JPH0526437Y2 - - Google Patents

Info

Publication number
JPH0526437Y2
JPH0526437Y2 JP1986045776U JP4577686U JPH0526437Y2 JP H0526437 Y2 JPH0526437 Y2 JP H0526437Y2 JP 1986045776 U JP1986045776 U JP 1986045776U JP 4577686 U JP4577686 U JP 4577686U JP H0526437 Y2 JPH0526437 Y2 JP H0526437Y2
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
direct cooling
storage chamber
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986045776U
Other languages
Japanese (ja)
Other versions
JPS62156767U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986045776U priority Critical patent/JPH0526437Y2/ja
Publication of JPS62156767U publication Critical patent/JPS62156767U/ja
Application granted granted Critical
Publication of JPH0526437Y2 publication Critical patent/JPH0526437Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野〕 本考案は、貯蔵室内に設けられた第1の冷却器
と、前記貯蔵室内を冷却する第2の冷却器とを備
えた冷凍サイクルに関する。
[Detailed description of the invention] [Purpose of the invention] (Field of industrial application) The present invention includes a first cooler provided in a storage chamber and a second cooler that cools the inside of the storage chamber. related to the refrigeration cycle.

(従来の技術) 従来の冷蔵庫におけるこの種の冷凍サイクルを
第2図に示す。図中、1はコンプレツサ、2はコ
ンデンサ、3は第1の絞り装置、4は冷凍室を直
接冷却する直冷用冷却器、5は第2の絞り装置、
6はフアン7による冷気の強制循環により冷凍室
及び冷蔵室を冷却する間冷用冷却器である。
(Prior Art) This type of refrigeration cycle in a conventional refrigerator is shown in FIG. In the figure, 1 is a compressor, 2 is a condenser, 3 is a first expansion device, 4 is a direct cooling cooler that directly cools the freezer compartment, 5 is a second expansion device,
Reference numeral 6 denotes a cooler for cooling the freezer compartment and the refrigerator compartment by forced circulation of cold air by a fan 7.

冷凍室内に設けられた直冷用冷却器4は、特に
は食品を載置してその食品を急速に冷却する場合
に使用される。このため、この直冷用冷却器4に
霜が付くと、食品に対する急速冷却効率が低下す
るので、できるだけ霜が堆積しないようにする必
要がある。この目的をもつて設けられているのが
第2の絞り装置5であり、この第2の絞り装置5
が直冷用及び間冷用の両冷却器4及び6間に存在
することにより、コンプレツサ1の運転時に間冷
用冷却器6における蒸発温度が直冷用冷却器4の
それよりも所定温度低くなる。従つて、高温側の
直冷用冷却器4に霜が付いた場合、その霜が昇華
により低温側の間冷用冷却器6に転移するように
なり、その結果、直冷用冷却器4には霜がほとん
ど付かないことになるのである。
The direct cooling cooler 4 provided in the freezer compartment is used particularly when food is placed therein and the food is rapidly cooled. For this reason, if frost forms on this direct cooling cooler 4, the rapid cooling efficiency for food will decrease, so it is necessary to prevent frost from accumulating as much as possible. A second throttle device 5 is provided for this purpose, and this second throttle device 5
is present between both the direct cooling and intercooling coolers 4 and 6, so that the evaporation temperature in the intercooling cooler 6 is lower by a predetermined temperature than that in the direct cooling cooler 4 during operation of the compressor 1. Become. Therefore, if frost forms on the direct cooling cooler 4 on the high temperature side, the frost will sublimate and transfer to the intercooling cooler 6 on the low temperature side. This means that there will be almost no frost.

(考案が解決しようとする問題点) 然しながら、上記構成の冷凍サイクルでは、直
冷用冷却器4に食品を載置してその食品を急速に
冷却する場合、直冷用冷却器4内で冷媒が盛んに
蒸発して冷却作用を行なうので、第2の絞り装置
5を通過する冷媒は、液冷媒に比してガス冷媒の
比率が増えて(即ち乾き度が大きくなつて)第2
の絞り装置5内の流路抵抗が実質的に増大する。
この結果直冷用冷却器4の温度が、間冷用冷却器
6の温度に比べて、通常冷却運転時よりも上昇し
てしまい、急速冷却のための時間が長くなるとい
う問題点があつた。特に最近の冷蔵庫では、イン
バータの周波数制御によつてコンプレツサモータ
の回転数を切換えるようにしていて、急速冷却運
転時にはコンプレツサモータの回転数を上げて冷
媒循環量を増大させることにより、急速冷却効果
をより高くするようにしているが、この場合にも
急速冷却時間が期待した程短縮されないという問
題点があつた。
(Problem to be solved by the invention) However, in the refrigeration cycle with the above configuration, when food is placed on the direct cooling cooler 4 and the food is rapidly cooled, the refrigerant is not used in the direct cooling cooler 4. evaporates actively and performs a cooling effect, so the refrigerant passing through the second expansion device 5 has an increased ratio of gas refrigerant compared to liquid refrigerant (that is, the dryness is increased), and the refrigerant passes through the second expansion device 5.
The flow path resistance within the throttling device 5 increases substantially.
As a result, the temperature of the direct cooling cooler 4 becomes higher than the temperature of the intercooling cooler 6 during normal cooling operation, resulting in a problem that the time required for rapid cooling becomes longer. . In particular, in recent refrigerators, the rotation speed of the compressor motor is switched by frequency control of the inverter, and during rapid cooling operation, the rotation speed of the compressor motor is increased to increase the amount of refrigerant circulation, resulting in rapid cooling. Although attempts have been made to make the effect even higher, there is also a problem in this case in that the rapid cooling time is not shortened as much as expected.

本考案は、上記の事情に鑑みてなされたもの
で、その目的は、貯蔵室内に設けられた第1の冷
却器に霜が堆積することを防止しつつ、急速冷却
運転時に第1の冷却器の温度をより低温に保持で
き、急速冷却効果の高い冷凍サイクルを提供する
にある。
The present invention was made in view of the above circumstances, and its purpose is to prevent frost from accumulating on the first cooler installed in the storage room, and to prevent frost from accumulating on the first cooler during rapid cooling operation. The purpose of the present invention is to provide a refrigeration cycle that can maintain the temperature at a lower temperature and has a high rapid cooling effect.

[考案の効果] (問題点を解決するための手段) 本考案の冷凍サイクルは、コンプレツサの吐出
側と吸入側との間に、コンデンサ、第1の絞り装
置、貯蔵室の内部に配置された第1の冷却器、第
2の絞り装置及び前記前記貯蔵室に連通する部位
に配置された冷却した空気をフアンにより前記貯
蔵室に送風する。第2の冷却器を順に直列に接続
し、前記第1の冷却器の入口側と前記第2の絞り
装置及び第2の冷却器の接続部との間に前記第2
の絞り装置よりも流路抵抗の大なるバイパス路を
接続したことを特徴とするものである。
[Effects of the invention] (Means for solving the problem) The refrigeration cycle of the invention includes a condenser, a first throttling device, and a storage chamber arranged between the discharge side and the suction side of the compressor. Cooled air placed in a first cooler, a second throttle device, and a portion communicating with the storage chamber is blown into the storage chamber by a fan. Second coolers are connected in series in order, and the second cooler is connected between the inlet side of the first cooler and the connection part of the second throttle device and the second cooler.
This device is characterized by connecting a bypass path with a flow resistance greater than that of the throttling device.

(作用) 第1の冷却器に食品を載置すると、この第1の
冷却器における冷媒の蒸発量が増大し、その結
果、第2の絞り装置を通つて第2の冷却器内に流
入する液冷媒量が減少する。従つて、前記第2の
絞り装置の抵抗値が実質的に増大し、この実質的
に増大した第2の絞り装置の抵抗値とバイパス路
の抵抗値とに比例した液冷媒がバイパス路を通つ
て第2の冷却器内に流入して該第2の冷却器で蒸
発するようになる。この結果、第2の冷却器と第
1の冷却器との相対的な圧力差が減少し、これに
伴い第1の冷却器での冷媒の蒸発圧力ひいては蒸
発温度が低くなる。
(Function) When food is placed on the first cooler, the amount of evaporation of the refrigerant in the first cooler increases, and as a result, it flows into the second cooler through the second throttle device. The amount of liquid refrigerant decreases. Therefore, the resistance value of the second throttle device substantially increases, and liquid refrigerant proportional to the substantially increased resistance value of the second throttle device and the resistance value of the bypass path passes through the bypass path. Then, it flows into the second cooler and is evaporated in the second cooler. As a result, the relative pressure difference between the second cooler and the first cooler decreases, and the evaporation pressure and therefore the evaporation temperature of the refrigerant in the first cooler decreases accordingly.

(実施例) 以下、本考案の一実施例につき第1図を参照し
て説明する。11はインバータにより周波数制御
される可変速形のモータを駆動源とする例えばロ
ータリー式のコンプレツサであり、このコンプレ
ツサ11の吐出口11aと吸入口11bとの間に
コンデンサ12、第1の絞り装置たる第1のキヤ
ピラリーチユーブ13、図示しない貯蔵室たる冷
凍室内に棚状に設けられた第1の冷却器たる直冷
用冷却器14、第2の絞り装置たる第2のキヤピ
ラリーチユーブ15、上記冷凍室及び図示しない
冷蔵室に送風路を介して連通する冷却器室の設け
られコンプレツサ11の運転に同期して回転する
フアン16による冷気の強制循環により図示しな
い冷凍室及び冷蔵室の双方を冷却する第2の冷却
器たる間冷用冷却器17が順に直列に接続されて
いる。18は直冷用冷却器14の入口側と第2の
キヤピラリーチユーブ15及び間冷用冷却器17
の接続部との間に接続されたバイパス路で、これ
の流路抵抗は第2のキヤピラリーチユーブ15の
流路抵抗の2倍乃至5倍程度に設定されている。
(Example) An example of the present invention will be described below with reference to FIG. Reference numeral 11 denotes a rotary type compressor, for example, whose drive source is a variable speed motor whose frequency is controlled by an inverter. A condenser 12, which serves as a first throttling device, is connected between the discharge port 11a and the suction port 11b of the compressor 11. A first capillary reach tube 13, a direct cooling cooler 14 which is a first cooler provided in the form of a shelf in a freezing chamber which is a storage room (not shown), a second capillary reach tube 15 which is a second expansion device, and the above. A cooler room is provided that communicates with a freezer compartment and a refrigerator compartment (not shown) via an air passage, and both the freezer compartment and refrigerator compartment (not shown) are cooled by forced circulation of cold air by a fan 16 that rotates in synchronization with the operation of the compressor 11. A second cooler 17 is connected in series in order. 18 is the inlet side of the direct cooling cooler 14, the second capillary reach tube 15, and the intercooling cooler 17
This bypass path is connected between the connecting portion of the capillary reach tube 15 and the flow path resistance thereof is set to be approximately two to five times the flow path resistance of the second capillary reach tube 15.

次に上記構成の作用について説明する。先ず、
通常の冷却運転時には、コンプレツサ11の運転
開始に伴つてフアン16が回転する。そして、コ
ンプレツサ11で圧縮され且つコンデンサ12で
凝縮された冷媒は、第1のキヤピラリーチユーブ
13を介して直冷用冷却器14に流入し、ここで
冷媒が蒸発して冷却作用を呈し、更に第2のキヤ
ピラリーチユーブ15を通して間冷用冷却器17
に流入する。この場合、直冷用冷却器14には、
これから冷却すべき比較的温度の高い食品は載置
されていないから、その熱負荷が小さい。このた
め、直冷用冷却器14内で蒸発する冷媒量は少な
く、第2のキヤピラリーチユーブ15内を流れる
冷媒は液冷媒が多くガス冷媒は少ないので(即ち
乾き度が小さいので)、第2のキヤピラリーチユ
ーブ15の流路抵抗バイパス路18の流路抵抗に
比して小さいことから、冷媒のほとんどが直冷用
冷却器14及び第2のキヤピラリーチユーブ15
を通つて間冷用冷却器17内に流入するようにな
る。そして、間冷用冷却器17内に流入した液冷
媒はここで蒸発し、フアン16の回転により図示
しない冷凍室及び冷蔵室内の空気が間冷用冷却器
17により冷却されて冷凍室及び冷蔵室に戻され
るように循環し、斯る冷気の循環により冷凍室及
び冷蔵室内が冷却される。この場合、直冷用冷却
器14は、第2のキヤピラリーチユーブ15の存
在により間冷用冷却器17よりやや高温(5℃程
度)となり、着霜が防止される。
Next, the operation of the above configuration will be explained. First of all,
During normal cooling operation, the fan 16 rotates as the compressor 11 starts operating. The refrigerant compressed by the compressor 11 and condensed by the condenser 12 flows into the direct cooling cooler 14 via the first capillary reach tube 13, where the refrigerant evaporates and exhibits a cooling effect. Intercooler 17 through second capillary reach tube 15
flows into. In this case, the direct cooling cooler 14 includes:
Since there is no relatively high-temperature food to be cooled on the table, the heat load thereon is small. Therefore, the amount of refrigerant that evaporates in the direct cooling cooler 14 is small, and the refrigerant flowing in the second capillary reach tube 15 contains more liquid refrigerant and less gas refrigerant (that is, the degree of dryness is small), so the second Since the flow path resistance of the capillary reach tube 15 is smaller than the flow path resistance of the bypass path 18, most of the refrigerant flows through the direct cooling cooler 14 and the second capillary reach tube 15.
The water then flows into the intercooler 17 through the . Then, the liquid refrigerant that has flowed into the intercooling cooler 17 evaporates here, and the air in the freezer compartment and refrigerator compartment (not shown) is cooled by the intercooling cooler 17 due to the rotation of the fan 16. This circulation of cold air cools the freezer and refrigerator compartments. In this case, the direct cooling cooler 14 has a slightly higher temperature (about 5° C.) than the intercooling cooler 17 due to the presence of the second capillary reach tube 15, thereby preventing frost formation.

さて、直冷用冷却器14に載置した食品を急速
に冷却する急速冷却運転が選択された場合には、
コンプレツサモータに印加される電源周波数は通
常の冷却運転時よりも高い90Hz程度となるため、
通常の冷却運転時よりも多量の冷媒が冷凍サイク
ルを循環するようになる。この急速冷却運転にお
いて、コンデンサ12にて凝縮された冷媒は前述
の通常冷却運転のときと同様に第1キヤピラリー
チユーブ13を介して直冷用冷却器14に流入す
る。ところで、この急速冷却運転の場合には、直
冷用冷却器14にはこれから冷却すべき比較的温
度の高い食品が載置されていることから、該直冷
用冷却器14の熱的負荷が大きい。このため、液
冷媒はこの直冷用冷却器14において盛んに蒸発
するようになり、従つて第2のキヤピラリーチユ
ーブ15を通る冷媒は、液冷媒に比してガス冷媒
が多くなるため(即ち乾き度が大きくなるため)、
第2のキヤピラリーチユーブ15を液冷媒が流れ
難くなる。すると、直冷用冷却器14の入口側に
おいてバイパス路18に分流する液冷媒量が多く
なり、このバイパス路18を分流して間冷用冷却
器17に流入する液冷媒によつて間冷用冷却器1
7が短時間のうちに極低温となる。そして、上記
のように間冷用冷却器17の温度が極低温にな
り、且つ間冷用冷却器17と直冷用冷却器14と
の相対的な圧力差が低下するので直冷用冷却器1
4での液冷媒の蒸発圧力ひいては蒸発温度が低く
なり、直冷用冷却器14に載置された食品を急速
に冷却することができる。この急速冷却運転の場
合、本実施例では、コンプレツサモータの回転数
が通常の冷却運転時よりも高いので、間冷用冷却
器17ひいては直冷用冷却器14の液冷媒の蒸発
圧力(蒸発温度)はより低くなり、食品をより一
層急速に冷却することができる。
Now, when the rapid cooling operation in which the food placed on the direct cooling cooler 14 is rapidly cooled is selected,
The power frequency applied to the compressor motor is approximately 90Hz, which is higher than during normal cooling operation.
A larger amount of refrigerant is circulated through the refrigeration cycle than during normal cooling operation. In this rapid cooling operation, the refrigerant condensed in the condenser 12 flows into the direct cooling cooler 14 via the first capillary reach tube 13, as in the normal cooling operation described above. By the way, in the case of this rapid cooling operation, since the direct cooling cooler 14 is loaded with relatively high temperature food to be cooled, the thermal load on the direct cooling cooler 14 is increased. big. Therefore, the liquid refrigerant actively evaporates in this direct cooling cooler 14, and the refrigerant passing through the second capillary reach tube 15 contains more gas refrigerant than liquid refrigerant (i.e. due to increased dryness),
The liquid refrigerant becomes difficult to flow through the second capillary reach tube 15. Then, the amount of liquid refrigerant that flows into the bypass path 18 on the inlet side of the direct cooling cooler 14 increases, and the liquid refrigerant that flows through this bypass path 18 and flows into the intercooling cooler 17 is used for intercooling. Cooler 1
7 becomes extremely low in a short period of time. As described above, the temperature of the intercooling cooler 17 becomes extremely low, and the relative pressure difference between the intercooling cooler 17 and the direct cooling cooler 14 decreases, so the direct cooling cooler 17 1
The evaporation pressure and therefore the evaporation temperature of the liquid refrigerant in step 4 are lowered, and the food placed on the direct cooling cooler 14 can be rapidly cooled. In the case of this rapid cooling operation, in this embodiment, the rotation speed of the compressor motor is higher than that during normal cooling operation, so the evaporation pressure (evaporation temperatures) are lower and food can be cooled more quickly.

[考案の効果] 本考案は以上の説明から明らかなように、第1
の冷却器を貯蔵室の内部に配置し、第2の冷却器
を前記貯蔵室に連通する部位に配置して該第2の
冷却器により冷却した空気フアンにより前記貯蔵
室に送風するように構成すると共に、第1の冷却
器の入口側と第2の絞り装置及び第2の冷却器の
接続部との間に第2の絞り装置よりも流路抵抗の
大なるバイパス路を接続したことを特徴とするも
ので、これにより急速冷却時にはバイパス路を通
して液冷媒を第2の冷却器に供給してこれを低温
度にすることができるので、この第2の冷却器の
温度に依存する第1の冷却器の温度もより低くな
る。従つて、第1の冷却器が第2の絞り装置の存
在により、第2の冷却器よりもやや高い温度に保
たれて霜の堆積が防止されることと併せ、より効
果的に食品を急速冷却することができる。しか
も、上記のような急速冷却時に液冷媒を第1の冷
却器を介さずして第2の冷却器に供給する制御
を、電磁弁等を使用せず、単にバイパス路を設け
ることによつて実現できるので、コスト的にも有
利となる等の優れた効果を得ることができるもの
である。
[Effect of the invention] As is clear from the above explanation, the present invention has the first effect.
A cooler is disposed inside the storage chamber, a second cooler is disposed at a portion communicating with the storage chamber, and an air fan cooled by the second cooler is configured to blow air into the storage chamber. At the same time, it should be noted that a bypass passage having a flow resistance greater than that of the second throttle device is connected between the inlet side of the first cooler and the connection part of the second throttle device and the second cooler. This feature allows the liquid refrigerant to be supplied to the second cooler through the bypass path during rapid cooling to lower the temperature of the second cooler. The temperature of the cooler will also be lower. Therefore, due to the presence of the second throttling device, the first cooler is kept at a slightly higher temperature than the second cooler to prevent frost build-up, and the food can be more effectively and rapidly processed. Can be cooled. Moreover, the control for supplying the liquid refrigerant to the second cooler without passing through the first cooler during rapid cooling as described above can be performed simply by providing a bypass path without using a solenoid valve or the like. Since it can be realized, it is possible to obtain excellent effects such as being advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の冷媒サイクル図であり、第2
図は従来例を示す第1図相当図である。 図中、11はコンプレツサ、12はコンデン
サ、13は第1のキヤピラリーチユーブ(第1の
絞り器)、14は直冷用冷却器、15は第2のキ
ヤピラリーチユーブ(第1の絞り器)、17は間
冷用冷却器、18はバイパス路を示す。
Figure 1 is a refrigerant cycle diagram of the present invention;
The figure is a diagram corresponding to FIG. 1 showing a conventional example. In the figure, 11 is a compressor, 12 is a condenser, 13 is a first capillary reach tube (first restrictor), 14 is a direct cooling cooler, and 15 is a second capillary reach tube (first restrictor). , 17 is an intercooler, and 18 is a bypass path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンプレツサの吐出側と吸入側との間にコンデ
ンサ、第1の絞り装置、貯蔵室の内部に配置され
た第1の冷却器、第2の絞り装置、及び前記貯蔵
室に連通する部位に配置され冷却した空気をフア
ンにより前記貯蔵室に送風する第2の冷却器を順
に直列に接続すると共に、前記第1の冷却器の入
口側と前記第2の絞り装置及び第2の冷却器の接
続部との間に前記第2の絞り装置よりも流路抵抗
の大なるバイパス路を接続したことを特徴とする
冷凍サイクル。
A condenser, a first throttling device, a first cooler disposed inside the storage chamber, a second throttling device, and a portion communicating with the storage chamber are arranged between the discharge side and the suction side of the compressor. A second cooler that blows cooled air into the storage chamber by a fan is connected in series, and a connection part between the inlet side of the first cooler, the second throttle device, and the second cooler. A refrigeration cycle characterized in that a bypass path having a flow resistance greater than that of the second throttling device is connected between the refrigeration cycle and the second throttling device.
JP1986045776U 1986-03-28 1986-03-28 Expired - Lifetime JPH0526437Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986045776U JPH0526437Y2 (en) 1986-03-28 1986-03-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986045776U JPH0526437Y2 (en) 1986-03-28 1986-03-28

Publications (2)

Publication Number Publication Date
JPS62156767U JPS62156767U (en) 1987-10-05
JPH0526437Y2 true JPH0526437Y2 (en) 1993-07-05

Family

ID=30864820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986045776U Expired - Lifetime JPH0526437Y2 (en) 1986-03-28 1986-03-28

Country Status (1)

Country Link
JP (1) JPH0526437Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346664B2 (en) * 1975-10-14 1978-12-15

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346664U (en) * 1976-09-27 1978-04-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346664B2 (en) * 1975-10-14 1978-12-15

Also Published As

Publication number Publication date
JPS62156767U (en) 1987-10-05

Similar Documents

Publication Publication Date Title
US6935127B2 (en) Refrigerator
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
JPH05223368A (en) Refrigerator
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
KR100748800B1 (en) Refrigeration system with independent compartment temperature control
JP4178646B2 (en) refrigerator
JPH11173729A (en) Refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP3003356B2 (en) Vending machine cooling and heating equipment
JP3527592B2 (en) Freezer refrigerator
JP3633997B2 (en) Refrigerated refrigerator and control method thereof
JPH11148761A (en) Refrigerator
JPH10300321A (en) Cooler for freezer refrigerator and its defrosting method
JP2000205672A (en) Refrigerating system
JPH0526437Y2 (en)
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP3871207B2 (en) Refrigeration system combining absorption and compression
JPH10311614A (en) Heat storage type cooling device
KR100249195B1 (en) Refrigerator
KR100525400B1 (en) refrigerator
JP3710353B2 (en) refrigerator
KR100296294B1 (en) Refrigerator
JPH0311661Y2 (en)
JPH05172409A (en) Refrigerating cycle
JPS62202981A (en) Refrigeration cycle