JP3732031B2 - air compressor - Google Patents

air compressor Download PDF

Info

Publication number
JP3732031B2
JP3732031B2 JP00906599A JP906599A JP3732031B2 JP 3732031 B2 JP3732031 B2 JP 3732031B2 JP 00906599 A JP00906599 A JP 00906599A JP 906599 A JP906599 A JP 906599A JP 3732031 B2 JP3732031 B2 JP 3732031B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
refrigerant
compressor
compressor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00906599A
Other languages
Japanese (ja)
Other versions
JP2000205134A (en
Inventor
正樹 松隈
順一朗 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP00906599A priority Critical patent/JP3732031B2/en
Publication of JP2000205134A publication Critical patent/JP2000205134A/en
Application granted granted Critical
Publication of JP3732031B2 publication Critical patent/JP3732031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大気中の空気を吸込み、圧縮する空気圧縮機に関するものである。
【0002】
【従来の技術】
従来、空気圧縮機は各種の分野において広く利用されている。そして、基本的には、この空気圧縮機は、圧縮機本体の吸込口に接続した吸込流路に、空気フィルタを介して大気中の空気を取り入れ、この空気を圧縮機本体にて圧縮し、圧縮機本体の吐出口から吐出するように形成されている。
【0003】
【発明が解決しようとする課題】
上記従来の空気圧縮機の場合、上記吸込口から吸込む空気の温度、即ち吸込温度が高くなると、吸込み空気の密度が小さくなる。このため、その分だけ単位動力当たりの圧縮機本体からの吐出風量が減少し、消費動力が増大するという問題がある。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、消費動力の低減を可能とした空気圧縮機を提供しようとするものである。
【0004】
【課題を解決するための手段】
上記課題を解決するために、発明は、大気から取り入れた空気を空気用圧縮機本体の吸込口に導く吸込流路に吸気冷却手段が介設され、上記空気用圧縮機本体の吐出流路が、アフタークーラと再熱器と蒸発用第6熱交換器とドレントラップとを有し、上記第6熱交換器が、冷媒用圧縮機本体と冷媒凝縮用の第4熱交換器と膨張弁と第1流量調節弁とともに冷媒用第3循環路を形成し、冷媒蒸発のために働き、上記冷媒用圧縮機本体と上記第4熱交換器とが、第2流量調節弁と冷媒蒸発用の第7熱交換器とともに冷媒用第4循環路を形成し、上記吸気冷却装手段が、上記第7熱交換器であって、上記空気用圧縮機本体から吐出された圧縮空気が、上記アフタークーラから上記再熱器、上記第6熱交換器、上記ドレントラップの順序でこれらを通過した後、再び上記再熱器を通過して機外に送り出され、上記吐出された圧縮空気が、まず上記アフタークーラで冷却され、上記再熱器で上記ド レントラップを通過した圧縮空気と熱交換して、この圧縮空気を昇温させ、上記第6熱交換器で冷却され、上記ドレントラップで析出水分を除去され、ドライな状態となる一方、上記第7熱交換器で冷媒と吸込み空気との間で熱交換を行わせる構成とした。
【0005】
【発明の実施の形態】
次に、本発明の一実施形態を図面にしたがって説明する。
図1は、後述する本発明の実施形態の構成要素の一部を含む第1参考例に係る空気圧縮機を示し、空気用圧縮機本体1の吸込口に吸込流路2が、吐出口に吐出流路3が接続してある。
吸込流路2には空気フィルタ4と吸気冷却手段である第1熱交換器5とドレントラップ6とが設けてある。
そして、大気中の空気を、空気フィルタ4を介して吸込流路2に取り入れ、後述するように第1熱交換器5で冷却し、ここで析出したドレンをドレントラップ6にて分離、排出し、冷却された空気を圧縮機本体1で圧縮し、上記吐出口から吐出流路3に吐出するようになっている。
【0006】
第1熱交換器5は、上記空気圧縮機の一部を構成するとともに冷凍装置の一部をも構成している。この冷凍装置は、冷媒用圧縮機本体11と冷媒凝縮用の水冷式第2熱交換器12と膨張弁13と冷媒蒸発用の第1熱交換器5とを含む冷媒用第1循環路14を形成している。そして、冷媒用圧縮機本体11で圧縮された冷媒は、第2熱交換器12にて、冷却水との熱交換により熱を奪われて凝縮し、高圧状態の冷媒液となり、膨張弁13にて膨張させられる。さらに、この冷媒液は、第1熱交換器5にて空気フィルタ4を介して吸込流路2に取り入れられた空気と熱交換して蒸発し、その際の気化熱により吸込流路2中の空気を冷却する。
【0007】
このように、この空気圧縮機では、圧縮機本体1に吸込まれる空気を冷却し、吸込温度を低下させるようになっているため、この空気密度が大きくなり、単位動力当たりの吐出風量が増大する。例えば、大気温度が30℃のときに第1熱交換器5による冷却により吸込温度を10℃にすると吐出風量は冷却しない場合に比して7%増大する。
また、圧縮機本体1が空気圧縮を行うロータ室に潤滑油を注入する油冷式のものである場合、吸込温度が低下すると、圧縮機本体1から吐出される圧縮空気の温度、即ち吐出温度も低下し、潤滑油の粘度が増大する結果、上記ロータ室のシール性が良くなり、圧縮機本体1の空気圧縮の効率が向上し、吐出風量がより一層増大する。
【0008】
さらに、圧縮機本体1が上記ロータ室に潤滑油を注入する油冷式のものである場合、吸込温度が低下し、吐出温度が低下すると、潤滑油の温度も低下し、上記ロータ室への注油温度が低下する結果、吸込んだ空気が温められて、熱膨張し、密度が小さくなるという問題、即ち吸込加熱の問題がある程度解消され、これにより空気密度が増大し、吐出風量がより一層増大する。
この吐出風量は、当社従来機に比して10数%増大する故、第1熱交換器5による消費動力の増加分が数%ある点を考慮しても、全体的に約10%の消費動力が節減できる。
さらに、吐出温度が低下すると、圧縮機本体1の吐出流路3に従来設けていたアフタークーラを小型化、或いは省略できるようになる。
【0009】
図2は、後述する本発明の実施形態の構成要素の一部を含む第2参考例に係る空気圧縮機を示し、上記第1参考例に係る空気用圧縮機と共通する部分については、互いに同一番号を付して説明を省略する。
この空気圧縮機では、空気用圧縮機本体1の吐出流路3に、空冷式アフタークーラ21と再熱器22と第3熱交換器23とドレントラップ6とを介設し、上記第3熱交換器23が、冷媒用圧縮機本体11と冷媒凝縮用の水冷式第4熱交換器24と膨張弁13と冷媒蒸発用の第5熱交換器25とともに冷凍装置の冷媒用第2循環路26を形成している。また、図2中一点鎖線Aで囲む部分は、圧縮空気を乾燥させるためのドライヤとして機能する一方、第5熱交換器25は、吸込流路2における吸気冷却手段でもある。
なお、図2中の※印同志は連続することを意味している。
【0010】
具体的には、上記第1参考例の場合と同様に、膨張弁13を通過した冷媒液は第5熱交換器25にて吸込流路2中の空気と熱交換して部分的に蒸発するとともに、この空気を冷却する。また、圧縮機本体1から吐出された圧縮空気は、まずアフタークーラ21で冷却され、再熱器22で吐出流路3のドレントラップ6を通過してきた圧縮空気と熱交換して、この通過してきた圧縮空気を昇温させるとともに、自らは冷却されて第3熱交換器23に至る。そして、この第3熱交換器23にて、圧縮空気と部分的に蒸発した冷媒との間の熱交換により、冷媒は蒸発するとともに、圧縮空気は冷却され、析出水分はドレントラップ6にて分離、排出され、圧縮空気はドライな状態となり、上述したように再熱器22で昇温され、さらにドライな状態になって機外に送り出される。
【0011】
そして、斯かる構成により、吸込温度を低下させ、第1参考例の場合と同様に、吐出風量を増大させ、消費動力が節減されるようになり、アフタークーラ21を小型化できるようになっている。なお、図2では、アフタークーラ21を設けてあるが、第5熱交換器26を設けることによりアフタークーラ21を省略することもできる。
また、吸気冷却して、吸込流路中に析出したドレンを除くことにより、吐出流路での乾燥運転の省略、或いは運転時間の短縮が可能になる。
【0012】
図3は、本発明の実施形態に係る空気圧縮機を示し、上記各参考例に係る空気用圧縮機と共通する部分については、互いに同一番号を付して説明を省略する。
この空気圧縮機では、空気用圧縮機本体1の吐出流路3に、空冷式アフタークーラ21と再熱器22と第6熱交換器31とドレントラップ6とを介設してある。一方、膨張弁13の二次側にて冷媒流路は二手に分かれ、その内の一方は、冷媒用圧縮機本体11と冷媒凝縮用の水冷式第4熱交換器24と膨張弁13と第1流量調節弁32と冷媒蒸発用の第6熱交換器31とを含む冷凍装置の冷媒用第3循環路33の一部を形成している。そして、図3中一点鎖線Bで囲む部分は、圧縮空気を乾燥させるためのドライヤとして機能する
【0013】
また、上記二手に分かれた冷媒流路の内の他方は、冷媒用圧縮機本体11と冷媒凝縮用の水冷式第4熱交換器24と膨張弁13と第2流量調節弁34と冷媒蒸発用の第7熱交換器35とを含む冷凍装置の冷媒用第4循環路36の一部を形成している。また、この第7熱交換器35は、吸込流路2における吸気冷却手段でもある。
なお、上記同様、図3中の※印同志は連続することを意味している。
そして、この実施形態に係る装置では、第1流量調節弁32および第2流量調節弁34のそれぞれの開度を調節することにより第3循環路33および第4循環路36に流れる冷媒量を変え、吸気冷却およびドライヤのそれぞれの働きを調節することができるようになっている。この第1流量調節弁32および第2流量調節弁34に代えて、膨張弁13の二次側における冷媒流路の分岐部に三方切換弁を設けて、各循環路に導く冷媒の量を調節するようにしてもよい。
また、上記同様に、斯かる構成により、吸込温度を低下させ、吐出風量を増大させ、消費動力が節減されるようになり、アフタークーラ21を小型化できるようになっている。なお、図2では、アフタークーラ21を設けてあるが、第7熱交換器35を設けることによりアフタークーラ21を省略することもできる。
【0014】
ところで、上述した各参考例および実施形態では、吸気冷却のために冷凍装置における冷媒の気化熱を利用しているが、本発明はこれに限定するものではなく、第1熱交換器5、第5熱交換器25、および第7熱交換器35に代えて、空冷式或いは水冷式の熱交換器を設けた圧縮機をも含むものである。
また、水冷式第4熱交換器24に代えて空冷式の熱交換器を設けてもよく、空冷式のアフタークーラ21に代えて水冷式のアフタークーラを設けてもよく、いずれも本発明に含まれる。
さらに、本発明における圧縮機本体は、無給油式、油冷式のいずれのタイプであってもよく、圧縮機本体が油冷式のものである場合、周知のように圧縮機本体の吐出側に油分離回収器が設けられ、さらにこの下部から油冷却器、油フィルタを経て圧縮機本体内の注油箇所に至る油供給流路が設けられる。
【0015】
【発明の効果】
以上の説明より明らかなように、本発明によれば、圧縮機の吸気を冷却するようになっているため、吸込温度を低下させ、吐出風量を増大させ、消費動力が節減されるようになり、通常設けられるアフタークーラを小型化若しくは省略することができるという効果を奏する。
また、吸気冷却用として吐出流路における付属装置であるドライヤの冷媒を利用することにより、吸気冷却のために新たな冷却媒体を用いる場合に比して構造を単純化できる他、吸気冷却側とドライヤ側のそれぞれに流れる冷媒の量を調節できるようにすることにより、外気温度に合わせて最適な吸込温度に調節することができるという効果も奏する。
【図面の簡単な説明】
【図1】 本発明の第1参考例に係る空気圧縮機の全体構成を示す図である。
【図2】 本発明の第2参考例に係る空気圧縮機の全体構成を示す図である。
【図3】 本発明の実施形態に係る空気圧縮機の全体構成を示す図である。
【符号の説明】
1 空気用圧縮機本体 2 吸込流路
3 吐出流路 4 空気フィルタ
5 第1熱交換器 6 ドレントラップ
11 冷媒用圧縮機本体 12 第2熱交換器
13 膨張弁 14 冷媒用第1循環路
21 アフタークーラ 22 再熱器
23 第3熱交換器 24 第4熱交換器
25 第5熱交換器 26 冷媒用第2循環路
31 第6熱交換器 32 第1流量調節弁
33 第3循環路 34 第2流量調節弁
35 第7熱交換器 36 冷媒用第4循環路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air compressor that sucks and compresses air in the atmosphere.
[0002]
[Prior art]
Conventionally, air compressors are widely used in various fields. And basically, this air compressor takes air in the atmosphere through an air filter into the suction flow path connected to the suction port of the compressor body, and compresses this air in the compressor body, It forms so that it may discharge from the discharge port of a compressor main body.
[0003]
[Problems to be solved by the invention]
In the case of the conventional air compressor, when the temperature of the air sucked from the suction port, that is, the suction temperature is increased, the density of the sucked air is decreased. For this reason, there is a problem that the amount of air discharged from the compressor body per unit power is reduced by that amount, and the power consumption is increased.
The present invention has been made to eliminate such a conventional problem, and an object of the present invention is to provide an air compressor capable of reducing power consumption.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an intake cooling means interposed in a suction flow path that guides air taken from the atmosphere to a suction port of a compressor body for air, and a discharge flow path of the compressor body for air. Includes an aftercooler, a reheater, a sixth heat exchanger for evaporation, and a drain trap, and the sixth heat exchanger includes a compressor main body for refrigerant, a fourth heat exchanger for refrigerant condensation, and an expansion valve. And the first flow rate control valve together with the first flow rate control valve to form a refrigerant third circulation path. The refrigerant compressor body and the fourth heat exchanger serve to evaporate the refrigerant. A refrigerant fourth circulation path is formed together with the seventh heat exchanger, the intake air cooling means is the seventh heat exchanger, and the compressed air discharged from the air compressor body is the aftercooler. To the reheater, the sixth heat exchanger, and the drain trap. After spent, fed out of the machine again passed through the reheater, the compressed air the discharge is first cooled in the aftercooler, the compressed air that has passed through the de Len trap the reheater Heat exchange is performed to raise the temperature of the compressed air, and the sixth heat exchanger cools it. The drain trap removes moisture, and the seventh heat exchanger sucks in the refrigerant. It was set as the structure which performs heat exchange between air .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
Figure 1 shows an air compressor according to the first exemplary embodiment comprising a portion of the components of the implementation of the invention described below, the suction passage 2 to the suction port of the air compressor main body 1, discharge port The discharge flow path 3 is connected to this.
The suction flow path 2 is provided with an air filter 4, a first heat exchanger 5 that is an intake air cooling means, and a drain trap 6.
Then, air in the atmosphere is taken into the suction flow path 2 through the air filter 4 and cooled by the first heat exchanger 5 as will be described later, and the drained precipitate is separated and discharged by the drain trap 6. The cooled air is compressed by the compressor body 1 and discharged from the discharge port to the discharge flow path 3.
[0006]
The first heat exchanger 5 constitutes a part of the air compressor and a part of the refrigeration apparatus. This refrigeration apparatus includes a refrigerant first circulation path 14 including a refrigerant compressor body 11, a water-cooled second heat exchanger 12 for refrigerant condensation, an expansion valve 13, and a first heat exchanger 5 for refrigerant evaporation. Forming. Then, the refrigerant compressed by the refrigerant compressor body 11 is deprived of heat by heat exchange with the cooling water in the second heat exchanger 12 to be condensed into a high-pressure refrigerant liquid. And inflated. Further, this refrigerant liquid evaporates by exchanging heat with the air taken into the suction flow path 2 via the air filter 4 in the first heat exchanger 5, and the heat in the suction flow path 2 in the suction flow path 2 is evaporated. Cool the air.
[0007]
Thus, in this air compressor, since the air sucked into the compressor body 1 is cooled and the suction temperature is lowered, the air density is increased and the amount of discharge air per unit power is increased. To do. For example, when the atmospheric temperature is 30 ° C. and the suction temperature is set to 10 ° C. by cooling by the first heat exchanger 5, the discharge air volume increases by 7% as compared with the case where it is not cooled.
Further, when the compressor body 1 is an oil-cooled type in which lubricating oil is injected into a rotor chamber that performs air compression, the temperature of the compressed air discharged from the compressor body 1, that is, the discharge temperature, when the suction temperature decreases. As a result, the viscosity of the lubricating oil increases, so that the sealing performance of the rotor chamber is improved, the efficiency of air compression of the compressor body 1 is improved, and the discharge air volume is further increased.
[0008]
Further, when the compressor main body 1 is an oil-cooled type in which lubricating oil is injected into the rotor chamber, when the suction temperature decreases and the discharge temperature decreases, the temperature of the lubricating oil also decreases. As a result of the lowering of the lubrication temperature, the problem that the sucked air is warmed and thermally expanded and the density is reduced, that is, the problem of suction heating is solved to some extent, thereby increasing the air density and further increasing the discharge air volume. To do.
This discharge air volume increases by several tens of percent compared to our conventional machine, so even if considering that the increase in power consumption by the first heat exchanger 5 is several percent, the overall consumption is about 10%. Power can be saved.
Further, when the discharge temperature decreases, the aftercooler conventionally provided in the discharge flow path 3 of the compressor body 1 can be reduced in size or omitted.
[0009]
2, the illustrated air compressor according to a second reference example including a portion in common with the air compressor according to the first reference example part of the components of the implementation form of the present invention to be described later, The same numbers are assigned to each other and description thereof is omitted.
In this air compressor, an air-cooled aftercooler 21, a reheater 22, a third heat exchanger 23, and a drain trap 6 are interposed in the discharge flow path 3 of the air compressor body 1, and the third heat The exchanger 23 includes the refrigerant compressor body 11, the water-cooled fourth heat exchanger 24 for condensing the refrigerant, the expansion valve 13, and the fifth heat exchanger 25 for evaporating the refrigerant. Is forming. 2 functions as a dryer for drying the compressed air, while the fifth heat exchanger 25 is also an intake air cooling means in the suction flow path 2.
In addition, the * mark in FIG. 2 means that it is continuous.
[0010]
Specifically, as in the case of the first reference example, the refrigerant liquid that has passed through the expansion valve 13 exchanges heat with the air in the suction flow path 2 in the fifth heat exchanger 25 and partially evaporates. At the same time, this air is cooled. The compressed air discharged from the compressor main body 1 is first cooled by the aftercooler 21, exchanged heat with the compressed air that has passed through the drain trap 6 of the discharge flow path 3 by the reheater 22, and has passed through this. The temperature of the compressed air is increased, and the compressed air is cooled to reach the third heat exchanger 23. In the third heat exchanger 23, the refrigerant evaporates and the compressed air is cooled by the heat exchange between the compressed air and the partially evaporated refrigerant, and the precipitated water is separated by the drain trap 6. Then, the compressed air is in a dry state, and as described above, the temperature is raised by the reheater 22 and is further dried to be sent out of the apparatus.
[0011]
With such a configuration, the suction temperature is lowered, the discharge air volume is increased, the power consumption is reduced, and the aftercooler 21 can be reduced in size as in the case of the first reference example. Yes. In FIG. 2, the aftercooler 21 is provided. However, the aftercooler 21 can be omitted by providing the fifth heat exchanger 26.
Further, by cooling the intake air and removing the drain deposited in the suction flow path, it is possible to omit the drying operation or shorten the operation time in the discharge flow path.
[0012]
Figure 3 shows an air compressor according to the implementation embodiments of the present invention, portions common to the air compressor according to the above Reference Examples, the description thereof is omitted given the same number to each other.
In this air compressor, an air-cooled aftercooler 21, a reheater 22, a sixth heat exchanger 31, and a drain trap 6 are interposed in the discharge flow path 3 of the air compressor body 1. On the other hand, the refrigerant flow path is divided into two hands on the secondary side of the expansion valve 13, one of which is the refrigerant compressor body 11, the water-cooled fourth heat exchanger 24 for refrigerant condensation, the expansion valve 13, A part of the third refrigerant circulation path 33 of the refrigeration apparatus including the one flow rate adjusting valve 32 and the sixth heat exchanger 31 for refrigerant evaporation is formed. And the part enclosed with the dashed-dotted line B in FIG. 3 functions as a dryer for drying compressed air.
The other of the two refrigerant flow paths is the refrigerant compressor body 11, the water-cooled fourth heat exchanger 24 for condensing the refrigerant, the expansion valve 13, the second flow rate adjusting valve 34, and the refrigerant evaporation. A part of the refrigerant fourth circulation path 36 of the refrigeration apparatus including the seventh heat exchanger 35 is formed. The seventh heat exchanger 35 is also an intake air cooling means in the suction flow path 2.
As described above, the asterisks in FIG. 3 mean that they are continuous.
Then, in the device according to the implementation form of this, the amount of refrigerant flowing through the third circulation path 33 and the fourth circulating path 36 by adjusting the respective opening of the first flow control valve 32 and the second flow rate control valve 34 It is possible to adjust the functions of the intake air cooling and the dryer. Instead of the first flow rate adjustment valve 32 and the second flow rate adjustment valve 34, a three-way switching valve is provided at the branch portion of the refrigerant flow path on the secondary side of the expansion valve 13 to adjust the amount of refrigerant guided to each circulation path. You may make it do.
Further, similarly to the above, with such a configuration, the suction temperature is reduced, the discharge air volume is increased, the power consumption is reduced, and the aftercooler 21 can be miniaturized. In FIG. 2, the aftercooler 21 is provided, but the aftercooler 21 may be omitted by providing the seventh heat exchanger 35.
[0014]
In each reference example and embodiment described above, the heat of vaporization of the refrigerant in the refrigeration apparatus is used for intake air cooling. However, the present invention is not limited to this, and the first heat exchanger 5, Instead of the fifth heat exchanger 25 and the seventh heat exchanger 35, a compressor provided with an air-cooled or water-cooled heat exchanger is also included.
An air-cooled heat exchanger may be provided in place of the water-cooled fourth heat exchanger 24, and a water-cooled after-cooler may be provided in place of the air-cooled after-cooler 21, both of which are included in the present invention. included.
Furthermore, the compressor main body in the present invention may be either an oil-free type or an oil-cooled type. When the compressor main body is an oil-cooled type, as is well known, the discharge side of the compressor main body In addition, an oil separation / recovery unit is provided, and further, an oil supply flow path is provided from the lower part through an oil cooler and an oil filter to an oil injection point in the compressor body.
[0015]
【The invention's effect】
As apparent from the above description, according to the present invention, the intake air of the compressor is cooled, so that the intake temperature is reduced, the discharge air volume is increased, and the power consumption is reduced. The aftercooler that is normally provided can be downsized or omitted.
In addition, by using the refrigerant of the dryer, which is an accessory device in the discharge flow path, for the intake air cooling, the structure can be simplified compared to the case where a new cooling medium is used for intake air cooling, By making it possible to adjust the amount of refrigerant flowing to each of the dryer sides, there is also an effect that the suction temperature can be adjusted to the optimum according to the outside air temperature.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an air compressor according to a first reference example of the present invention.
FIG. 2 is a diagram showing an overall configuration of an air compressor according to a second reference example of the present invention.
3 is a diagram showing the overall configuration of an air compressor according to the implementation embodiments of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air compressor main body 2 Suction flow path 3 Discharge flow path 4 Air filter 5 1st heat exchanger 6 Drain trap 11 Refrigerant compressor main body 12 2nd heat exchanger 13 Expansion valve 14 Refrigerant 1st circulation path 21 After Cooler 22 Reheater 23 Third heat exchanger 24 Fourth heat exchanger 25 Fifth heat exchanger 26 Refrigerant second circulation path 31 Sixth heat exchanger 32 First flow control valve 33 Third circulation path 34 Second Flow control valve 35 7th heat exchanger 36 4th circulation path for refrigerant

Claims (1)

大気から取り入れた空気を空気用圧縮機本体の吸込口に導く吸込流路に吸気冷却手段が介設され、
上記空気用圧縮機本体の吐出流路が、アフタークーラと再熱器と蒸発用第6熱交換器とドレントラップとを有し、
上記第6熱交換器が、冷媒用圧縮機本体と冷媒凝縮用の第4熱交換器と膨張弁と第1流量調節弁とともに冷媒用第3循環路を形成し、冷媒蒸発のために働き、
上記冷媒用圧縮機本体と上記第4熱交換器とが、第2流量調節弁と冷媒蒸発用の第7熱交換器とともに冷媒用第4循環路を形成し、
上記吸気冷却装手段が、上記第7熱交換器であって、
上記空気用圧縮機本体から吐出された圧縮空気が、上記アフタークーラから上記再熱器、上記第6熱交換器、上記ドレントラップの順序でこれらを通過した後、再び上記再熱器を通過して機外に送り出され、
上記吐出された圧縮空気が、まず上記アフタークーラで冷却され、上記再熱器で上記ドレントラップを通過した圧縮空気と熱交換して、この圧縮空気を昇温させ、上記第6熱交換器で冷却され、上記ドレントラップで析出水分を除去され、ドライな状態となる一方、
上記第7熱交換器で冷媒と吸込み空気との間で熱交換を行わせることを特徴とする空気圧縮機。
Intake air cooling means is interposed in the suction flow path that guides air taken from the atmosphere to the suction port of the compressor body for air ,
The discharge passage of the compressor body for air has an aftercooler, a reheater, a sixth heat exchanger for evaporation, and a drain trap,
The sixth heat exchanger forms a third circulation path for the refrigerant together with the refrigerant compressor body, the fourth heat exchanger for refrigerant condensation, the expansion valve, and the first flow control valve, and works for refrigerant evaporation,
The refrigerant compressor body and the fourth heat exchanger form a refrigerant fourth circulation path together with the second flow rate control valve and the refrigerant evaporation seventh heat exchanger,
The intake air cooling means is the seventh heat exchanger,
The compressed air discharged from the compressor body for air passes through the reheater, the sixth heat exchanger, and the drain trap in this order from the aftercooler, and then passes again through the reheater. Sent out of the machine
The discharged compressed air is first cooled by the aftercooler, heat exchanged with the compressed air that has passed through the drain trap by the reheater, the compressed air is heated, and the sixth heat exchanger While being cooled and the precipitated moisture is removed by the drain trap, it becomes dry,
An air compressor characterized in that heat is exchanged between the refrigerant and the intake air in the seventh heat exchanger.
JP00906599A 1999-01-18 1999-01-18 air compressor Expired - Fee Related JP3732031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00906599A JP3732031B2 (en) 1999-01-18 1999-01-18 air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00906599A JP3732031B2 (en) 1999-01-18 1999-01-18 air compressor

Publications (2)

Publication Number Publication Date
JP2000205134A JP2000205134A (en) 2000-07-25
JP3732031B2 true JP3732031B2 (en) 2006-01-05

Family

ID=11710221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00906599A Expired - Fee Related JP3732031B2 (en) 1999-01-18 1999-01-18 air compressor

Country Status (1)

Country Link
JP (1) JP3732031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154663A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Air compression device
JP6606194B2 (en) * 2015-12-25 2019-11-13 株式会社日立製作所 air compressor

Also Published As

Publication number Publication date
JP2000205134A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US4254637A (en) Refrigeration system with refrigerant cooling of compressor and its oil
US8006503B2 (en) Energy recovery system and method for a refrigerated dehumidification process
CN108458534A (en) Refrigerator and its operation method
KR20070067121A (en) Refrigerating apparatus
JP6606194B2 (en) air compressor
CN209672625U (en) A kind of ultra low temperature overlapping heat pump water cooler
JP3732031B2 (en) air compressor
JP2004347306A (en) Waste heat recovery type air-conditioner
CN206762600U (en) A kind of refrigeration compressed air dryer
CN201371022Y (en) High-efficiency compact energy-saving refrigerated type dryer
JPH06337171A (en) Refrigerating device
US6470693B1 (en) Compressed air refrigeration system
WO2013075997A1 (en) A laundry dryer with a heat pump system
JP2006038306A (en) Freezer
JP3606883B2 (en) Rotary compressor cooling system
JP2002227788A (en) Screw compressor with air dryer
JPH0674173A (en) Two-stage oil cooled compressor
JP2000045936A (en) Water circulation method for water circulation type compressor and water circulation circuit for conducting the same method
CN216493444U (en) Tobacco vacuum moisture regaining machine with indirect cold-taking type vacuum device by utilizing cold water circulation
JPH04203388A (en) Dryer integral type air-cooled compressor
JPH10118441A (en) Compressed air dryer
CN205536282U (en) Evaporation formula and air -cooled heat pump air conditioning system who combines together
SU1499064A2 (en) Air conditioner
CN208312752U (en) A kind of water-cooled electric cabinet air-conditioning
JPS5912514Y2 (en) refrigeration cycle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees