JP3606883B2 - Rotary compressor cooling system - Google Patents

Rotary compressor cooling system Download PDF

Info

Publication number
JP3606883B2
JP3606883B2 JP15465592A JP15465592A JP3606883B2 JP 3606883 B2 JP3606883 B2 JP 3606883B2 JP 15465592 A JP15465592 A JP 15465592A JP 15465592 A JP15465592 A JP 15465592A JP 3606883 B2 JP3606883 B2 JP 3606883B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
way valve
rotary compressor
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15465592A
Other languages
Japanese (ja)
Other versions
JPH05340368A (en
Inventor
康弘 山▲さき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP15465592A priority Critical patent/JP3606883B2/en
Publication of JPH05340368A publication Critical patent/JPH05340368A/en
Application granted granted Critical
Publication of JP3606883B2 publication Critical patent/JP3606883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、密閉型回転式圧縮機の冷却装置に関するものである。
【0002】
【従来の技術】
特公昭58−10588号公報にあるように、従来、圧縮機構の冷却構造としては、図4に示すように、吐出冷媒ガスを密閉容器aの外部に導き、予備熱交換器bで吐出冷媒ガスの冷却を行い、再び密閉容器aに戻す中間冷却の方式がある。しかしこの中間冷却方式では、予備熱交換器bを大量の吐出冷媒が通過するため、前記密閉容器a内に戻ってくる冷媒は、ほとんどの場合が乾き蒸気であり、予備熱交換器bの冷却が著しく大きい場合には蒸気の一部が液化される。また乾き蒸気の場合は、圧縮機構cの周囲の潤滑油をほとんど冷却しないため、圧縮機構cの冷却効果が得られないものである。また戻りガスが液を含む場合には、潤滑油の中に液冷媒が入り、加熱されて蒸発して潤滑油が冷却されるため、圧縮機構cの冷却効果は得られるが、液冷媒の蒸発によって潤滑油が発泡し、潤滑油吸入口dより前記液冷媒の冷媒ガスが吸込まれ、潤滑を阻害してしまう欠点がある。
【0003】
また他の冷却方式として、図5に示すように圧縮機e、凝縮器f、キャピラリチューブg、蒸発器hを環状に連結した冷凍サイクルにおいて、凝縮器fより高圧液化冷媒を引き出し、前記液化冷媒をシリンダi内に直接注入するインジェクション方式なるものがある。このインジェクション方式においては、圧縮機構jを直接冷却する効果は得られるが、注入された冷媒を再び、圧縮するという無駄な圧縮工程があるため、圧縮機の効率は逆に低下するものである。
【0004】
また、図6に示すように、冷媒の密閉容器内通路と並列の冷媒通路を形成する放熱器9内で滞溜した吐出冷媒ガスを放熱器にて冷却し、液冷媒を作って圧縮機構を冷却する方法は、自然循環によるため、大きな冷却効果が得られない。
【0005】
【発明が解決しようとする課題】
上記のごとく従来の技術では、冷媒回路中冷却された液冷媒の一部又は全部を圧縮機構内に戻すため、液冷媒の潤滑油内での発泡による潤滑不良又は、無駄な圧縮工程による効率の低下があった。また、図6に示したように、冷媒回路と並列の冷媒通路を形成する方法では、冷媒通路内を流れる冷媒が自然対流のため、冷却効果が少ないという課題を有していた。
【0006】
本発明は上記従来例の課題を解決するもので、潤滑不良、圧縮工程による効率の低下を起こさずに、大きな冷却効果を得ることを目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明は、回転式圧縮機構から吐出された冷媒を冷却する放熱器と密閉容器の潤滑油溜め部を通る冷媒通路を配設し、前記放熱器と前記冷媒通路の間に3方弁が接続され、回転式圧縮機に密着させたサーミスタの温度検知手段により、検知信号が設定値に達すると前記3方弁が前記冷媒通路側に開かれ、検知信号が設定値以下の場合は、前記3方弁は冷媒通路側を閉じ、冷媒は、冷凍サイクル内を循環するものである。
【0008】
また、検知信号が一定時間設定値以上であれば、回転式圧縮機への通電をOFFする制御手段を有する。
【0009】
【作用】
本発明は、回転式圧縮機構から吐出された高温高圧の冷媒を冷却する冷凍サイクル中の凝縮器とは別の第2の放熱器によって低温高圧の液冷媒とし、密閉容器内の潤滑油溜め部を通る冷媒通路での液冷媒による潤滑油との熱交換を行うことにより、回転式圧縮機の潤滑作用を損うことなく、また圧縮工程での効率の低下を起こさずに、効果的に回転式圧縮機を冷却することができる。
【0010】
また、前記放熱器と前記冷媒通路の間に接続された3方弁が、回転式圧縮機に密着させたサーミスタの温度検知手段により、検知信号が、設定値に達すると前記3方弁が前記冷媒通路に開かれ、回転式圧縮機の冷却をし、検知信号が、設定値以下であれば、3方弁は冷媒通路側を閉じ、冷凍サイクル内を循環する。この時、前記放熱器は、冷凍サイクル中の凝縮器と共に冷媒の冷却に寄与する。
【0011】
検知信号が一定時間設定値以上であれば、制御手段に内蔵されるタイマーの信号で、回転式圧縮機への通電をOFFし、前記回転式圧縮機の過熱を防止する。
【0012】
【実施例】
以下本発明の一実施例における回転式圧縮機の冷却装置について図面と共に説明する。
【0013】
図1において、1は密閉容器で、内部の上方には電動機部の固定子2と回転子3が配置され、またその下方には、前記電動機からの動力でもって回転する圧縮機構4が配設されている。圧縮機構4は、潤滑油溜め部5に浸漬している。6は潤滑油溜め部5の油面下で、密閉容器1の外側から、密閉容器1の内側に入り再び外側へ冷媒通路を形成している。
【0014】
上記構成からなる回転式圧縮機16は、吐出管7より放熱器8を通り、通電,非通電により冷媒回路を矢印14,矢印13に切換える3方弁9のソレノイドに通電されたとき冷媒は矢印14の方向に流れ、冷媒通路6,凝縮器10,膨張弁11,蒸発器12を通り、圧縮機に戻る冷凍サイクルを構成する。
【0015】
したがって、圧縮機構4から吐出された吐出冷媒ガスは、密閉容器1内から吐出管7を経て、放熱器8,冷媒通路6,凝縮器10,膨張弁11,蒸発器12を通過して再び圧縮機構4に吸入される。このとき圧縮機構4から吐出された高温高圧の吐出冷媒ガスは、放熱器8で冷却され低温高圧の冷媒液となり、冷媒通路6で潤滑油との熱交換を行い、冷媒液は冷媒通路6の中で蒸発潜熱を奪って高温高圧の冷媒ガスとなり潤滑油を冷却する。
【0016】
3方弁9のソレノイドに通電されないとき冷媒は矢印13の方向に流れる。このとき放熱器8は凝縮器10と共に冷媒の冷却に寄与し冷房能力の増加が見込まれる。
【0017】
次に図2と図3と共に3方弁9の動作を説明すると、図1に示す、温度検知用サーミスタ15は、回転式圧縮機16の温度検知手段で、本実施例では、密閉容器1の外郭表面で潤滑油溜め部5の油面下に密着している。図2において、温度検知用サーミスタの検知信号は制御部に入り、制御部17内で設定値との判断により、3方弁9のソレノイドに通電,非通電の制御を行う。
【0018】
図3において、温度検知用サーミスタ15の検知温度Tが、制御部17内の設定値T(本実施例では120℃)になったとき、3方弁9のソレノイドに通電し、設定値Tになったとき、非通電となる。
【0019】
したがって、回転式圧縮機16の温度が高温となり温度検知用サーミスタ15の検知温度Tが、制御部17内の設定値Tになったとき、3方弁9のソレノイドに通電し、低温高圧冷媒が矢印14の方向に流れ、冷媒通路6の中で蒸発潜熱を奪って高温高圧の冷媒ガスとなり潤滑油を冷却し、回転式圧縮機16の温度を下げる。回転式圧縮機16の温度が下がり、次に温度検知用サーミスタ15の検知温度Tが、制御部17内の設定値T(実施例では110℃)になったとき、3方弁9のソレノイドに非通電とし、冷媒が矢印13の方向に流れる。このとき放熱器8は凝縮器10と共に冷媒冷却のために使われる。
【0020】
【発明の効果】
本発明は上記説明から明らかなように、回転式圧縮機構から吐出された高温高圧の冷媒を冷却する、冷凍サイクル中の凝縮器とは別の第2の放熱器によって低温高圧の液冷媒とし、密閉容器内の潤滑油溜め部を通る冷媒通路での液冷媒による潤滑油との熱交換を行うことにより、回転式圧縮機の潤滑作用を損うことなく、また圧縮工程での効率の低下を起こさずに、効果的に回転式圧縮機を冷却することができる。
【0021】
また、前記放熱器と前記冷媒通路の間に接続された3方弁が、回転式圧縮機に密着させたサーミスタの温度検知により、回転式圧縮機が高温となり検知温度が、設定値以上になったとき、前記冷媒通路に3方弁が開かれ、回転式圧縮機が冷却され、回転式圧縮機が高温でない設定値以下であれば、3方弁は、冷媒通路側を閉じ、冷媒は冷凍サイクル中の凝縮器側へ流れ、冷媒通路には流れない。
【0022】
また、回転式圧縮機の過熱状態が続き、一定時間以上サーミスタによる検知温度が、設定値以上であれば、回転式圧縮機への通電をOFFし、過熱を防止するなどの効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例における回転式圧縮機の冷却装置を設けた冷凍サイクルの構成図
【図2】同装置のブロック図
【図3】同装置の動作波形図
【図4】従来例における圧縮機の断面図
【図5】同冷凍サイクルの構成図
【図6】同構成図
【符号の説明】
1 密閉容器
2 固定子
3 回転子
4 圧縮機構
5 潤滑油溜め部
6 冷媒通路
7 吐出管
8 放熱器
9 3方弁
10 凝縮器
11 膨張弁
12 蒸発器
13 冷媒の流れ
14 冷媒の流れ
15 サーミスタ
16 回転式圧縮機
17 制御部
[0001]
[Industrial application fields]
The present invention relates to a cooling device for a hermetic rotary compressor.
[0002]
[Prior art]
As disclosed in Japanese Patent Publication No. 58-10588, conventionally, as a cooling mechanism of a compression mechanism, as shown in FIG. 4, the discharged refrigerant gas is led to the outside of the sealed container a, and the discharged refrigerant gas is discharged by the preliminary heat exchanger b. There is an intermediate cooling method in which the cooling is performed and then returned to the sealed container a. However, in this intermediate cooling method, since a large amount of discharged refrigerant passes through the preliminary heat exchanger b, the refrigerant returning to the sealed container a is almost always dry steam, and the cooling of the preliminary heat exchanger b When is significantly large, a part of the vapor is liquefied. In the case of dry steam, since the lubricating oil around the compression mechanism c is hardly cooled, the cooling effect of the compression mechanism c cannot be obtained. When the return gas contains liquid, the liquid refrigerant enters the lubricating oil and is heated and evaporated to cool the lubricating oil, so that the cooling effect of the compression mechanism c can be obtained, but the liquid refrigerant evaporates. As a result, the lubricating oil is foamed, and the refrigerant gas of the liquid refrigerant is sucked from the lubricating oil suction port d, thereby hindering lubrication.
[0003]
As another cooling method, as shown in FIG. 5, in a refrigeration cycle in which a compressor e, a condenser f, a capillary tube g, and an evaporator h are connected in a ring shape, a high-pressure liquefied refrigerant is drawn from the condenser f, There is an injection method in which is injected directly into the cylinder i. In this injection method, the effect of directly cooling the compression mechanism j can be obtained, but since there is a useless compression step of compressing the injected refrigerant again, the efficiency of the compressor is conversely reduced.
[0004]
In addition, as shown in FIG. 6, the discharged refrigerant gas stagnated in the radiator 9 that forms a refrigerant passage in parallel with the refrigerant passage in the hermetic container is cooled by the radiator to produce liquid refrigerant, and the compression mechanism Since the cooling method is based on natural circulation, a large cooling effect cannot be obtained.
[0005]
[Problems to be solved by the invention]
As described above, in the conventional technology, part or all of the liquid refrigerant cooled in the refrigerant circuit is returned to the compression mechanism. Therefore, poor lubrication due to foaming of the liquid refrigerant in the lubricating oil or efficiency due to a useless compression process is improved. There was a decline. Further, as shown in FIG. 6, the method of forming the refrigerant passage in parallel with the refrigerant circuit has a problem that the cooling effect is small because the refrigerant flowing in the refrigerant passage is natural convection.
[0006]
An object of the present invention is to solve the problems of the conventional example described above, and to obtain a large cooling effect without causing poor lubrication and a decrease in efficiency due to a compression process.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a radiator that cools the refrigerant discharged from the rotary compression mechanism and a refrigerant passage that passes through the lubricating oil reservoir of the hermetic container. When a detection signal reaches a set value by the temperature detection means of the thermistor that is connected between the three-way valve and is in close contact with the rotary compressor, the three-way valve is opened to the refrigerant passage side, and the detection signal is set to the set value. In the following cases, the three-way valve closes the refrigerant passage side, and the refrigerant circulates in the refrigeration cycle.
[0008]
In addition, if the detection signal is equal to or greater than the set value for a certain time, there is a control means for turning off the power to the rotary compressor.
[0009]
[Action]
The present invention provides a low temperature and high pressure liquid refrigerant by a second radiator different from the condenser in the refrigeration cycle for cooling the high temperature and high pressure refrigerant discharged from the rotary compression mechanism, and a lubricating oil reservoir in an airtight container. By exchanging heat with the lubricating oil by the liquid refrigerant in the refrigerant passage that passes through the compressor, it can rotate effectively without impairing the lubrication action of the rotary compressor and without reducing the efficiency in the compression process. The compressor can be cooled.
[0010]
Further, when the detection signal reaches a set value by the temperature detection means of the thermistor in which the three-way valve connected between the radiator and the refrigerant passage is in close contact with the rotary compressor, the three-way valve is If it opens to the refrigerant passage, cools the rotary compressor, and the detection signal is below the set value, the three-way valve closes the refrigerant passage side and circulates in the refrigeration cycle. At this time, the radiator contributes to cooling of the refrigerant together with the condenser in the refrigeration cycle.
[0011]
If the detection signal is equal to or greater than the set value for a certain time, the timer compressor incorporated in the control means turns off the energization of the rotary compressor to prevent overheating of the rotary compressor.
[0012]
【Example】
A cooling device for a rotary compressor according to an embodiment of the present invention will be described below with reference to the drawings.
[0013]
In FIG. 1, reference numeral 1 denotes an airtight container, in which a stator 2 and a rotor 3 of an electric motor section are arranged above the inside, and a compression mechanism 4 that rotates with power from the electric motor is arranged below the stator 2. Has been. The compression mechanism 4 is immersed in the lubricating oil reservoir 5. 6 is below the oil level of the lubricating oil reservoir 5 and enters the inside of the sealed container 1 from the outside of the sealed container 1 to form a refrigerant passage to the outside again.
[0014]
When the rotary compressor 16 having the above configuration passes through the radiator 8 from the discharge pipe 7 and is energized to the solenoid of the three-way valve 9 which switches the refrigerant circuit to the arrow 14 and arrow 13 by energization and de-energization, the refrigerant is arrow 14 constitutes a refrigeration cycle that flows in the direction of 14, passes through the refrigerant passage 6, the condenser 10, the expansion valve 11, and the evaporator 12, and returns to the compressor.
[0015]
Therefore, the discharged refrigerant gas discharged from the compression mechanism 4 passes through the discharge pipe 7 from the sealed container 1 and passes through the radiator 8, the refrigerant passage 6, the condenser 10, the expansion valve 11, and the evaporator 12, and is compressed again. Inhaled by mechanism 4. At this time, the high-temperature and high-pressure discharged refrigerant gas discharged from the compression mechanism 4 is cooled by the radiator 8 to become a low-temperature and high-pressure refrigerant liquid, and heat exchange with the lubricating oil is performed in the refrigerant passage 6. It takes away latent heat of vaporization and becomes a high-temperature and high-pressure refrigerant gas to cool the lubricating oil.
[0016]
The refrigerant flows in the direction of arrow 13 when the solenoid of the three-way valve 9 is not energized. At this time, the radiator 8 contributes to the cooling of the refrigerant together with the condenser 10, and the cooling capacity is expected to increase.
[0017]
Next, the operation of the three-way valve 9 will be described with reference to FIGS. 2 and 3. The temperature detection thermistor 15 shown in FIG. 1 is a temperature detection means of the rotary compressor 16. The outer shell surface is in close contact with the oil surface of the lubricating oil reservoir 5. In FIG. 2, the detection signal of the temperature detection thermistor enters the control unit, and the energization / non-energization of the solenoid of the three-way valve 9 is controlled in the control unit 17 based on the determination of the set value.
[0018]
In FIG. 3, when the detected temperature T of the temperature detection thermistor 15 reaches a set value T 1 (120 ° C. in this embodiment) in the control unit 17, the solenoid of the three-way valve 9 is energized, and the set value T When it becomes 2 , it becomes non-energized.
[0019]
Therefore, when the temperature of the rotary compressor 16 is detected temperature T of the temperature sensing thermistor 15 becomes high temperature, reaches a set value T 1 of the the control unit 17 energizes the solenoid of the three way valve 9, low temperature and high pressure refrigerant Flows in the direction of the arrow 14 and takes away latent heat of vaporization in the refrigerant passage 6 to become high-temperature and high-pressure refrigerant gas, thereby cooling the lubricating oil and lowering the temperature of the rotary compressor 16. When the temperature of the rotary compressor 16 falls and the detected temperature T of the temperature detecting thermistor 15 then reaches the set value T 2 (110 ° C. in the embodiment) in the control unit 17, the solenoid of the three-way valve 9 Is not energized, and the refrigerant flows in the direction of arrow 13. At this time, the radiator 8 is used together with the condenser 10 for cooling the refrigerant.
[0020]
【The invention's effect】
As is clear from the above description, the present invention cools the high-temperature and high-pressure refrigerant discharged from the rotary compression mechanism to form a low-temperature and high-pressure liquid refrigerant by a second radiator different from the condenser in the refrigeration cycle, By exchanging heat with the lubricating oil by the liquid refrigerant in the refrigerant passage through the lubricating oil reservoir in the sealed container, the efficiency of the compression process can be reduced without impairing the lubricating action of the rotary compressor. The rotary compressor can be effectively cooled without causing it.
[0021]
Further, the temperature of a thermistor in which a three-way valve connected between the radiator and the refrigerant passage is in close contact with the rotary compressor is detected, and the detected temperature becomes higher than a set value. When the three-way valve is opened in the refrigerant passage, the rotary compressor is cooled, and the rotary compressor is not higher than a preset value, the three-way valve closes the refrigerant passage side, and the refrigerant is refrigerated. It flows to the condenser side in the cycle and does not flow to the refrigerant passage.
[0022]
Further, if the overheat state of the rotary compressor continues and the temperature detected by the thermistor is equal to or higher than a set value for a certain time or longer, there is an effect of turning off the energization of the rotary compressor and preventing overheating.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle provided with a cooling device for a rotary compressor in one embodiment of the present invention. FIG. 2 is a block diagram of the device. FIG. 3 is an operation waveform diagram of the device. Cross section of compressor in example [Fig. 5] Configuration diagram of the refrigeration cycle [Fig. 6] Configuration diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Stator 3 Rotor 4 Compression mechanism 5 Lubricating oil reservoir 6 Refrigerant passage 7 Discharge pipe 8 Radiator 9 Three-way valve 10 Condenser 11 Expansion valve 12 Evaporator 13 Refrigerant flow 14 Refrigerant flow 15 Thermistor 16 Rotary compressor 17 controller

Claims (1)

密閉容器に収納された回転式圧縮機構及びそれを駆動する電動機、前記回転式圧縮機構により圧縮された冷媒を密閉容器外部に吐出する吐出管、前記密閉容器内下部に形成されて前記回転式圧縮機構が浸漬される潤滑油溜め部、前記潤滑油溜め部内に配置されて密閉容器外部から導入した冷媒を潤滑油と熱交換させた後密閉容器外部に排出する冷媒通路とからなる回転式圧縮機と、高温高圧の冷媒を放熱冷却する放熱器と、冷媒入口から入った冷媒を2つの冷媒出口から切り換え自在に吐出する3方弁と、前記回転式圧縮機に密着させた温度検知手段からの出力に基いて前記3方弁の切り換えを制御する制御手段と、前記放熱器とは別に高温高圧の冷媒を冷却する凝縮器とを有し、前記回転式圧縮機の吐出管と3方弁の冷媒入口とは前記放熱器により接続され、前記3方弁の一方の冷媒出口が前記冷媒通路の冷媒導入口に、もう一方の冷媒出口が前記冷媒通路の冷媒排出口と共に前記凝縮器の冷媒入口に接続されてなる冷凍サイクルを構成し、前記制御手段は前記温度検知手段の出力が第一の設定温度よりも高くなった時に前記3方弁を冷媒が前記冷媒通路の冷媒導入口に接続された冷媒出口に流れるように切り換え、第一の設定温度よりも低い第二の設定温度を下回ったときに前記凝縮記の冷媒入口に接続された冷媒出口に流れるように切り換えるものであることを特徴とする回転式圧縮機の冷却装置。A rotary compression mechanism housed in a sealed container, an electric motor that drives the rotary compression mechanism, a discharge pipe that discharges the refrigerant compressed by the rotary compression mechanism to the outside of the sealed container, and the rotary compression formed in the lower part of the sealed container Rotating compressor comprising a lubricating oil reservoir portion in which the mechanism is immersed, and a refrigerant passage disposed in the lubricating oil reservoir portion and having a refrigerant introduced from the outside of the sealed container exchange heat with the lubricating oil and then discharged to the outside of the sealed container A radiator for radiating and cooling the high-temperature and high-pressure refrigerant, a three-way valve for switchingly discharging the refrigerant entered from the refrigerant inlet from the two refrigerant outlets, and a temperature detecting means closely contacting the rotary compressor Control means for controlling the switching of the three-way valve based on the output, and a condenser for cooling the high-temperature and high-pressure refrigerant separately from the radiator, the discharge pipe of the rotary compressor and the three-way valve What is the refrigerant inlet? Refrigeration cycle in which one refrigerant outlet of the three-way valve is connected to the refrigerant inlet of the refrigerant passage, and the other refrigerant outlet is connected to the refrigerant inlet of the condenser together with the refrigerant outlet of the refrigerant passage. The control means causes the refrigerant to flow through the three-way valve to the refrigerant outlet connected to the refrigerant inlet of the refrigerant passage when the output of the temperature detecting means becomes higher than the first set temperature. The rotary compressor is characterized in that it is switched so as to flow to a refrigerant outlet connected to the refrigerant inlet of the condensation note when the temperature falls below a second preset temperature lower than the first preset temperature. Cooling system.
JP15465592A 1992-06-15 1992-06-15 Rotary compressor cooling system Expired - Fee Related JP3606883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15465592A JP3606883B2 (en) 1992-06-15 1992-06-15 Rotary compressor cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15465592A JP3606883B2 (en) 1992-06-15 1992-06-15 Rotary compressor cooling system

Publications (2)

Publication Number Publication Date
JPH05340368A JPH05340368A (en) 1993-12-21
JP3606883B2 true JP3606883B2 (en) 2005-01-05

Family

ID=15588989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15465592A Expired - Fee Related JP3606883B2 (en) 1992-06-15 1992-06-15 Rotary compressor cooling system

Country Status (1)

Country Link
JP (1) JP3606883B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932401B2 (en) * 2006-09-19 2012-05-16 株式会社富士通ゼネラル Hermetic compressor
BRPI1100416A2 (en) * 2011-02-22 2013-12-03 Whilrpool S A COMPRESSOR COOLING SYSTEM USING PRE-CONDENSER, AND COMPRESSOR PROVIDED OF COOLING SYSTEM
CN103375387B (en) * 2012-04-26 2016-06-08 珠海格力电器股份有限公司 Compressor and air conditioning system with same
JP5965732B2 (en) * 2012-06-07 2016-08-10 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle equipment
CN111306067B (en) * 2018-12-11 2022-05-31 广东美芝精密制造有限公司 Refrigeration equipment and compressor

Also Published As

Publication number Publication date
JPH05340368A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
JP6934603B2 (en) Refrigerator and cooling system
JP3606883B2 (en) Rotary compressor cooling system
JPH11173710A (en) Defrosting system using exhaust heat of compressor
JP2003065618A (en) Heat carrying equipment
KR0169301B1 (en) A coldtrap apparatus for vacuum freezing dryer
JP2002372397A (en) Cooling system
KR20040063634A (en) The Instant Ice Cream Machine
JP2004101050A (en) Cooling warehouse
JP4020668B2 (en) Refrigerator for home use
JPH04251170A (en) Refrigerating device and operation method thereof in cogeneration system
JPH05172409A (en) Refrigerating cycle
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
KR100249195B1 (en) Refrigerator
KR20030087151A (en) Device for prevention dewing of refrigerator
JP2882256B2 (en) Heating and cooling machine
JPH0737867B2 (en) Defroster for dual cryogenic refrigerator
KR200222878Y1 (en) Heat pump cycle
KR20170110925A (en) Refrigerant circulation method for improving the efficiency of the refrigerating cycle refrigeration
JPH0526437Y2 (en)
SU1359580A1 (en) Conditioner
JPS6158745B2 (en)
JP2023079334A (en) refrigerator
SU848917A1 (en) System for temperature controlling of object
JPH10227537A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees