maleic acid N-N'-α・α′-4・
4'-dimethylenecyclohexane-bis-imide, N-N'-metaxylylene-bis-imide maleate, and N-N'-diphenylcyclohexane-maleate.
Bis-imide.

式(II)であられされるジアミンの好ましい実例には
、次のものがある。4・4゛−ジアミノジシクロヘキシ
ルメタン、■・4′−ジアミノシクロヘキサン、2・6
−ジアミツビリジン、メタフェニレンジアミン、パラフ
ェニレンジアミン、4・4′−ジアミノ−ジフェニルメ
タン、2・2−ビス(4−アミノフェニル)プロパン、
ベンジジン、4・4′−ジアミノフェニルオキサイド、
4・4′−ジアミノジフェニルサルファイド、4・4′
−ジアミノジフェニルスルフォン、ビス−(4−アミノ
フェニル)ジフェニルシラン、ビス−(4−アミノフェ
ニル)メチルフォスフインオキサイド、ビス=(3−ア
ミノフェニル)メチルフォスフインオキサイド、ビス−
(4−アミノフェニル)−フェニルフォスフインオキサ
イド、ビス−(4−アミノフェニル)フエニラミン、■
・5−ジアミノナフレン、メタキシリレンジアミン、パ
ラキシリレンジアミン、■・1−ビス−(パラ了ミノフ
ェニル)フタランおよびヘキサメチレンジアミン。
Preferred examples of diamines of formula (II) include: 4,4'-diaminodicyclohexylmethane, ■,4'-diaminocyclohexane, 2,6
-diamitubiridine, metaphenylenediamine, paraphenylenediamine, 4,4'-diamino-diphenylmethane, 2,2-bis(4-aminophenyl)propane,
benzidine, 4,4'-diaminophenyl oxide,
4,4'-diaminodiphenyl sulfide, 4,4'
-diaminodiphenylsulfone, bis-(4-aminophenyl)diphenylsilane, bis-(4-aminophenyl)methylphosphine oxide, bis=(3-aminophenyl)methylphosphine oxide, bis-
(4-aminophenyl)-phenylphosphine oxide, bis-(4-aminophenyl)pheniramine, ■
- 5-diaminonaphrene, meta-xylylene diamine, para-xylylene diamine, 1-bis-(para-minophenyl) phthalane and hexamethylene diamine.

第1の発明にかかる付加型イミド樹脂プレポリマーは、
前記のようなどスーイミドおよびジアミンを触媒を用い
て反応させ得られる。ここで触媒は使用する極性溶媒中
でプロトン供与体となりマイケル付加を促進させるもの
を用いる。触媒の例を次のページに示す。
The addition type imide resin prepolymer according to the first invention is
It can be obtained by reacting a soimide and a diamine as described above using a catalyst. Here, the catalyst used is one that acts as a proton donor in the polar solvent used and promotes Michael addition. Examples of catalysts are shown on the next page.

得られたプレポリマーは組成が以下に示されるようにな
っている必要がある。
The obtained prepolymer must have the composition shown below.

すなわち、未反応原料は15〜55%となっている必要
がある。55%を越えると、N−メチルピロリドンやジ
メチルアセトアミド等の極性溶媒にプレポリマーを溶解
させてワニスを調整した場合、溶剤に対する溶解性が低
いため、沈澱が析出しやすくなる。
That is, the unreacted raw material needs to be 15 to 55%. When it exceeds 55%, when a varnish is prepared by dissolving the prepolymer in a polar solvent such as N-methylpyrrolidone or dimethylacetamide, the solubility in the solvent is low, and precipitates are likely to separate out.

また15%未満の場合は、ワニスの硬化までの時間が短
くなるため、可使時間が短くなる。
If it is less than 15%, the time it takes for the varnish to harden becomes shorter, resulting in a shorter pot life.

触媒の例 トリエチルアミン、トリプロピルアミン、トリブチルア
ミン、N、N−テトラメチルエチレンジアミン、N、N
−テトラメチル−1,3−ブタンジアミン、トリエチレ
ンジアミン、N−メチルモルホリン、ピリジン、α−ピ
コリン、キノリン、N、N’−ジメチルアニリン、N、
N’−ジエチルアニリン、ジメチルベンジルアミン等の
第三級アミン、 ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハ
ク酸、安息香酸、フタル酸、イソフタル酸、テレフタル
酸等の有機酸、 および水。
Examples of catalysts triethylamine, tripropylamine, tributylamine, N,N-tetramethylethylenediamine, N,N
-tetramethyl-1,3-butanediamine, triethylenediamine, N-methylmorpholine, pyridine, α-picoline, quinoline, N,N'-dimethylaniline, N,
Tertiary amines such as N'-diethylaniline and dimethylbenzylamine, organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, phthalic acid, isophthalic acid, and terephthalic acid, and water. .

分子量400以上15000以下の成分は、熔解性が良
好で活性度が高(、基材と良好な密着性を示す成分であ
る。この観点より考えれば多い程好ましいのであるが、
80%を越えるよう合成すれば、いかなる触媒を用いて
も分子量15000を越える成分が多くなりすぎて粘度
が高くなりすぎる。また樹脂の硬化までの時間を短縮さ
せ、ワニスの可使時間が短くなり、乾燥時間が充分にと
れな(なる。
A component having a molecular weight of 400 or more and 15,000 or less is a component that has good solubility and high activity (and exhibits good adhesion to the base material. From this point of view, the more the component, the better.
If it is synthesized to exceed 80%, no matter what catalyst is used, there will be too many components with a molecular weight of over 15,000, resulting in too high a viscosity. It also shortens the time it takes for the resin to harden, shortening the pot life of the varnish and making it impossible to take enough time to dry it.

また39%未満では、未反応成分の残存が多くなり、ワ
ニスを調整した場合、沈澱が析出しやすくなるといった
ような前述の不都合が生じてくる。したがって、この成
分は39〜80%となっている必要がある。分子量15
000を越える高分子量成分の増大は、樹脂の硬化まで
の時間を短縮させる。そのため、ワニスの可使時間が短
くなり、乾燥時間が充分にとれなくなる。乾燥時間が充
分でないと、ワニス中に揮発成分が残存しやすくなる。
On the other hand, if it is less than 39%, a large amount of unreacted components will remain, and when the varnish is prepared, the above-mentioned disadvantages such as precipitation becoming more likely to occur will occur. Therefore, this component needs to be 39-80%. Molecular weight 15
Increasing the high molecular weight components above 0.00000000000000 shortens the time to cure of the resin. Therefore, the pot life of the varnish is shortened and the drying time is not sufficient. If the drying time is insufficient, volatile components tend to remain in the varnish.

そして基材との密着性も低下する。したがって、この成
分は、少ない程良い。
The adhesion to the base material also decreases. Therefore, the less this component is, the better.

発明者らが分子量50000を越える成分を分取し、こ
れをd−DMFに溶解した溶液をNMR分析にかけたと
ころ、ジアミン成分はほとんど認められず、不飽和ビス
−イミドの単独重合物であることが認められた。この重
合物は可撓性に乏しく、基材との密着性が低いことが知
られており、この意味からも分子115000を越える
成分は少ない方が好ましい、しかし、樹脂合成反応を開
始すると、直ちに分子量15000を越える領域が生成
してくるので、皆無にすることは不可能である。そこで
、分子itl 5000を越える成分は、0.7〜6.
8%となっている必要がある。
When the inventors separated a component with a molecular weight exceeding 50,000 and dissolved it in d-DMF and subjected it to NMR analysis, almost no diamine component was observed, indicating that it was a homopolymer of unsaturated bis-imide. was recognized. It is known that this polymer has poor flexibility and poor adhesion to the base material, and from this point of view, it is preferable to have as few components as possible with molecules exceeding 115,000. However, once the resin synthesis reaction is started, Since a region with a molecular weight exceeding 15,000 is generated, it is impossible to completely eliminate it. Therefore, components with a molecular itl exceeding 5000 have a molecular itl of 0.7 to 6.
It must be 8%.

6.8%を越えると上記のように、粘度が高くなるとい
った不都合が生じ、0.7%未満では反応不十分でワニ
スが低粘度になり、ガラス布等の基材に含浸した場合適
正なレジンコンテントが得られず、またワニスは沈澱が
生じやすくなるという不都合が生じてくる。
If it exceeds 6.8%, the viscosity will increase as mentioned above, and if it is less than 0.7%, the reaction will be insufficient and the varnish will have a low viscosity, making it difficult to use when impregnating a base material such as glass cloth. Inconveniences arise in that resin content cannot be obtained and the varnish tends to precipitate.

ここで、分子量分布は、DMF溶媒を使用し1、分離カ
ラムとして昭和電工部AD−803/S (8、OX 
25 (1+m、理論段数6000段)を2本装着した
ゲル浸透クロマトグラフ(東洋ソーダ製HLC−803
D)により測定した。分子量の計算は、5種類の単分散
ポリエチレングリコール及びエチレングライコールモノ
マーのリテンションタイムと分子量の常用対数から、3
次式の回帰曲線を求め、これを試料に適用し、試料のリ
テンションタイムから逆に分子量を求めるという方法で
行った。また、各成分の割合(%)は、示差屈折計(1
28Xlo−8RI単位)を用い、試料濃度を0.5±
0.2%、試料注入量を100μlとして測定し、屈折
計出力0〜1■記録計への出力O〜10mV、チャート
速度5ma+速度5レa+/れたクロマトグラムを、必
要な分子量区分に分け、切りぬき重量法により、それぞ
れの比率を求めた。
Here, the molecular weight distribution was determined using DMF solvent 1 and Showa Denko AD-803/S (8, OX
Gel permeation chromatograph (Toyo Soda HLC-803) equipped with two 25 (1+m, theoretical plates 6000 plates)
D). Calculation of molecular weight is based on the retention time of five types of monodispersed polyethylene glycol and ethylene glycol monomer and the common logarithm of molecular weight.
A regression curve of the following formula was obtained, this was applied to the sample, and the molecular weight was determined inversely from the retention time of the sample. In addition, the proportion (%) of each component is calculated using a differential refractometer (1
28Xlo-8RI units), and the sample concentration was adjusted to 0.5±
0.2%, the sample injection volume was 100 μl, the refractometer output was 0 to 1 ■ The output to the recorder was O to 10 mV, and the chromatogram was divided into the necessary molecular weight categories. , the respective ratios were determined by the cut-out weight method.

各成分が前記のような成分割合となった付加型イミド樹
脂プレポリマーは、基材との密着性が高く耐熱性も高い
。市販品の中にはこのような成分割合のものは無く、一
般的に入手することはできない。発明者らが調べたとこ
ろによると、市販品は、第1の発明の付加型イミド樹脂
プレポリマーに比べ、分子量15000を越える成分の
割合が太き(異なり、市販品のいずれかにこの成分を非
常に大きく含有するものであった。
The addition type imide resin prepolymer in which each component has the above-mentioned component ratio has high adhesion to the base material and high heat resistance. There are no commercially available products with such ingredient ratios, and they are not generally available. According to the inventors' investigation, compared to the addition-type imide resin prepolymer of the first invention, the proportion of components with a molecular weight exceeding 15,000 in commercially available products is higher (unlikely, if any of the commercially available products does not contain this component) It contained a very large amount.

第1の発明のプレポリマー、は、普通、不飽和ビス−イ
ミドとジアミンとを極性溶媒中で95℃以下の低温で反
応させることにより得られるが、温度は60〜95℃が
より好ましい。従来一般に用いられている温度条件、す
なわち、120〜200℃での溶融反応、極性溶媒によ
る溶液反応は、未反応原料の効率良い減少が計れるもの
の、反応が進み過ぎ、分子量15000を越える成分が
多く生成してくる。分子量15000を越える成分を0
.7〜6.8%に止めるようにした場合には、反応が不
充分で未反応原料が多く残存するようになる。この傾向
は熱溶融反応を高温で行うほど顕著になり、この場合、
未反応原料が多く存在し、かつ、15000を越える成
分も多く存在する様になる。その結果として最も有効な
成分である分子量400以上15000以下の部分が極
端に少なくなる。前記のような反応は通常0.5〜10
時間行われるが、具体的な時間は原料の種類、極性溶媒
の種類、′a度1反応温度により選択され、前記の範囲
を外れる場合もある。
The prepolymer of the first invention is usually obtained by reacting an unsaturated bis-imide and a diamine in a polar solvent at a low temperature below 95°C, more preferably at a temperature of 60 to 95°C. Although the conventionally commonly used temperature conditions, i.e., melt reaction at 120 to 200°C and solution reaction using polar solvents, can efficiently reduce unreacted raw materials, the reaction proceeds too much and there are many components with molecular weights exceeding 15,000. It will generate. 0 components with a molecular weight exceeding 15,000
.. If the amount is limited to 7 to 6.8%, the reaction will be insufficient and a large amount of unreacted raw materials will remain. This tendency becomes more pronounced as the thermal melting reaction is carried out at higher temperatures; in this case,
There are many unreacted raw materials and many components exceeding 15,000. As a result, the most effective component, the portion with a molecular weight of 400 to 15,000, becomes extremely small. The reaction as described above is usually 0.5 to 10
The specific time is selected depending on the type of raw materials, the type of polar solvent, and the reaction temperature, and may be outside the above range.

不飽和ビス−イミドとジアミンの配合率は、1゜7/1
〜2.5 / 1モル比率が好ましく、1.7 / 1
より低いと高分子量分の生成が多くなり、硬化までの時
間も短くなり取扱いにくくなる。他方、2゜5/1を越
えると未反応原料が多く残存しやすくなり、特に不飽和
イミド成分が多く残るようになる。そのため、プレポリ
マー溶液の保管中に沈澱が析出し易くなる。これに対し
て、不飽和ビス−イミドとジアミンの配合率が、1.7
 / 1〜2.5/1の範囲内のものは、通常の保管中
および一5°Cで冷蔵保管しても沈澱の生成はほとんど
見られない。この配合比率は、最終的なものであって、
両者あるいは片方のみを2回以上に分けて使用し、反応
の途中段階で加えたり、場合によっては反応終了後に加
えたりするようであってもよい。
The blending ratio of unsaturated bis-imide and diamine is 1°7/1
~2.5/1 molar ratio is preferred, 1.7/1
If it is lower, a large amount of high molecular weight components will be produced, and the time until curing will be shortened, making it difficult to handle. On the other hand, if it exceeds 2°5/1, a large amount of unreacted raw materials tends to remain, especially a large amount of unsaturated imide components. Therefore, precipitation tends to occur during storage of the prepolymer solution. On the other hand, the blending ratio of unsaturated bis-imide and diamine is 1.7
/1 to 2.5/1, hardly any precipitate is formed during normal storage or even when stored refrigerated at -5°C. This blending ratio is the final one,
Both or only one of them may be used twice or more, and may be added in the middle of the reaction, or in some cases, after the reaction is completed.

この発明の付加型イミド樹脂プレポリマーはプリント配
線板用積層板の他、各種充填材との組合わせにより、半
導体封止材料、高強度高弾性率電気機器用構造材料2電
磁波シールド材料等の成形材料、半導体素子のグイボン
ド用及びチップ部品搭載用等の接着材および回路印刷用
ペースト等の広範な電気用途に使用することが可能であ
り、こられに用いることにより高耐熱性、高密着性、可
撓性の良好な成形体を得ることが可能となる。
The addition-type imide resin prepolymer of the present invention can be used to form laminates for printed wiring boards, as well as semiconductor sealing materials, structural materials for high-strength, high-modulus electrical equipment, electromagnetic shielding materials, etc. by combining with various fillers. It can be used for a wide range of electrical applications, such as materials, adhesives for semiconductor devices, adhesives for mounting chip components, and pastes for circuit printing, and when used in these applications, it has high heat resistance, high adhesion, It becomes possible to obtain a molded article with good flexibility.

第2の発明にかかるプリプレグは、第1の発明にかかる
付加型イミド樹脂プレポリマーを基材に含浸させたのち
、プレポリマーの第2次反応および溶媒を蒸発させるこ
とを行ってプレポリマーを半硬化させ、樹脂中の未反応
原料が15〜35%、分子量400以上15000以下
の成分が50〜80%1分子量1soooを越える成分
が1〜15%となるようにしたものである。このプリプ
レグは、第1の発明にかかる付加型イミド樹脂プレポリ
マーを用いなければ、得ることができない。未反応原料
の含有量が15%未満で、分子量が400以上1500
0以下の成分が80%を越え、分子量15000を越え
る成分が15%を越えると分子量15000を越える成
分が多くなって、樹脂の粘度が高くなりすぎる。そのた
め、低圧成形するとボイドが発生する。また、硬化まで
の時間が短か過ぎ、大きい積層板(成形板)を得るのが
困難になる。他方、未反応原料の含有量が35%を越え
、分子量400以上15000以下の成分が50%未満
で、分子量15000を越える成分が1%未満になると
、プリプレグ中に溶媒が残存しやず(なり、積層板にフ
クレ等が発生する原因になる。分子量15000を越え
る成分はやはり少ない方が好ましい。この理由はプレポ
リマーの説明のところで述べたとおりである。
The prepreg according to the second invention is obtained by impregnating a base material with the addition type imide resin prepolymer according to the first invention, and then performing a secondary reaction of the prepolymer and evaporating the solvent to half the prepolymer. After curing, the resin contains 15 to 35% of unreacted raw materials, 50 to 80% of components with a molecular weight of 400 to 15,000, and 1 to 15% of components with a molecular weight of more than 1 sooo. This prepreg cannot be obtained without using the addition type imide resin prepolymer according to the first invention. The content of unreacted raw materials is less than 15% and the molecular weight is 400 or more and 1500
If the component with a molecular weight of 0 or less exceeds 80% and the component with a molecular weight of over 15,000 exceeds 15%, the amount of components with a molecular weight of over 15,000 increases and the viscosity of the resin becomes too high. Therefore, voids occur during low-pressure molding. Furthermore, the time required for curing is too short, making it difficult to obtain large laminates (molded plates). On the other hand, if the content of unreacted raw materials exceeds 35%, the component with a molecular weight of 400 to 15,000 is less than 50%, and the component with a molecular weight of over 15,000 is less than 1%, the solvent will not remain in the prepreg. This will cause blisters to occur in the laminate.It is preferable that the amount of components having a molecular weight exceeding 15,000 be as small as possible.The reason for this is as stated in the explanation of the prepolymer.

市販の付加型イミド樹脂プレポリマーは、分子1150
00を越える成分が多量に含まれているので、どの様な
半硬化条件(第2次反応条件)を選んでも、前記のよう
な成分割合のプリプレグを得ることができない。
Commercially available addition-type imide resin prepolymers have molecules of 1150
Since the prepreg contains a large amount of components exceeding 0.00, no matter what semi-curing conditions (secondary reaction conditions) are selected, it is not possible to obtain a prepreg with the above-mentioned component ratio.

付加型イミド杉1脂プレポリマーを含浸させる基材の種
類は特に限定されない。通常は、ガラスクロス等が用い
られる。、この他、石英繊維布等の無機繊維布、ケブラ
ー繊維布等の高耐熱性有機繊維布などが用いられてもよ
い。これらの基材は通常カップリング剤等で表面処理を
施して用いられる半硬化させるときの温度は130〜1
55°Cで行うのが好ましい。155℃を越えると分子
量15000を越える成分の生成が促進され、130゛
C未満では効率よくプリプレグを生産することができな
い。
The type of base material to be impregnated with the addition type imide cedar monofat prepolymer is not particularly limited. Usually, glass cloth or the like is used. In addition, inorganic fiber cloth such as quartz fiber cloth, highly heat-resistant organic fiber cloth such as Kevlar fiber cloth, etc. may be used. These base materials are usually surface-treated with a coupling agent, etc., and the temperature for semi-curing is 130 to 1
Preferably, it is carried out at 55°C. If the temperature exceeds 155°C, the production of components with a molecular weight exceeding 15,000 is promoted, and if it is below 130°C, prepreg cannot be efficiently produced.

第3の発明にかかる積層板は、第2の発明乙こかかるプ
リプレグを用いてつくられる。すな1つら、必要に応じ
て、銅、ニッケル等の金属箔あるいは、9回路形成され
た内層材とともにこのプリプレグを積層成形してつくら
れる。第3の発明にかかる積層板は、第2の発明のプリ
プレグを用いるのでなければ、ボイドを生じさせること
なく低圧成形することができない。すなわち、50cI
IIX50cm以上の面積の積層板をボイドができない
よう成形する場合、市販のプレポリマーを用いたプリプ
レグが40kg/cm2以上の高圧力が必要であるのに
比べ、第2の発明のブリブ1/グは、15kg/am2
以下の低圧力で成形することが可能である。このため、
第3の発明にかかる積層板は、非常に寸法の安定したも
のとすることができる。また、この積層板は、第1の発
明にかかるプレポリマーが用いられるので樹脂と基材の
密着性が高い。したがって、この積層板を用いれば、高
密度高多層プリンI−板を得ることが可能となる。
The laminate according to the third invention is made using the prepreg according to the second invention. In other words, this prepreg is laminated and molded together with a metal foil such as copper or nickel, or an inner layer material having nine circuits formed thereon, as required. The laminate according to the third invention cannot be formed at low pressure without producing voids unless the prepreg according to the second invention is used. That is, 50cI
When molding a laminate with an area of IIX 50 cm or more without forming voids, prepreg using commercially available prepolymers requires a high pressure of 40 kg/cm2 or more, but the blib 1/g of the second invention requires , 15kg/am2
It is possible to mold at low pressures such as: For this reason,
The laminate according to the third invention can be made extremely dimensionally stable. Further, since this laminate uses the prepolymer according to the first invention, the adhesiveness between the resin and the base material is high. Therefore, by using this laminate, it is possible to obtain a high-density, high-multilayer pudding I-board.

つぎに、第1〜第3の発明の実施例、比較例および従来
例について説明する。
Next, examples of the first to third inventions, comparative examples, and conventional examples will be described.

まず、第1の発明について説明する。First, the first invention will be explained.

つぎのようにして、プレポリマー溶液の合成および調整
を行った。
The prepolymer solution was synthesized and prepared in the following manner.

実施例1〜6および比較例1〜6では、第1表に示され
る配合の原料の内N、N’−メチレンビス(N−フェニ
ルマレイミド)後添加分をのぞいた原料を31四つ目フ
ラスコに計り込み、撹拌棒、温度計、冷却器をフラスコ
に付けた後、側口より窒素ガスを通じた。フラスコ内の
空気を窒素置換した後、オイルバスにより加熱を行った
。内容物の溶解に伴い攪拌を開始し、第1表に示されて
いる温度に設定した。同表に示されている時間攪拌を続
けた後、ウォーターバスで冷却を行い、15分間で室温
まで温度を下げて、暗かっ免液体となったプレポリマー
溶液を得た。実施例6ではビス−イミドを603gと3
94gの2回に分けて計997g使用することとした。
In Examples 1 to 6 and Comparative Examples 1 to 6, the raw materials with the formulations shown in Table 1, excluding the post-addition of N,N'-methylenebis(N-phenylmaleimide), were added to the 31st and fourth flasks. After weighing, a stirring bar, a thermometer, and a condenser were attached to the flask, nitrogen gas was passed through the side port. After replacing the air in the flask with nitrogen, heating was performed using an oil bath. Stirring was started as the contents dissolved, and the temperature was set as shown in Table 1. After continuing stirring for the time indicated in the table, the mixture was cooled in a water bath, and the temperature was lowered to room temperature in 15 minutes to obtain a prepolymer solution that became a dark liquid. In Example 6, 603 g of bis-imide and 3
A total of 997g was used, divided into two 94g doses.

そして、603gのビス−イミドを前記と同じように使
用して原料を120分間反応させた後、90℃で394
gのビス−イミドをフラスコに投入した。これを溶解さ
せた後、反応物を冷却してプレポリマー溶液を得た。比
較例6についても同様に先に828g後で83gの2回
に分けて計911g使用した。
Then, 603 g of bis-imide was used in the same manner as above, and after reacting the raw materials for 120 minutes, 394 g of bis-imide was used at 90 °C.
g of bis-imide was charged to the flask. After dissolving this, the reaction product was cooled to obtain a prepolymer solution. In Comparative Example 6, a total of 911g was used, divided into two parts: 828g first and 83g later.

従来例では市販のポリアミノビスマレイミドを第1表に
示されている量だけ用い、これを50℃以下で、同表に
示されている量のN−メチルピロリドン中に溶解させる
ことにより、赤かっ色のプレポリマー溶液を得た。
In the conventional example, commercially available polyamino bismaleimide was used in the amount shown in Table 1, and by dissolving it in the amount of N-methylpyrrolidone shown in the table at 50°C or less, a reddish-brown color was obtained. A prepolymer solution was obtained.

前記のようにして得られたプレポリマー溶液(樹脂液)
の分析値および特性値を第2表に示す。
Prepolymer solution (resin liquid) obtained as described above
The analytical values and characteristic values are shown in Table 2.

第1表および第2表より、比較例1〜6は反応温度およ
び反応時間および触媒量の組合わせが通さなかったので
、この発明のプレポリマーが得られなかったことがわか
る。
From Tables 1 and 2, it can be seen that the prepolymers of the present invention could not be obtained in Comparative Examples 1 to 6 because the combinations of reaction temperature, reaction time, and catalyst amount were not acceptable.

つぎに、第2の発明について説明する。Next, the second invention will be explained.

先に得た、樹脂液を用い、表面処理を行った105g/
m2のガラスクロスに第3表の条件で含浸を行った。乾
燥品中で2次反応を行って、レンジコンテント47〜5
0%のプリプレグを作製した。得られたプリプレグの特
性を第3表の下欄に示す。
105g/surface treated using the resin liquid obtained earlier
Impregnation was carried out on a m2 glass cloth under the conditions shown in Table 3. Perform the secondary reaction in the dry product, and the microwave content 47-5
A 0% prepreg was produced. The properties of the obtained prepreg are shown in the lower column of Table 3.

第3表より、比較例あるいは従来例のプレポリマーを用
いたのでは、この発明のプリプレグが得られないことが
わかる。また、第1の発明のプレポリマーを用いたとし
ても、半硬化後の樹脂の分子量分布が第2の発明で規定
した範囲を外れると、揮発分が多くなるかゲルタイムが
短くなることがわかる。
From Table 3, it can be seen that the prepreg of the present invention cannot be obtained by using the prepolymer of the comparative example or the conventional example. Furthermore, even if the prepolymer of the first invention is used, if the molecular weight distribution of the semi-cured resin is out of the range specified in the second invention, it can be seen that the volatile content increases or the gel time becomes short.

つぎに、第3の発明について説明する。Next, the third invention will be explained.

先に得たプリプレグを30cmX30c+aの大きさに
し、これを4枚重ね、これらの両面に表面処理を行った
同サイズの1/2オンス/ft2の銅箔を於いて積層体
とした。これを1.6 mm厚の金型にはさみ、蒸気プ
レスを用いて5kg/co+2の加圧を行いつつ直ちに
130℃まで加熱し、20分間保持した。この後、圧力
を10kg/cm2に設定するとともに170℃に加熱
し、90分後に圧力をかけたまま室温まで冷却して、両
面銅張積層板を得た。このものを、200.’C,12
0分間の温度条件でアフターキュアーを行った。
The previously obtained prepreg was made into a size of 30cm x 30c+a, and four sheets were stacked on top of each other, and 1/2 oz/ft2 copper foil of the same size and surface treated was placed on both sides to form a laminate. This was placed in a 1.6 mm thick mold, and while applying a pressure of 5 kg/co+2 using a steam press, it was immediately heated to 130° C. and held for 20 minutes. Thereafter, the pressure was set at 10 kg/cm 2 and the laminate was heated to 170° C. After 90 minutes, the laminate was cooled to room temperature while the pressure was applied to obtain a double-sided copper-clad laminate. This thing costs 200. 'C, 12
After-curing was performed at a temperature of 0 minutes.

得られた積層板の吸水率をJIS  C6481にもと
づき、測定した結果を第4表に示す。
The water absorption rate of the obtained laminate was measured based on JIS C6481, and the results are shown in Table 4.

つぎに、50C1lX50(Jの大きさにした前記プリ
プレグを5枚重ね2段目の圧力を10kg/cm2と1
5kg/co+2の2種類をそれぞれ用いた以外は上記
と同様にして作成した積層板の、成形結果および層と層
の間を90°方向にはがしたときの密着力の測定結果を
同じく第4表に示す。
Next, stack 5 sheets of the prepreg with a size of 50C1l
The molding results of the laminates made in the same manner as above except that two types of 5kg/co+2 were used, and the measurement results of the adhesion force when the layers were peeled off in a 90° direction were also shown in the fourth table. Shown in the table.

25C1lX25CIIのプリプレグ1枚と、同サイズ
で1オンス/ft2の銅箔2枚を用いた他は上記と同様
にして両面銅張積層板1次成形物を得た。このものに約
200TII+1間隔で基準点穴を開けた後、大間の寸
法を正確に測定し、両面の銅箔を常法に基づきエツチン
グ除去し、これ(内層材)の片面に前記と同寸法のプリ
プレグ2枚と同寸法で1オンス/fL2の銅箔1枚を積
層するとともに、反対面にも同様にプリプレグ2枚と銅
箔1枚を積層し、10kg/ca+2で170℃、90
分間上記と同様に成形後、200℃、120分でアフタ
ーキュアーして積層板を得た。この積層板の内層材の基
準穴上の銅箔を機械的に除去し、寸法を計測したときの
内層材の寸法変化を測定した。この測定方法に基づき以
上の測定を10回行った。このときの寸法変化のバラツ
キ(3σ)を同じく第4表に示す。
A primary molded double-sided copper-clad laminate was obtained in the same manner as described above, except that one prepreg of 25C11×25CII and two sheets of copper foil of the same size and 1 oz/ft2 were used. After drilling reference point holes in this material at intervals of approximately 200 TII + 1, the dimensions of Oma were accurately measured, the copper foil on both sides was removed by etching according to the usual method, and prepreg with the same dimensions as above was formed on one side of this (inner layer material). One sheet of copper foil of 1 oz/fL2 with the same dimensions as the two sheets was laminated, and two sheets of prepreg and one sheet of copper foil were laminated on the other side in the same way.
After molding for 1 minute in the same manner as above, it was after-cured at 200° C. for 120 minutes to obtain a laminate. The copper foil on the reference hole of the inner layer material of this laminate was mechanically removed, and the dimensional change in the inner layer material was measured. The above measurements were performed 10 times based on this measurement method. The variation (3σ) of the dimensional change at this time is also shown in Table 4.

第4表より、実施例の積層板は、第2の発明のプリプレ
グを使用し、低圧で成形しているので、比較例および従
来例の各積層板に比べ、吸水率および寸法挙動が安定し
ていることがわかる。また、実施例の積層板の引きはが
し強度は、いずれも1、4 kg/ cI112を上廻
り、充分に満足すべきものであったこともわかる。
From Table 4, the laminate of the example uses the prepreg of the second invention and is molded at low pressure, so compared to the laminate of the comparative example and the conventional example, the water absorption rate and dimensional behavior are more stable. You can see that It can also be seen that the peel strengths of the laminates of Examples were all over 1.4 kg/cI112, which should be fully satisfactory.

〔発明の効果〕〔Effect of the invention〕

第1の発明にかかる付加型イミド樹脂プレポリマー、第
2の発明にかかるプリプレグおよび第3の発明にかかる
積層板は、前記のように構成されているので、これらを
用いれば、高密度高多層プリント板を得ることが可能に
なる。
Since the addition-type imide resin prepolymer according to the first invention, the prepreg according to the second invention, and the laminate according to the third invention are configured as described above, if these are used, high-density, high-multilayer It becomes possible to obtain printed boards.

すなわち、第1の発明にかかるプレポリマーは、N−メ
チルピロリドンやジメチルアセトアミド等の極性溶媒に
溶解してワニスを調整した場合、ワニス中に未反応原料
の沈澱や高分子量不溶解物を含まないクリアーなワニス
となり、また、ワニスの硬化までの時間が長いため、ワ
ニスの可使時間も長くなっている。
That is, when the prepolymer according to the first invention is dissolved in a polar solvent such as N-methylpyrrolidone or dimethylacetamide to prepare a varnish, the varnish does not contain any precipitates of unreacted raw materials or high molecular weight insoluble substances. The varnish is clear, and the varnish takes a long time to harden, so the pot life of the varnish is also extended.

つぎに、第2の発明にかかるプリプレグは上記の第1の
発明にかかるプレポリマーを使用しているので、ワニス
の硬化までの時間が長く、充分に乾燥でき、プリプレグ
中に残存する揮発分が少なくなる。また樹脂の溶融粘度
が低くなるため、このプリプレグを低圧で成形してもカ
スレが発生しない等、大きいサイズの積層板の成形に適
している。
Next, since the prepreg according to the second invention uses the prepolymer according to the first invention, the varnish takes a long time to harden, can be sufficiently dried, and the volatile matter remaining in the prepreg is reduced. It becomes less. Furthermore, since the melt viscosity of the resin is low, this prepreg does not cause fading even when molded at low pressure, making it suitable for molding large-sized laminates.

また第3の発明にかかる積層板は上記の第2の発明にか
かるプリプレグを使用しているので低圧で成形できるた
め寸法安定性がよく、基材と樹脂との密着力にすぐれた
I層板が得られた。
In addition, since the laminate according to the third invention uses the prepreg according to the second invention, it can be molded at low pressure, resulting in good dimensional stability and an I-layer board with excellent adhesion between the base material and the resin. was gotten.

代理人 弁理士  松 本 武 彦 手□甫正書、(自治 昭和60年10月19日 才。冒ト庁長宮 殿 1、事件の表示 昭和60年特許19順164430号 2、発明の名称 (=J加梨型イミド樹脂プレポリマープリプレグおよび
積層板;〕、補正をする者 11件との関係     特許出願人 件   所    大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社 代表者  イ誠1徴帝役藤井頁夫 4、代理人 な   し 一二・、 6、補正の対象 願書の添付書類の目録欄および明細書の発明の詳細な説
明の欄 7、補正の内容 (11願書の添付書類の目録欄を別紙添付にかかる願書
記載のとおりに訂正する。
Agent Patent Attorney Takehiko Matsumoto □ Hoshosho, (Dated October 19, 1985. Court of the Chief of the Anti-Slavery Agency 1, Indication of the case 1985 Patent No. 19 No. 164430 2, Name of the invention (= J Kari-type imide resin prepolymer prepreg and laminate; ], Relationship with 11 amendments Patent applicant Location 1048 Oaza Kadoma, Kadoma-shi, Osaka Name (583) Matsushita Electric Works Co., Ltd. Representative Isei 1 4, Emperor Fujii Keio, no representative, 12., 6, List of documents attached to the application to be amended and column 7, Detailed explanation of the invention in the specification, Contents of amendment (11 Documents attached to the application) Correct the list column as stated in the attached application form.

(2)  明細書第9頁第5行に「もくしは」とあるを
、「もしくは」と訂正する。
(2) On page 9, line 5 of the specification, the word "also" is corrected to "or."

(3)明細書第9頁第7行ないし第8行に「もくしは」
とあるを、「もしくは」と訂正する。
(3) "Mokushiha" on page 9, line 7 or line 8 of the specification
Correct the word "or" to "or."

(4)  明細書第10頁の を、 と訂正する。(4) Page 10 of the specification of, I am corrected.

(5)明細書第12頁第3行ないし第4行に「ジシクロ
ヘキシルメタル」とあるを、「ジシクロヘキシルメタン
」と訂正する。
(5) On page 12, lines 3 and 4 of the specification, "dicyclohexylmetal" is corrected to "dicyclohexylmethane."

(6)  明細書第13頁第5行に「ジアミノナフレン
」とあるを、「ジアミノナフタレン」と訂正する。
(6) On page 13, line 5 of the specification, "diaminonaphrene" is corrected to "diaminonaphthalene."

(7)明細書第28頁第3表の最左棚下から2つめに「
160℃における」とあるを、「170℃における」と
訂正する。
(7) Second from the bottom of the leftmost shelf in Table 3 on page 28 of the specification:
"At 160°C" should be corrected to "At 170°C."

Claims (3)

【特許請求の範囲】[Claims] (1)不飽和ビス−イミドとジアミンとを反応させてな
る付加型イミド樹脂プレポリマーであって、残存する未
反応原料を15〜55%、分子量400以上15000
以下の成分を39〜80%、分子量が15000を越え
る成分を0.7〜6.8%の範囲でそれぞれ含むことを
特徴とする付加型イミド樹脂プレポリマー。
(1) An addition type imide resin prepolymer made by reacting an unsaturated bis-imide and a diamine, with a residual unreacted raw material content of 15-55% and a molecular weight of 400 or more and 15,000.
An addition type imide resin prepolymer characterized by containing the following components in a range of 39 to 80% and a component having a molecular weight exceeding 15,000 in a range of 0.7 to 6.8%.
(2)残存する未反応原料を15〜55%、分子量40
0以上15000以下の成分を39〜80%、分子量が
15000を越える成分を0.7〜6.8%の範囲でそ
れぞれ含むようにして不飽和ビス−イミドとジアミンと
を反応させて得られる付加型イミド樹脂プレポリマーを
基材に含浸させ、半硬化させることにより、樹脂中の未
反応原料が15〜35%、分子量400以上15000
以下の成分が50〜80%、分子量が15000を越え
る成分が1〜15%となるようにしたプリプレグ。
(2) 15-55% remaining unreacted raw material, molecular weight 40
Addition type imide obtained by reacting an unsaturated bis-imide with a diamine, containing 39 to 80% of a component having a molecular weight of 0 to 15,000 and 0.7 to 6.8% of a component having a molecular weight exceeding 15,000. By impregnating the resin prepolymer into the base material and semi-curing it, the unreacted raw material in the resin is 15 to 35% and the molecular weight is 400 to 15,000.
A prepreg containing 50 to 80% of the following components and 1 to 15% of components with a molecular weight exceeding 15,000.
(3)プリプレグが積層成形されている積層板であって
、プリプレグとして、残存する未反応原料を15〜55
%、分子量400以上15000以下の成分を39〜8
0%、分子量が15000を越える成分を0.7〜6.
8%の範囲でそれぞれ含むようにして不飽和ビス−イミ
ドとジアミンを反応させて得られる付加型イミド樹脂プ
レポリマーを基材に含浸させ、半硬化させることにより
、樹脂中の未反応原料が15〜35%、分子量400以
上15000以下の成分が50〜80%、分子量が15
000を越える成分が1〜15%となるようにしたもの
が用いられていることを特徴とする積層板。
(3) A laminate plate in which prepreg is laminated and molded, and the remaining unreacted raw material is 15 to 55% as the prepreg.
%, components with a molecular weight of 400 or more and 15,000 or less are 39 to 8
0%, and components with molecular weights exceeding 15,000 are 0.7 to 6.
By impregnating the base material with an addition-type imide resin prepolymer obtained by reacting unsaturated bis-imide and diamine in a range of 8% and semi-curing, the unreacted raw materials in the resin are reduced to 15 to 35%. %, 50 to 80% components with a molecular weight of 400 to 15,000, and a molecular weight of 15
1. A laminate, characterized in that a component exceeding 0.000 is used in an amount of 1 to 15%.
JP16443085A 1985-07-25 1985-07-25 Addition-type imide resin prepolymer, prepreg and laminated board Granted JPS6225126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16443085A JPS6225126A (en) 1985-07-25 1985-07-25 Addition-type imide resin prepolymer, prepreg and laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16443085A JPS6225126A (en) 1985-07-25 1985-07-25 Addition-type imide resin prepolymer, prepreg and laminated board

Publications (2)

Publication Number Publication Date
JPS6225126A true JPS6225126A (en) 1987-02-03
JPH0412727B2 JPH0412727B2 (en) 1992-03-05

Family

ID=15793004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16443085A Granted JPS6225126A (en) 1985-07-25 1985-07-25 Addition-type imide resin prepolymer, prepreg and laminated board

Country Status (1)

Country Link
JP (1) JPS6225126A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579321A (en) * 1978-12-04 1980-06-14 Ciba Geigy Ag Medical composition for local administration
JPH01240526A (en) * 1988-03-19 1989-09-26 Matsushita Electric Works Ltd Addition type imide resin prepolymer, prepreg and laminated board
JPH01240527A (en) * 1988-03-22 1989-09-26 Matsushita Electric Works Ltd Addition type imide resin prepolymer, prepreg and laminated board
JPH01245024A (en) * 1988-03-26 1989-09-29 Matsushita Electric Works Ltd Addition type imide resin prepolymer, prepreg and laminate
JP2011219504A (en) * 2010-04-02 2011-11-04 Sumitomo Bakelite Co Ltd Thermosetting composition for circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856383A (en) * 1981-09-29 1983-04-04 日立化成工業株式会社 Method of producing printed circuit board
JPS604600A (en) * 1983-06-23 1985-01-11 サンスタ−株式会社 Menthol soap
JPS60112684A (en) * 1983-11-18 1985-06-19 日立造船株式会社 Sludge composting treatment
JPS61163938A (en) * 1985-01-15 1986-07-24 Matsushita Electric Works Ltd Addition-type imide resin prepolymer, prepreg and laminated sheet
JPS61271327A (en) * 1985-05-25 1986-12-01 Matsushita Electric Works Ltd Addition-type imide resin prepolymer, prepreg and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856383A (en) * 1981-09-29 1983-04-04 日立化成工業株式会社 Method of producing printed circuit board
JPS604600A (en) * 1983-06-23 1985-01-11 サンスタ−株式会社 Menthol soap
JPS60112684A (en) * 1983-11-18 1985-06-19 日立造船株式会社 Sludge composting treatment
JPS61163938A (en) * 1985-01-15 1986-07-24 Matsushita Electric Works Ltd Addition-type imide resin prepolymer, prepreg and laminated sheet
JPS61271327A (en) * 1985-05-25 1986-12-01 Matsushita Electric Works Ltd Addition-type imide resin prepolymer, prepreg and laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579321A (en) * 1978-12-04 1980-06-14 Ciba Geigy Ag Medical composition for local administration
JPS6348849B2 (en) * 1978-12-04 1988-09-30 Ciba Geigy
JPH01240526A (en) * 1988-03-19 1989-09-26 Matsushita Electric Works Ltd Addition type imide resin prepolymer, prepreg and laminated board
JPH01240527A (en) * 1988-03-22 1989-09-26 Matsushita Electric Works Ltd Addition type imide resin prepolymer, prepreg and laminated board
JPH01245024A (en) * 1988-03-26 1989-09-29 Matsushita Electric Works Ltd Addition type imide resin prepolymer, prepreg and laminate
JP2011219504A (en) * 2010-04-02 2011-11-04 Sumitomo Bakelite Co Ltd Thermosetting composition for circuit board

Also Published As

Publication number Publication date
JPH0412727B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
US3985928A (en) Heat-resistant laminating resin composition and method for using same
JPS61163938A (en) Addition-type imide resin prepolymer, prepreg and laminated sheet
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
CN106010421B (en) Adhesive composition, film-like adhesive material, adhesive layer, adhesive sheet, copper-clad laminate, wiring board, and printed wiring board
CN108690193B (en) Polyimide, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
CN108690194B (en) Polyimide, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
JP5232386B2 (en) Thermosetting resin composition and use thereof
CN108690552B (en) Adhesive, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
KR20060065610A (en) Polyimide resin and cast-on-copper laminate
TW201619292A (en) Polyimide resin composition, adhesion composition, primer composition, lamination body and resin-adhered copper foil
CN100566503C (en) Laminate for wiring board
JPS6225126A (en) Addition-type imide resin prepolymer, prepreg and laminated board
JP2021141108A (en) Adhesive, adhesive sheet and flexible copper clad laminate
EP1667501A1 (en) Substrate for flexible printed wiring board and method for manufacturing same
JPH07224269A (en) Adhesive composition, composite material and printed wiring board
JPS61271327A (en) Addition-type imide resin prepolymer, prepreg and laminate
JPS60202130A (en) Addition-type imide resin prepolymer, prepreg, and laminated sheet
JPS63312321A (en) Curable polymer composition
JPS6241262A (en) Addition type imide resin prepolymer composition
JPH0791380B2 (en) Method for producing addition type imide resin prepolymer composition
JP2005097428A (en) Curable resin composition
JP2715853B2 (en) Manufacturing method of copper-clad laminate
JPH0791381B2 (en) Method for producing addition type imide resin prepolymer composition
CN115491154A (en) Adhesive, adhesive sheet, and flexible copper-clad laminate
JPH10139852A (en) Production of modified epoxy resin, modified epoxy resin composition, adhesive and adhesive film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term