JP2000205134A - Air compressor - Google Patents

Air compressor

Info

Publication number
JP2000205134A
JP2000205134A JP11009065A JP906599A JP2000205134A JP 2000205134 A JP2000205134 A JP 2000205134A JP 11009065 A JP11009065 A JP 11009065A JP 906599 A JP906599 A JP 906599A JP 2000205134 A JP2000205134 A JP 2000205134A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air
compressor
drain trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11009065A
Other languages
Japanese (ja)
Other versions
JP3732031B2 (en
Inventor
Masaki Matsukuma
正樹 松隈
Junichiro Totsuka
順一朗 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP00906599A priority Critical patent/JP3732031B2/en
Publication of JP2000205134A publication Critical patent/JP2000205134A/en
Application granted granted Critical
Publication of JP3732031B2 publication Critical patent/JP3732031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air compressor capable of reducing the power consumption. SOLUTION: A first heat-exchanger 5 for evaporation of a refrigerant to form a first circulating path 14 for refrigerant of a refrigerating device together with the body 11 of compressor for refrigerant, a second heat-exchanger 12 for condesation of refrigerant, and an expansion valve 13 is interposed as a suction air cooling means in a suction passage 2 to lead the air taken in from the atmosphere through an air filter 4 to the suction port in the compressor body 1 so that heat exchange is made between the refrigerant and suction air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気中の空気を吸
込み、圧縮する空気圧縮機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air compressor for sucking and compressing atmospheric air.

【0002】[0002]

【従来の技術】従来、空気圧縮機は各種の分野において
広く利用されている。そして、基本的には、この空気圧
縮機は、圧縮機本体の吸込口に接続した吸込流路に、空
気フィルタを介して大気中の空気を取り入れ、この空気
を圧縮機本体にて圧縮し、圧縮機本体の吐出口から吐出
するように形成されている。
2. Description of the Related Art Conventionally, air compressors have been widely used in various fields. And basically, this air compressor takes in air in the atmosphere via an air filter into a suction flow path connected to a suction port of the compressor body, and compresses the air with the compressor body. It is formed so as to discharge from a discharge port of the compressor body.

【0003】[0003]

【発明が解決しようとする課題】上記従来の空気圧縮機
の場合、上記吸込口から吸込む空気の温度、即ち吸込温
度が高くなると、吸込み空気の密度が小さくなる。この
ため、その分だけ単位動力当たりの圧縮機本体からの吐
出風量が減少し、消費動力が増大するという問題があ
る。本発明は、斯る従来の問題をなくすことを課題とし
てなされたもので、消費動力の低減を可能とした空気圧
縮機を提供しようとするものである。
In the case of the above-mentioned conventional air compressor, when the temperature of the air sucked from the suction port, that is, the suction temperature increases, the density of the suction air decreases. For this reason, there is a problem that the amount of air discharged from the compressor body per unit power decreases correspondingly, and power consumption increases. SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and has as its object to provide an air compressor capable of reducing power consumption.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、第1発明は、大気から取り入れた空気を空気用圧縮
機本体の吸込口に導く吸込流路に吸気冷却手段を介設し
た構成とした。
In order to solve the above-mentioned problems, a first aspect of the present invention is directed to a configuration in which intake cooling means is provided in a suction passage for guiding air taken from the atmosphere to a suction port of a main body of an air compressor. And

【0005】また、第2発明は、上記吸気冷却手段が、
冷媒用圧縮機本体と冷媒凝縮用の第2熱交換器と膨張弁
とともに冷凍装置の冷媒用第1循環路を形成する冷媒蒸
発用の第1熱交換器であって、この第1熱交換器で冷媒
と吸込み空気との間で熱交換を行わせる構成とした。
According to a second aspect of the present invention, the intake cooling means includes:
A first heat exchanger for refrigerant evaporation forming a first circulation path for refrigerant of a refrigeration system together with a refrigerant compressor body, a second heat exchanger for refrigerant condensation, and an expansion valve, wherein the first heat exchanger In this configuration, heat exchange is performed between the refrigerant and the suction air.

【0006】さらに、第3発明は、上記空気用圧縮機本
体の吐出流路が、アフタークーラと再熱器と第3熱交換
器とドレントラップとを有し、上記第3熱交換器が、冷
媒用圧縮機本体と冷媒凝縮用の第4熱交換器と膨張弁と
冷媒蒸発用の第5熱交換器とともに冷媒用第2循環路を
形成し、冷媒蒸発のために働き、上記吸気冷却手段が、
上記第5熱交換器であって、上記空気用圧縮機本体から
吐出された圧縮空気が、アフタークーラから上記再熱
器、上記第3熱交換器、ドレントラップの順序でこれら
を通過した後、再び上記再熱器を通過して機外に送り出
され、上記吐出された圧縮空気が、まずアフタークーラ
で冷却され、上記再熱器で上記ドレントラップを通過し
た圧縮空気と熱交換して、この圧縮空気を昇温させ、上
記第3熱交換器で冷却され、上記ドレントラップで析出
水分を除去され、ドライな状態となる一方、上記第5熱
交換器で冷媒と吸込み空気との間で熱交換を行わせる構
成とした。
Further, according to a third aspect of the present invention, the discharge passage of the air compressor main body includes an aftercooler, a reheater, a third heat exchanger, and a drain trap. The refrigerant compressor body, the fourth heat exchanger for condensing the refrigerant, the expansion valve, and the fifth heat exchanger for evaporating the refrigerant form a second circulation path for the refrigerant, functioning for refrigerant evaporation, and But,
In the fifth heat exchanger, after the compressed air discharged from the air compressor body passes through the reheater, the third heat exchanger, and the drain trap in the order of an aftercooler, The compressed air discharged through the reheater again is sent out of the machine, and the discharged compressed air is first cooled by an aftercooler, and the reheater exchanges heat with the compressed air that has passed through the drain trap. The temperature of the compressed air is increased, and the compressed air is cooled by the third heat exchanger. The deposited water is removed by the drain trap. The dried air is brought into a dry state. It was configured to be replaced.

【0007】さらに、第4発明は、上記空気用圧縮機本
体の吐出流路が、アフタークーラと再熱器と蒸発用第6
熱交換器とドレントラップとを有し、上記第6熱交換器
が、冷媒用圧縮機本体と冷媒凝縮用の第7熱交換器と膨
張弁と第1流量調節弁とともに冷媒用第3循環路を形成
し、冷媒蒸発のために働き、上記冷媒用圧縮機本体と第
7熱交換器とが、第2流量調節弁と冷媒蒸発用の第8熱
交換器とともに冷媒用第4循環路を形成し、上記吸気冷
却装手段が、上記第8熱交換器であって、上記空気用圧
縮機本体から吐出された圧縮空気が、アフタークーラか
ら上記再熱器、上記第6熱交換器、ドレントラップの順
序でこれらを通過した後、再び上記再熱器を通過して機
外に送り出され、上記吐出された圧縮空気が、まずアフ
タークーラで冷却され、上記再熱器で上記ドレントラッ
プを通過した圧縮空気と熱交換して、この圧縮空気を昇
温させ、上記第6熱交換器で冷却され、上記ドレントラ
ップで析出水分を除去され、ドライな状態となる一方、
上記第8熱交換器で冷媒と吸込み空気との間で熱交換を
行わせる構成とした。
In a fourth aspect of the present invention, the discharge passage of the air compressor body includes an aftercooler, a reheater, and a sixth evaporator.
A sixth heat exchanger having a heat exchanger and a drain trap, wherein the sixth heat exchanger includes a refrigerant compressor body, a refrigerant heat condensing seventh heat exchanger, an expansion valve, and a first flow control valve, and a third circulation path for refrigerant. The refrigerant compressor body and the seventh heat exchanger together with the second flow rate control valve and the eighth heat exchanger for refrigerant evaporation form a fourth refrigerant circulation path. The intake cooling means is the eighth heat exchanger, and the compressed air discharged from the air compressor body is supplied from an aftercooler to the reheater, the sixth heat exchanger, the drain trap. After passing through these in the order of above, it is again sent out of the machine through the reheater, and the discharged compressed air is first cooled by an aftercooler and passed through the drain trap by the reheater. By exchanging heat with the compressed air to raise the temperature of the compressed air, While being cooled in exchanger, it removed the precipitated water in the drain trap, a dry state,
The eighth heat exchanger is configured to perform heat exchange between the refrigerant and the intake air.

【0008】[0008]

【発明の実施の形態】次に、本発明の一実施形態を図面
にしたがって説明する。図1は、本発明の第1実施形態
に係る空気圧縮機を示し、空気用圧縮機本体1の吸込口
に吸込流路2が、吐出口に吐出流路3が接続してある。
吸込流路2には空気フィルタ4と吸気冷却手段である第
1熱交換器5とドレントラップ6とが設けてある。そし
て、大気中の空気を、空気フィルタ4を介して吸込流路
2に取り入れ、後述するように第1熱交換器5で冷却
し、ここで析出したドレンをドレントラップ6にて分
離、排出し、冷却された空気を圧縮機本体1で圧縮し、
上記吐出口から吐出流路3に吐出するようになってい
る。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an air compressor according to a first embodiment of the present invention, in which a suction channel 2 is connected to a suction port of a compressor body 1 for air, and a discharge channel 3 is connected to a discharge port.
The suction passage 2 is provided with an air filter 4, a first heat exchanger 5 serving as intake air cooling means, and a drain trap 6. Then, the air in the atmosphere is taken into the suction passage 2 through the air filter 4, cooled in the first heat exchanger 5 as described later, and the drain deposited here is separated and discharged by the drain trap 6. , The cooled air is compressed by the compressor body 1,
The liquid is discharged from the discharge port to the discharge channel 3.

【0009】第1熱交換器5は、上記空気圧縮機の一部
を構成するとともに冷凍装置の一部をも構成している。
この冷凍装置は、冷媒用圧縮機本体11と冷媒凝縮用の
水冷式第2熱交換器12と膨張弁13と冷媒蒸発用の第
1熱交換器5とを含む冷媒用第1循環路14を形成して
いる。そして、冷媒用圧縮機本体11で圧縮された冷媒
は、第2熱交換器12にて、冷却水との熱交換により熱
を奪われて凝縮し、高圧状態の冷媒液となり、膨張弁1
3にて膨張させられる。さらに、この冷媒液は、第1熱
交換器5にて空気フィルタ4を介して吸込流路2に取り
入れられた空気と熱交換して蒸発し、その際の気化熱に
より吸込流路2中の空気を冷却する。
The first heat exchanger 5 forms a part of the air compressor and also forms a part of a refrigeration system.
This refrigeration system includes a refrigerant first circulation path 14 including a refrigerant compressor main body 11, a water-cooled second heat exchanger 12 for refrigerant condensation, an expansion valve 13, and a first heat exchanger 5 for refrigerant evaporation. Has formed. The refrigerant compressed by the refrigerant compressor body 11 is deprived of heat by heat exchange with the cooling water in the second heat exchanger 12 and condensed to become a high-pressure refrigerant liquid.
Inflated at 3. Further, the refrigerant liquid exchanges heat with the air introduced into the suction passage 2 via the air filter 4 in the first heat exchanger 5 to evaporate, and the vaporization heat at that time causes the refrigerant liquid in the suction passage 2 to evaporate. Cool the air.

【0010】このように、この空気圧縮機では、圧縮機
本体1に吸込まれる空気を冷却し、吸込温度を低下させ
るようになっているため、この空気密度が大きくなり、
単位動力当たりの吐出風量が増大する。例えば、大気温
度が30℃のときに第1熱交換器5による冷却により吸
込温度を10℃にすると吐出風量は冷却しない場合に比
して7%増大する。また、圧縮機本体1が空気圧縮を行
うロータ室に潤滑油を注入する油冷式のものである場
合、吸込温度が低下すると、圧縮機本体1から吐出され
る圧縮空気の温度、即ち吐出温度も低下し、潤滑油の粘
度が増大する結果、上記ロータ室のシール性が良くな
り、圧縮機本体1の空気圧縮の効率が向上し、吐出風量
がより一層増大する。
As described above, in this air compressor, the air sucked into the compressor body 1 is cooled to lower the suction temperature, so that the air density increases,
The discharge air volume per unit power increases. For example, when the suction temperature is set to 10 ° C. by cooling by the first heat exchanger 5 when the ambient temperature is 30 ° C., the discharge air volume increases by 7% as compared with the case where the cooling is not performed. When the compressor body 1 is of an oil-cooled type that injects lubricating oil into a rotor chamber that performs air compression, when the suction temperature decreases, the temperature of the compressed air discharged from the compressor body 1, that is, the discharge temperature As a result, the viscosity of the lubricating oil is increased, and as a result, the sealing performance of the rotor chamber is improved, the efficiency of air compression of the compressor body 1 is improved, and the discharge air volume is further increased.

【0011】さらに、圧縮機本体1が上記ロータ室に潤
滑油を注入する油冷式のものである場合、吸込温度が低
下し、吐出温度が低下すると、潤滑油の温度も低下し、
上記ロータ室への注油温度が低下する結果、吸込んだ空
気が温められて、熱膨張し、密度が小さくなるという問
題、即ち吸込加熱の問題がある程度解消され、これによ
り空気密度が増大し、吐出風量がより一層増大する。こ
の吐出風量は、当社従来機に比して10数%増大する
故、第1熱交換器5による消費動力の増加分が数%ある
点を考慮しても、全体的に約10%の消費動力が節減で
きる。さらに、吐出温度が低下すると、圧縮機本体1の
吐出流路3に従来設けていたアフタークーラを小型化、
或いは省略できるようになる。
Further, when the compressor body 1 is of an oil-cooled type in which lubricating oil is injected into the rotor chamber, the suction temperature decreases, and when the discharge temperature decreases, the lubricating oil temperature also decreases.
As a result of lowering the lubricating temperature to the rotor chamber, the problem that the sucked air is warmed and thermally expanded and the density is reduced, that is, the problem of suction heating is solved to some extent, whereby the air density increases and the discharge increases. The air volume is further increased. Since the discharge air volume is increased by more than 10% compared to our conventional machine, the total power consumption is about 10% even in consideration of the fact that the power consumption by the first heat exchanger 5 is increased by several%. Power can be saved. Further, when the discharge temperature decreases, the aftercooler conventionally provided in the discharge passage 3 of the compressor body 1 is reduced in size,
Or it can be omitted.

【0012】図2は、本発明の第2実施形態に係る空気
圧縮機を示し、上記第1実施形態に係る空気用圧縮機と
共通する部分については、互いに同一番号を付して説明
を省略する。この空気圧縮機では、空気用圧縮機本体1
の吐出流路3に、空冷式アフタークーラ21と再熱器2
2と第3熱交換器23とドレントラップ6とを介設し、
上記第3熱交換器23が、冷媒用圧縮機本体11と冷媒
凝縮用の水冷式第4熱交換器24と膨張弁13と冷媒蒸
発用の第5熱交換器25とともに冷凍装置の冷媒用第2
循環路26を形成している。また、図2中一点鎖線Aで
囲む部分は、圧縮空気を乾燥させるためのドライヤとし
て機能する一方、第5熱交換器25は、吸込流路2にお
ける吸気冷却手段でもある。なお、図2中の※印同志は
連続することを意味している。
FIG. 2 shows an air compressor according to a second embodiment of the present invention. Portions common to the air compressor according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted. I do. In this air compressor, the air compressor body 1
Air-cooled aftercooler 21 and reheater 2
2, the third heat exchanger 23 and the drain trap 6,
The third heat exchanger 23 includes a refrigerant compressor body 11, a water-cooled fourth heat exchanger 24 for condensing refrigerant, an expansion valve 13, and a fifth heat exchanger 25 for evaporating refrigerant. 2
A circulation path 26 is formed. The portion surrounded by the dashed line A in FIG. 2 functions as a dryer for drying the compressed air, while the fifth heat exchanger 25 is also an intake air cooling unit in the suction passage 2. In addition, the * mark in FIG. 2 means that they are continuous.

【0013】具体的には、上記第1実施形態の場合と同
様に、膨張弁13を通過した冷媒液は第5熱交換器25
にて吸込流路2中の空気と熱交換して部分的に蒸発する
とともに、この空気を冷却する。また、圧縮機本体1か
ら吐出された圧縮空気は、まずアフタークーラ21で冷
却され、再熱器22で吐出流路3のドレントラップ6を
通過してきた圧縮空気と熱交換して、この通過してきた
圧縮空気を昇温させるとともに、自らは冷却されて第3
熱交換器23に至る。そして、この第3熱交換器23に
て、圧縮空気と部分的に蒸発した冷媒との間の熱交換に
より、冷媒は蒸発するとともに、圧縮空気は冷却され、
析出水分はドレントラップ6にて分離、排出され、圧縮
空気はドライな状態となり、上述したように再熱器22
で昇温され、さらにドライな状態になって機外に送り出
される。
Specifically, as in the case of the first embodiment, the refrigerant liquid passing through the expansion valve 13 is supplied to the fifth heat exchanger 25.
The heat exchanges with the air in the suction passage 2 to partially evaporate and cool the air. The compressed air discharged from the compressor body 1 is first cooled by the aftercooler 21 and exchanges heat with the compressed air passing through the drain trap 6 of the discharge passage 3 by the reheater 22. The temperature of the compressed air is raised, and
It reaches the heat exchanger 23. In the third heat exchanger 23, the refrigerant evaporates and the compressed air is cooled by heat exchange between the compressed air and the partially evaporated refrigerant,
The deposited water is separated and discharged by the drain trap 6, and the compressed air is in a dry state.
The temperature rises, and the air is dried and sent out of the machine.

【0014】そして、斯かる構成により、吸込温度を低
下させ、第1実施形態の場合と同様に、吐出風量を増大
させ、消費動力が節減されるようになり、アフタークー
ラ21を小型化できるようになっている。なお、図2で
は、アフタークーラ21を設けてあるが、第5熱交換器
26を設けることによりアフタークーラ21を省略する
こともできる。また、吸気冷却して、吸込流路中に析出
したドレンを除くことにより、吐出流路での乾燥運転の
省略、或いは運転時間の短縮が可能になる。
With this configuration, the suction temperature is reduced, the discharge air volume is increased, the power consumption is reduced, and the size of the aftercooler 21 can be reduced, as in the first embodiment. It has become. Although the aftercooler 21 is provided in FIG. 2, the aftercooler 21 can be omitted by providing the fifth heat exchanger 26. Further, by cooling the intake air and removing the drain deposited in the suction passage, the drying operation in the discharge passage can be omitted or the operation time can be shortened.

【0015】図3は、本発明の第3実施形態に係る空気
圧縮機を示し、上記各実施形態に係る空気用圧縮機と共
通する部分については、互いに同一番号を付して説明を
省略する。この空気圧縮機では、空気用圧縮機本体1の
吐出流路3に、空冷式アフタークーラ21と再熱器22
と第6熱交換器31とドレントラップ6とを介設してあ
る。一方、膨張弁13の二次側にて冷媒流路は二手に分
かれ、その内の一方は、冷媒用圧縮機本体11と冷媒凝
縮用の水冷式第4熱交換器24と膨張弁13と第1流量
調節弁32と冷媒蒸発用の第6熱交換器31とを含む冷
凍装置の冷媒用第3循環路33の一部を形成している。
そして、図3中一点鎖線Bで囲む部分は、圧縮空気を乾
燥させるためのドライヤとして機能する
FIG. 3 shows an air compressor according to a third embodiment of the present invention. Portions common to the air compressors according to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted. . In this air compressor, an air-cooled aftercooler 21 and a reheater 22 are provided in the discharge passage 3 of the air compressor body 1.
, A sixth heat exchanger 31 and a drain trap 6. On the other hand, on the secondary side of the expansion valve 13, the refrigerant flow path is divided into two parts, one of which is a refrigerant compressor body 11, a water-cooled fourth heat exchanger 24 for refrigerant condensation, an expansion valve 13, A part of the third circulation path 33 for the refrigerant of the refrigeration apparatus including the one flow control valve 32 and the sixth heat exchanger 31 for evaporating the refrigerant is formed.
A portion surrounded by a chain line B in FIG. 3 functions as a dryer for drying the compressed air.

【0016】また、上記二手に分かれた冷媒流路の内の
他方は、冷媒用圧縮機本体11と冷媒凝縮用の水冷式第
4熱交換器24と膨張弁13と第2流量調節弁34と冷
媒蒸発用の第7熱交換器35とを含む冷凍装置の冷媒用
第4循環路36の一部を形成している。また、この第7
熱交換器35は、吸込流路2における吸気冷却手段でも
ある。なお、上記同様、図3中の※印同志は連続するこ
とを意味している。そして、この第3実施形態に係る装
置では、第1流量調節弁32および第2流量調節弁34
のそれぞれの開度を調節することにより第3循環路33
および第4循環路36に流れる冷媒量を変え、吸気冷却
およびドライヤのそれぞれの働きを調節することができ
るようになっている。この第1流量調節弁32および第
2流量調節弁34に代えて、膨張弁13の二次側におけ
る冷媒流路の分岐部に三方切換弁を設けて、各循環路に
導く冷媒の量を調節するようにしてもよい。また、上記
同様に、斯かる構成により、吸込温度を低下させ、吐出
風量を増大させ、消費動力が節減されるようになり、ア
フタークーラ21を小型化できるようになっている。な
お、図2では、アフタークーラ21を設けてあるが、第
7熱交換器35を設けることによりアフタークーラ21
を省略することもできる。
The other of the two divided refrigerant flow paths includes a refrigerant compressor body 11, a water-cooled fourth heat exchanger 24 for condensing refrigerant, an expansion valve 13, a second flow control valve 34, and the like. A part of the fourth circulation path for refrigerant 36 of the refrigeration apparatus including the seventh heat exchanger 35 for refrigerant evaporation is formed. In addition, this seventh
The heat exchanger 35 is also an intake air cooling unit in the intake passage 2. Note that, as in the above, the * marks in FIG. 3 mean that they are continuous. In the device according to the third embodiment, the first flow control valve 32 and the second flow control valve 34
By adjusting the respective opening degrees of the third circulation path 33
The amount of the refrigerant flowing through the fourth circulation path 36 is changed, so that the respective functions of the intake air cooling and the dryer can be adjusted. Instead of the first flow control valve 32 and the second flow control valve 34, a three-way switching valve is provided at a branch portion of the refrigerant flow path on the secondary side of the expansion valve 13 to adjust the amount of refrigerant guided to each circulation path. You may make it. In addition, as described above, with such a configuration, the suction temperature is reduced, the discharge air volume is increased, the power consumption is reduced, and the aftercooler 21 can be downsized. Although the aftercooler 21 is provided in FIG. 2, the aftercooler 21 is provided by providing the seventh heat exchanger 35.
May be omitted.

【0017】ところで、上述した各実施形態では、吸気
冷却のために冷凍装置における冷媒の気化熱を利用して
いるが、本発明はこれに限定するものではなく、第1熱
交換器5、第5熱交換器25、および第7熱交換器35
に代えて、空冷式或いは水冷式の熱交換器を設けた圧縮
機をも含むものである。また、水冷式第4熱交換器24
に代えて空冷式の熱交換器を設けてもよく、空冷式のア
フタークーラ21に代えて水冷式のアフタークーラを設
けてもよく、いずれも本発明に含まれる。さらに、本発
明における圧縮機本体は、無給油式、油冷式のいずれの
タイプであってもよく、圧縮機本体が油冷式のものであ
る場合、周知のように圧縮機本体の吐出側に油分離回収
器が設けられ、さらにこの下部から油冷却器、油フィル
タを経て圧縮機本体内の注油箇所に至る油供給流路が設
けられる。
In each of the above-mentioned embodiments, the heat of vaporization of the refrigerant in the refrigerating apparatus is used for cooling the intake air. However, the present invention is not limited to this. Fifth heat exchanger 25 and seventh heat exchanger 35
In place of this, a compressor provided with an air-cooled or water-cooled heat exchanger is also included. In addition, the water-cooled fourth heat exchanger 24
, An air-cooled heat exchanger may be provided, and a water-cooled aftercooler may be provided in place of the air-cooled aftercooler 21, all of which are included in the present invention. Further, the compressor body in the present invention may be any of an oil-free type and an oil-cooled type. When the compressor body is an oil-cooled type, as is well known, the discharge side of the compressor body is And an oil supply passage extending from the lower portion through an oil cooler and an oil filter to a lubrication point in the compressor body.

【0018】[0018]

【発明の効果】以上の説明より明らかなように、本発明
によれば、圧縮機の吸気を冷却するようになっているた
め、吸込温度を低下させ、吐出風量を増大させ、消費動
力が節減されるようになり、通常設けられるアフターク
ーラを小型化若しくは省略することができるという効果
を奏する。また、吸気冷却用として吐出流路における付
属装置であるドライヤの冷媒を利用することにより、吸
気冷却のために新たな冷却媒体を用いる場合に比して構
造を単純化できる他、吸気冷却側とドライヤ側のそれぞ
れに流れる冷媒の量を調節できるようにすることによ
り、外気温度に合わせて最適な吸込温度に調節すること
ができるという効果も奏する。
As is apparent from the above description, according to the present invention, since the intake air of the compressor is cooled, the suction temperature is reduced, the discharge air volume is increased, and the power consumption is reduced. Therefore, the aftercooler which is usually provided can be reduced in size or omitted. In addition, by using the refrigerant of the dryer, which is an auxiliary device in the discharge flow path, for cooling the intake air, the structure can be simplified as compared with the case where a new cooling medium is used for cooling the intake air, and the cooling on the intake cooling side can be performed. By adjusting the amount of the refrigerant flowing to each of the dryers, it is possible to achieve an effect that the suction temperature can be adjusted to an optimum suction temperature in accordance with the outside air temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る空気圧縮機の全
体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of an air compressor according to a first embodiment of the present invention.

【図2】 本発明の第2実施形態に係る空気圧縮機の全
体構成を示す図である。
FIG. 2 is a diagram illustrating an overall configuration of an air compressor according to a second embodiment of the present invention.

【図3】 本発明の第3実施形態に係る空気圧縮機の全
体構成を示す図である。
FIG. 3 is a diagram illustrating an entire configuration of an air compressor according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 空気用圧縮機本体 2 吸込流路 3 吐出流路 4 空気フィルタ 5 第1熱交換器 6 ドレントラップ 11 冷媒用圧縮機本体 12 第2熱交換器 13 膨張弁 14 冷媒用第1循
環路 21 アフタークーラ 22 再熱器 23 第3熱交換器 24 第4熱交換器 25 第5熱交換器 26 冷媒用第2循
環路 31 第6熱交換器 32 第1流量調節
弁 33 第3循環路 34 第2流量調節
弁 35 第7熱交換器 36 冷媒用第4循
環路
REFERENCE SIGNS LIST 1 air compressor main body 2 suction flow path 3 discharge flow path 4 air filter 5 first heat exchanger 6 drain trap 11 refrigerant compressor main body 12 second heat exchanger 13 expansion valve 14 refrigerant first circulation path 21 after Cooler 22 Reheater 23 Third heat exchanger 24 Fourth heat exchanger 25 Fifth heat exchanger 26 Second circulation path for refrigerant 31 Sixth heat exchanger 32 First flow control valve 33 Third circulation path 34 Second Flow control valve 35 Seventh heat exchanger 36 Fourth circulation path for refrigerant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 大気から取り入れた空気を空気用圧縮機
本体の吸込口に導く吸込流路に吸気冷却手段を介設した
ことを特徴とする空気圧縮機。
1. An air compressor characterized in that an intake cooling means is provided in a suction flow passage for guiding air taken in from the atmosphere to a suction port of a compressor body for air.
【請求項2】 上記吸気冷却手段が、冷媒用圧縮機本体
と冷媒凝縮用の第2熱交換器と膨張弁とともに冷凍装置
の冷媒用第1循環路を形成する冷媒蒸発用の第1熱交換
器であって、 この第1熱交換器で冷媒と吸込み空気との間で熱交換を
行わせることを特徴とする請求項1に記載の空気圧縮
機。
2. A first heat exchange for evaporating a refrigerant which forms a first circulation path for a refrigerant of a refrigerating apparatus together with a compressor body for a refrigerant, a second heat exchanger for condensing the refrigerant, and an expansion valve. 2. The air compressor according to claim 1, wherein heat is exchanged between the refrigerant and the intake air in the first heat exchanger. 3.
【請求項3】 上記空気用圧縮機本体の吐出流路が、ア
フタークーラと再熱器と第3熱交換器とドレントラップ
とを有し、 上記第3熱交換器が、冷媒用圧縮機本体と冷媒凝縮用の
第4熱交換器と膨張弁と冷媒蒸発用の第5熱交換器とと
もに冷媒用第2循環路を形成し、冷媒蒸発のために働
き、 上記吸気冷却手段が、上記第5熱交換器であって、上記
空気用圧縮機本体から吐出された圧縮空気が、アフター
クー ラから上記再熱器、上記第3熱交換器、ドレントラップ
の順序でこれらを通過した後、再び上記再熱器を通過し
て機外に送り出され、 上記吐出された圧縮空気が、まずアフタークーラで冷却
され、上記再熱器で上記ドレントラップを通過した圧縮
空気と熱交換して、この圧縮空気を昇温させ、上記第3
熱交換器で冷却され、上記ドレントラップで析出水分を
除去され、ドライな状態となる一方、 上記第5熱交換器で冷媒と吸込み空気との間で熱交換を
行わせることを特徴とする請求項1に記載の空気圧縮
機。
3. A discharge channel of the air compressor main body has an aftercooler, a reheater, a third heat exchanger, and a drain trap, and the third heat exchanger is a refrigerant compressor main body. And a fourth heat exchanger for condensing the refrigerant, an expansion valve, and a fifth heat exchanger for evaporating the refrigerant to form a second circulation path for the refrigerant, and work for evaporating the refrigerant. In the heat exchanger, the compressed air discharged from the air compressor main body passes through the after-cooler in the order of the reheater, the third heat exchanger, and the drain trap, and then again. The compressed air discharged through the reheater is sent out of the machine.The discharged compressed air is first cooled by an aftercooler, and the reheater exchanges heat with the compressed air that has passed through the drain trap. And the third
The method is characterized in that cooling is performed by a heat exchanger, and precipitated water is removed by the drain trap, and a dry state is obtained. On the other hand, the fifth heat exchanger performs heat exchange between refrigerant and suction air. Item 7. The air compressor according to Item 1.
【請求項4】 上記空気用圧縮機本体の吐出流路が、ア
フタークーラと再熱器と蒸発用第6熱交換器とドレント
ラップとを有し、 上記第6熱交換器が、冷媒用圧縮機本体と冷媒凝縮用の
第4熱交換器と膨張弁と第1流量調節弁とともに冷媒用
第3循環路を形成し、冷媒蒸発のために働き、 上記冷媒用圧縮機本体と第4熱交換器とが、第2流量調
節弁と冷媒蒸発用の第7熱交換器とともに冷媒用第4循
環路を形成し、 上記吸気冷却装手段が、上記第7熱交換器であって、 上記空気用圧縮機本体から吐出された圧縮空気が、アフ
タークーラから上記再熱器、上記第6熱交換器、ドレン
トラップの順序でこれらを通過した後、再び上記再熱器
を通過して機外に送り出され、 上記吐出された圧縮空気が、まずアフタークーラで冷却
され、上記再熱器で上記ドレントラップを通過した圧縮
空気と熱交換して、この圧縮空気を昇温させ、上記第6
熱交換器で冷却され、上記ドレントラップで析出水分を
除去され、ドライな状態となる一方、 上記第7熱交換器で冷媒と吸込み空気との間で熱交換を
行わせることを特徴とする請求項1に記載の空気圧縮
機。
4. A discharge passage of the air compressor main body includes an aftercooler, a reheater, a sixth heat exchanger for evaporation, and a drain trap, wherein the sixth heat exchanger includes a refrigerant compressor. Forming a third circulation path for the refrigerant together with the main body, the fourth heat exchanger for condensing the refrigerant, the expansion valve, and the first flow control valve, and working for evaporating the refrigerant; A fourth circulation path for the refrigerant together with the second flow control valve and the seventh heat exchanger for evaporating the refrigerant, wherein the intake cooling means is the seventh heat exchanger, Compressed air discharged from the compressor body passes through the aftercooler in the order of the reheater, the sixth heat exchanger, and the drain trap, and then passes through the reheater again and is sent out of the machine. The compressed air discharged is first cooled by an aftercooler, Replace heat and compressed air passing through the drain trap, allowed to warm to the compressed air, the sixth
The method is characterized in that cooling is performed by a heat exchanger, and precipitated water is removed by the drain trap, and a dry state is obtained. On the other hand, the seventh heat exchanger causes heat exchange between refrigerant and suction air. Item 7. The air compressor according to Item 1.
JP00906599A 1999-01-18 1999-01-18 air compressor Expired - Fee Related JP3732031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00906599A JP3732031B2 (en) 1999-01-18 1999-01-18 air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00906599A JP3732031B2 (en) 1999-01-18 1999-01-18 air compressor

Publications (2)

Publication Number Publication Date
JP2000205134A true JP2000205134A (en) 2000-07-25
JP3732031B2 JP3732031B2 (en) 2006-01-05

Family

ID=11710221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00906599A Expired - Fee Related JP3732031B2 (en) 1999-01-18 1999-01-18 air compressor

Country Status (1)

Country Link
JP (1) JP3732031B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154663A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Air compression device
WO2017110220A1 (en) * 2015-12-25 2017-06-29 株式会社日立製作所 Air compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154663A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Air compression device
WO2017110220A1 (en) * 2015-12-25 2017-06-29 株式会社日立製作所 Air compressor
JPWO2017110220A1 (en) * 2015-12-25 2018-07-12 株式会社日立製作所 air compressor
US10920760B2 (en) 2015-12-25 2021-02-16 Hitachi, Ltd. Air compressor having an oil separator, an oil cooler, first and second evaporators, and wherein intake air and the oil are simultaneously cooled in the first and second evaporators

Also Published As

Publication number Publication date
JP3732031B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
CN105444453B (en) A kind of dual temperature refrigeration and heating
CN108458534A (en) Refrigerator and its operation method
KR20070067121A (en) Refrigerating apparatus
CN104879942B (en) The cooling and warming circulatory system
CN107084460A (en) One kind refrigeration drives natural cooling cooling by wind with fluorine pump
CN209672625U (en) A kind of ultra low temperature overlapping heat pump water cooler
JP3903409B2 (en) Two-stage compression refrigerator
JPH06337171A (en) Refrigerating device
KR20110064870A (en) Low dew point and low temperature dehumidifier
JP2000205134A (en) Air compressor
CN206637773U (en) One kind refrigeration and fluorine pump driving natural cooling cooling by wind
WO2021228018A1 (en) Air conditioning unit and control method therefor
JP2006038306A (en) Freezer
KR20140113052A (en) Freeze drier
JPS6387557A (en) Heat pump
CN205536282U (en) Evaporation formula and air -cooled heat pump air conditioning system who combines together
JPH10118441A (en) Compressed air dryer
WO2024078085A1 (en) Heat exchange system, and heat pump apparatus
JPH04203388A (en) Dryer integral type air-cooled compressor
KR100324359B1 (en) Refrigerator using two-stage expansion
JPH1019399A (en) Air conditioner
SU866358A1 (en) Multistep compression refrigerating plant
KR100291107B1 (en) Low pressure refrigerant temperature riser of air conditioner
JPH02298763A (en) Refrigerator
KR20030033358A (en) Freezing cycle for refrigerator using variable cooling compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees