JP3731501B2 - Thermocouple for molten metal - Google Patents

Thermocouple for molten metal Download PDF

Info

Publication number
JP3731501B2
JP3731501B2 JP2001182655A JP2001182655A JP3731501B2 JP 3731501 B2 JP3731501 B2 JP 3731501B2 JP 2001182655 A JP2001182655 A JP 2001182655A JP 2001182655 A JP2001182655 A JP 2001182655A JP 3731501 B2 JP3731501 B2 JP 3731501B2
Authority
JP
Japan
Prior art keywords
molten metal
thermocouple
protective tube
silicon nitride
outer sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001182655A
Other languages
Japanese (ja)
Other versions
JP2003004546A (en
Inventor
鉄也 一色
隆元 鈴木
和生 大角
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2001182655A priority Critical patent/JP3731501B2/en
Publication of JP2003004546A publication Critical patent/JP2003004546A/en
Application granted granted Critical
Publication of JP3731501B2 publication Critical patent/JP3731501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は金属溶湯の温度測定に好適な耐久性と応答性に優れた金属溶湯用熱電対に関するものである。
【0002】
【従来の技術】
従来、金属溶湯の温度測定に使用される熱電対として、Pt−Rh(白金−ロジウム)系熱電対の金属素線を挿通したアルミナ絶縁管を、アルミナ Al2O3または窒化珪素 Si3N4からなる保護管に挿入した構造のものが知られている。しかし、アルミナ製保護管は温度の急激な変化、即ち熱衝撃に耐えられないという欠点がある。一方、窒化珪素製保護管は熱衝撃に耐えるが、高温で保護管のSi成分と金属素線のPt成分とが反応して、融点が約800℃の化合物になるので、金属素線が断線し易く耐久性に乏しくなるという問題がある。また、Pt−Rh系熱電対による温度1500℃以上の温度測定は、金属素線自体の融点が測定温度に近いので、使用には適さない。
【0003】
【発明が解決しようとする課題】
本発明の課題は上述の問題に鑑み、高温域での温度測定が可能であり、しかも耐久性と応答性に優れた金属溶湯用熱電対を提供することにある。
【0004】
【課題を解決するための手段】
上述の課題を解決するために、本発明の構成は先端が閉鎖されたセラミック製の第1の内部保護管の基端部に、ステンレス鋼管からなる第2の内部保護管を接続し、第1の内部保護管に先端が測定接点をなす1対の金属素線を挿入し、第1,第2の内部保護管と前記金属素線との隙間に耐熱性セラミックからなる充填材を充填し、第1の内部保護管を覆う外部スリーブから第1の内部保護管の先端を突出し、前記外部スリーブの両端を第1,第2の内部保護管に固定部材により固定し、かつ外部スリーブと内部保護管との間に空気層を設けたことを特徴とする。
【0005】
【発明の実施の形態】
本発明では第1の内部保護管は先端が閉鎖され、かつセラミック粉末から成形したうえ焼成される。第2の内部保護管はステンレス鋼管からなり、第1の内部保護管の基端に接続される。
【0006】
外部スリーブは窒化珪素 Si3N4を主成分とする層と、窒化珪素 Si3N4を主成分とし窒化硼素BNを添加した層とを、同心円状または渦巻き状に積層した多重積層構造のものであり、最外層には窒化珪素 Si3N4を主成分とし窒化硼素BNを含有する層を配する。詳しくは、外部スリーブは窒化珪素 Si3N4を主成分とし40vol.%の窒化硼素BNを添加した肉厚層を外側に、窒化珪素 Si3N4を主成分とする薄肉層を内側にそれぞれ配したシートを、同心円状または渦巻き状に積層して多重積層構造に構成し、多重積層構造体を焼結して構成される。
【0007】
外部スリーブに内部保護管を固定する固定部材は、セラミックファイバーまたは無機系ガラスから構成される。
【0008】
【実施例】
図1は本発明による金属溶湯用熱電対の概略構成を示す側面図、図2は同金属溶湯用熱電対の基端部を拡大して示す側面断面図、図3は同金属溶湯用熱電対の先端部を拡大して示す側面断面である。熱電対の金属素線1,1aを収容する第1の内部保護管3は先端部を外部スリーブ5から突出され、外部スリーブ5の基端はステンレス鋼管6と接続管7により結合される。ステンレス鋼管6は基端部をくの字形に屈曲される。ステンレス鋼管6の基端部には金属素線1,1aと接続する雄コネクタ11が設けられる。雄コネクタ11と係合する雌コネクタ12がステンレス鋼管8の先端部に設けられ、雌コネクタ12には補償導線13,13aが接続される。ステンレス鋼管6とステンレス鋼管8とは接続管9により結合される。
【0009】
熱電対を構成する1対の金属素線1,1aは、成分が異なるW-Re(タングステン−レニウム)合金からなる。1対の金属素線1,1aの先端は溶接により接合されて温度計測のための測定接点2、即ち温度検知体を形成する。金属素線1,1aの基端は基準接点をなすものであり、雄コネクタ11、雌コネクタ12、補償導線13,13aを経て電位差計に接続される。温度表示器10は電位差計に基づいて温度を表示する。
【0010】
図2,3に示すように、1対の金属素線1,1aは先端が閉鎖された第1の内部保護管3と第2の内部保護管4に、測定接点2が閉鎖された先端部に位置するように挿入保持される。第1の内部保護管3は窒化珪素系セラミック粉末から押出成形機により成形され、圧力50atm 、温度1850℃の窒素ガス雰囲気で4時間焼成して作製される。したがつて、第1の内部保護管3は温度の急激な変化に耐える、即ち耐熱性と衝撃性に優れたものとなる。第2の内部保護管4はステンレス鋼からなる。
【0011】
金属素線1,1aと第1の内部保護管3および第2の内部保護管4との間には、耐熱性セラミック粉末、具体的には窒化珪素粉末からなる充填材14が充填される。充填材14は、窒化珪素の他にリン酸アルミニウムまたはマグネシアを添加してもよい。
【0012】
第2の内部保護管4の基端は封止部15であり、金属素線1,1aを保持するようにガラスで封止される。第1の内部保護管3と外部スリーブ5の間と、第2の内部保護管4と外部スリーブ5の間とに、それぞれ空気層17ができるように、外部スリーブ5の両端が第1の内部保護管3に固定部材16により固定される。固定部材16の材料には、炭化珪素SiC またはアルミナ Al2O3のセラミックファイバーを用いるか、ジルコニアZrO2,アルミナAl2O3 、シリカSiO2などの無機系ガラスなどを用いる。第1の内部保護管3の先端部は外部スリーブ5から例えば約20mm突出される。
【0013】
外部スリーブ5は例えばシートを筒状に巻いたうえ焼成して作製される。まず、主成分ないし基本成分としての、窒化珪素に少量の焼結助剤を添加した粉末からドクタブレード装置を用いて厚さ約100μmのシートA を作製する。また、主成分としての窒化珪素に、金属溶湯に対する撥湯成分としての10〜40vol.%の窒化硼素BNを添加し、先に述べたと同様にドクタブレード装置を用いて厚さ約100μmのシートB を作製する。その際に、窒化硼素BNの添加割合の異なる4つのシート、例えば窒化珪素に10vol.%の窒化硼素BNを添加して作製したものをシートB1、窒化珪素に20vol.%の窒化硼素BNを添加して作製したものをシートB2、窒化珪素に30vol.%の窒化硼素BNを添加して作製したものをシートB3、窒化珪素に40vol.%の窒化硼素BNを添加して作製したものをシートB4とする。各シートB1〜B4の窒化硼素BNの添加割合は上述の数値に限定されず、添加割合の異なるものであればよい。
【0014】
シートB1〜B4を組み合せて積層し、2種の筒体5a,5bを作製した。具体的には、筒体5aはシートA とシートB1を交互にまたは不規則(ランダム)に同心円状または渦巻状に約10層ほど積層し、次にその外側にシートA とシートB2を前と同様に約10層ほど積層し、次にその外側にシートA とシートB3を前と同様に約10層ほど積層し、更にその外側にシートA とシートB4を前と同様に約10層ほど積層し、かつ最外層にはシートB4を積層し、図5に示すように、全体として30〜40層に積層して形成した。
【0015】
筒体5bは前述のシートA の厚さを80μmから300μmまで20μmずつ変えたものと、前述の窒化硼素BNの添加割合が40vol.%のシートB4の厚さを80から300μmまで20μmずつ変えたB5とを用意し、シートA とシートB5を交互に同心円状または渦巻状に積層する際に、シートA は内側から外側に向かうにつれ厚いものから薄いものを用い、逆にシートB5は内側から外側に向かうにつれ薄いものから厚いものを用い、最外層にはシートB5を配し、図6に示すように、シートA とシートB5とを組み合せた層の厚さが200〜300μmになるように、厚さの異なるシートA とシートB5を選択して形成した。
【0016】
2種の筒体5a,5bをCIP(冷間静水圧)により2次成形を行い、各成形体を温度1850℃の窒素雰囲気で4時間焼成して、外部スリーブ5を製作した。外部スリーブ5は内側の層ほどシートの積層の密着性が向上し、強度が高くなるので、金属溶湯用熱電対の外部スリーブ5として、温度の急激な変化に耐える、即ち耐熱性と衝撃性に優れ、金属溶湯に対する撥湯性を有する。
【0017】
第1の内部保護管3は窒化珪素を用いたので耐熱性と衝撃性に優れたものとなり、金属素線1,1aと第1,第2の内部保護管3,4との間に、窒化珪素,リン酸アルミニウムまたはマグネシアからなる耐熱性セラミック粉末の充填材14を充填することにより、W-Re合金からなる金属素線の酸化を防止でき、より高温域での温度測定が可能になる。
【0018】
本発明による金属溶湯用熱電対を用いて金属溶湯の温度を測定する時は、外部スリーブ5の大部分を金属溶湯の内部へ浸漬して行う。外部スリーブ5を構成する窒化珪素系のセラミックが耐熱性に優れ伝熱性が小さいこと、外部スリーブ5と内部スリーブ3との間に空気層17が存在すること、固定部材16を構成するセラミックファイバーが耐熱性に優れ伝熱性が小さいこと、外部スリーブ5から突出する第1の内部保護管3の先端部分が僅かであることから、金属溶湯用熱電対の金属溶湯に浸漬する部分の熱容量が小さく、金属溶湯の温度測定に対する応答性が向上される。
【0019】
本発明による金属溶湯用熱電対を用いて温度1450℃の金属溶湯にて温度測定試験を行つた結果は、図7に示すとおりである。従来の熱電対では温度測定値が所定の値に落ち着くまでの時間が10秒であるのに対し、本発明による金属溶湯用熱電対では8秒と、応答性の向上が確認された。
【0020】
また、温度1450℃の金属溶湯に繰り返し浸漬する耐久性試験を行つたところ、金属素線が断線に至るまでの温度測定回数は、図8に示すとおりである。従来の熱電対では、温度測定回数が100回程度で金属素線が断線に至つたのに対し、本発明による金属溶湯用熱電対では、400回程の繰返し温度測定が可能であつて、従来の熱電対のほぼ4倍の耐久性が確認された。また、本発明による金属溶湯用熱電対では、400回の繰返し温度測定後にも外部スリーブ5の破損は見られず、外部スリーブ5の表面にスラグの付着も見られず、金属溶湯に対する撥湯性の高いことが認められた。
【0021】
また、窒化珪素を主成分とするシートA と窒化珪素に窒化硼素BNを添加したシートB との積層による接合強度について、シートB の窒化硼素BNの添加量との関係を調べた結果は、図9に示すとおりである。窒化珪素(焼結助剤を含む)に対する窒化硼素BNの添加量が40vol.%を超えると、接合強度が極端に低下することが確認された。また、最外層が窒化珪素に窒化硼素BNを添加したシートB からなる外部スリーブ5を、金属溶湯に浸漬した際に、シートB の表面と金属溶湯との接触角について、窒化硼素BNの添加量との関係を調べた結果は、図10に示すとおりである。窒化硼素BNの添加量が10vol.%以下では接触角が極端に減少し、金属溶湯に対する撥湯性が低下することが確認された。この結果から、シートB における主成分である窒化珪素に添加する窒化硼素BNの添加割合は10〜40vol.%が最も好ましいことが分かった。
【0022】
【発明の効果】
本発明は上述のように、先端が閉鎖されたセラミック製の第1の内部保護管の基端部に、ステンレス鋼管からなる第2の内部保護管を接続し、第1の内部保護管に先端が測定接点をなす1対の金属素線を挿入し、第1,第2の内部保護管と前記金属素線との隙間に耐熱性セラミックからなる充填材を充填し、第1の内部保護管を覆う外部スリーブから第1の内部保護管の先端を突出し、前記外部スリーブの両端を第1,第2の内部保護管に固定部材により固定し、かつ外部スリーブと内部保護管との間に空気層を設けたものであり、外部スリーブを構成する窒化珪素系のセラミックが耐熱性に優れ伝熱性が小さいこと、外部スリーブと内部スリーブとの間に空気層が存在すること、固定部材を構成するセラミックファイバーが耐熱性に優れ伝熱性が小さいこと、外部スリーブから突出する第1の内部保護管の先端部分が僅かであることから、金属溶湯用熱電対を金属溶湯へ浸漬した時の外部スリーブから第1の内部保護管の先端部分への、または逆方向への伝熱量が少く、金属溶湯用熱電対の金属溶湯に浸漬する部分の熱容量が小さく、金属溶湯の温度測定に対する応答性が向上される。
【0023】
内部保護管に窒化珪素を用いたので耐熱性と熱衝撃性に優れ、また外部スリーブの最外層に窒化珪素に窒化硼素を添加した材料を用いたので、同じく耐熱性と熱衝撃性に優れ、また外部スリーブを金属溶湯に浸漬した時に金属溶湯に対する撥湯性を発揮し、繰返し温度測定回数が高められる。
【0024】
金属素線にW-Re合金を用い、金属素線と内部保護管との間に窒化珪素などの充填材を充填したことにより、金属素線の酸化を防止し、熱電対の高温域での温度測定が可能になる。
【図面の簡単な説明】
【図1】本発明に係る金属溶湯用熱電対の側面図である。
【図2】同金属溶湯用熱電対の基端部を拡大して示す側面断面図である。
【図3】同金属溶湯用熱電対の先端部を拡大して示す側面断面図である。
【図4】同金属溶湯用熱電対における金属素線と補償導線を接続するコネクタの概略構成を示す側面図である。
【図5】同金属溶湯用熱電対における外部スリーブの平面断面図である。
【図6】同金属溶湯用熱電対における他の例の外部スリーブの平面断面図である。
【図7】同金属溶湯用熱電対と従来型熱電対との温度測定応答性を表す線図である。
【図8】同金属溶湯用熱電対と従来型熱電対との温度測定耐久性を表す線図である。
【図9】同金属溶湯用熱電対の外部スリーブを積層するシートの窒化珪素に対する窒化硼素の添加量と接合強度との関係を表す線図である。
【図10】同金属溶湯用熱電対の外部スリーブを積層する最外層のシートの窒化珪素に対する窒化硼素の添加量と、金属溶湯に対する接触角との関係を表す線図である。
【符号の説明】
1,1a:金属素線 2:測定接点 3:第1の内部保護管 4:第2の内部保護管 5:外部スリーブ 6:ステンレス鋼管 7:接続管 8:ステンレス鋼管 9:接続管 10:温度表示器 11:雄コネクタ 12:雌コネクタ 13,13a:補償導線 14:充填材 15:封止部 16:固定部材 17:空気層
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a molten metal thermocouple excellent in durability and responsiveness suitable for measuring a temperature of a molten metal.
[0002]
[Prior art]
Conventionally, as a thermocouple used to measure the temperature of molten metal, an alumina insulating tube with a metal wire of a Pt-Rh (platinum-rhodium) thermocouple inserted is used as alumina Al 2 O 3 or silicon nitride Si 3 N 4. The thing of the structure inserted in the protective tube which consists of is known. However, the protective tube made of alumina has a drawback that it cannot withstand a sudden change in temperature, that is, thermal shock. On the other hand, the protective tube made of silicon nitride can withstand thermal shock, but the Si component of the protective tube reacts with the Pt component of the metal strand at a high temperature to form a compound having a melting point of about 800 ° C. There is a problem that it is easy to do and lacks durability. Further, temperature measurement at a temperature of 1500 ° C. or higher using a Pt—Rh thermocouple is not suitable for use because the melting point of the metal strand itself is close to the measurement temperature.
[0003]
[Problems to be solved by the invention]
In view of the above-described problems, an object of the present invention is to provide a thermocouple for molten metal that is capable of measuring a temperature in a high temperature range and is excellent in durability and responsiveness.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the configuration of the present invention is configured such that a second internal protective tube made of a stainless steel tube is connected to a proximal end portion of a ceramic first internal protective tube whose tip is closed, A pair of metal strands whose tips form measurement contacts are inserted into the inner protective tube, and a gap between the first and second inner protective tubes and the metal strand is filled with a filler made of a heat-resistant ceramic, The tip of the first inner protective tube projects from the outer sleeve covering the first inner protective tube, both ends of the outer sleeve are fixed to the first and second inner protective tubes by fixing members, and the inner sleeve and the inner protection are protected. An air layer is provided between the pipe and the tube.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the first inner protective tube is closed at the tip, and is molded from ceramic powder and fired. The second inner protective tube is made of a stainless steel tube and is connected to the proximal end of the first inner protective tube.
[0006]
The outer sleeve has a multi-layer structure in which a layer composed mainly of silicon nitride Si 3 N 4 and a layer composed mainly of silicon nitride Si 3 N 4 and doped with boron nitride BN are stacked concentrically or spirally. In the outermost layer, a layer containing silicon nitride Si 3 N 4 as a main component and boron nitride BN is disposed. Specifically, the outer sleeve has a thick layer with silicon nitride Si 3 N 4 as the main component and 40 vol.% Boron nitride BN added on the outside, and a thin layer with silicon nitride Si 3 N 4 as the main component on the inside. The arranged sheets are stacked concentrically or spirally to form a multiple stacked structure, and the multiple stacked structure is sintered.
[0007]
The fixing member that fixes the inner protective tube to the outer sleeve is made of ceramic fiber or inorganic glass.
[0008]
【Example】
1 is a side view showing a schematic configuration of a molten metal thermocouple according to the present invention, FIG. 2 is an enlarged side sectional view showing a base end portion of the molten metal thermocouple, and FIG. 3 is a molten metal thermocouple. It is a side cross section which expands and shows the front-end | tip part. The first inner protective tube 3 that accommodates the metal wires 1, 1 a of the thermocouple protrudes from the outer sleeve 5 at the distal end, and the base end of the outer sleeve 5 is joined by the stainless steel tube 6 and the connecting tube 7. The stainless steel pipe 6 is bent in a dogleg shape at the base end. A male connector 11 connected to the metal wires 1 and 1a is provided at the base end portion of the stainless steel pipe 6. A female connector 12 that engages with the male connector 11 is provided at the tip of the stainless steel tube 8, and the compensating conductors 13 and 13 a are connected to the female connector 12. The stainless steel pipe 6 and the stainless steel pipe 8 are joined by a connecting pipe 9.
[0009]
The pair of metal wires 1 and 1a constituting the thermocouple are made of W-Re (tungsten-rhenium) alloys having different components. The tips of the pair of metal wires 1 and 1a are joined by welding to form a measurement contact 2 for measuring temperature, that is, a temperature detector. The base ends of the metal wires 1 and 1a form a reference contact, and are connected to the potentiometer through the male connector 11, the female connector 12, and the compensating lead wires 13 and 13a. The temperature indicator 10 displays the temperature based on a potentiometer.
[0010]
As shown in FIGS. 2 and 3, the pair of metal wires 1, 1 a is connected to the first inner protective tube 3 and the second inner protective tube 4 whose tips are closed, and the tip portion where the measurement contact 2 is closed. It is inserted and held so that it is located in The first inner protective tube 3 is formed from a silicon nitride-based ceramic powder by an extrusion molding machine and fired in a nitrogen gas atmosphere at a pressure of 50 atm and a temperature of 1850 ° C. for 4 hours. Therefore, the first inner protective tube 3 can withstand a rapid change in temperature, that is, has excellent heat resistance and impact resistance. The second inner protective tube 4 is made of stainless steel.
[0011]
Between the metal strands 1 and 1a and the first inner protective tube 3 and the second inner protective tube 4, a filler 14 made of a heat-resistant ceramic powder, specifically, silicon nitride powder is filled. The filler 14 may be added with aluminum phosphate or magnesia in addition to silicon nitride.
[0012]
The base end of the second inner protective tube 4 is a sealing portion 15 and is sealed with glass so as to hold the metal strands 1 and 1a. Both ends of the outer sleeve 5 are formed between the first inner protective tube 3 and the outer sleeve 5 and between the second inner protective tube 4 and the outer sleeve 5 so that an air layer 17 is formed between the first inner protective tube 3 and the outer sleeve 5. The protective tube 3 is fixed by a fixing member 16. The material of the fixing member 16 is made of silicon carbide SiC or alumina Al 2 O 3 ceramic fiber, or inorganic glass such as zirconia ZrO 2 , alumina Al 2 O 3 , or silica SiO 2 . The tip of the first inner protective tube 3 protrudes from the outer sleeve 5 by, for example, about 20 mm.
[0013]
The external sleeve 5 is produced, for example, by winding a sheet into a cylindrical shape and firing it. First, a sheet A having a thickness of about 100 μm is produced from a powder obtained by adding a small amount of a sintering aid to silicon nitride as a main component or a basic component, using a doctor blade apparatus. Further, 10-40 vol.% Boron nitride BN as a hot water repellent component with respect to the molten metal is added to silicon nitride as a main component, and a sheet B having a thickness of about 100 μm is used by using a doctor blade device as described above. Is made. At that time, four sheets having different boron nitride BN addition ratios, for example, a sheet B1 prepared by adding 10 vol.% Boron nitride BN to silicon nitride, and 20 vol.% Boron nitride BN to silicon nitride are added. Sheet B2 was prepared by adding 30 vol.% Boron nitride BN to silicon nitride, and sheet B3 was prepared by adding 40 vol.% Boron nitride BN to silicon nitride. And The addition ratio of boron nitride BN in each of the sheets B1 to B4 is not limited to the above-described numerical values, and any addition ratio may be used.
[0014]
Sheets B1 to B4 were combined and laminated to produce two types of cylinders 5a and 5b. Specifically, the cylindrical body 5a is formed by laminating about 10 layers of sheets A and B1 alternately or irregularly (randomly) concentrically or spirally, and then the sheet A and the sheet B2 on the outside of the cylinder 5a. Similarly, about 10 layers are laminated, then about 10 layers are laminated on the outside of the sheet A and B3 as before, and further about 10 layers are laminated on the outside of the sheet A and B4 as before. In addition, the sheet B4 was laminated on the outermost layer, and as shown in FIG.
[0015]
The cylindrical body 5b was obtained by changing the thickness of the above-mentioned sheet A by 20 μm from 80 μm to 300 μm, and by changing the thickness of the above-mentioned sheet B4 having 40% by volume of boron nitride BN by 20 μm from 80 to 300 μm. B5 is prepared, and when the sheets A and B5 are alternately stacked concentrically or spirally, the sheet A is used from the thicker to the thinner as it goes from the inside to the outside, and conversely, the sheet B5 is the outside from the inside From the thin to the thick, the sheet B5 is arranged on the outermost layer, and as shown in FIG. 6, the combined thickness of the sheet A and the sheet B5 is 200 to 300 μm. Sheet A and sheet B5 having different thicknesses were selected and formed.
[0016]
The two types of cylinders 5a and 5b were subjected to secondary molding by CIP (cold isostatic pressure), and each molded body was fired in a nitrogen atmosphere at a temperature of 1850 ° C. for 4 hours to produce an external sleeve 5. Since the outer sleeve 5 has an improved inner layer adhesion and strength, the outer sleeve 5 can withstand sudden changes in temperature, that is, heat resistance and impact resistance. Excellent and repellent to molten metal.
[0017]
Since the first inner protective tube 3 is made of silicon nitride, it has excellent heat resistance and impact resistance, and is nitrided between the metal strands 1 and 1a and the first and second inner protective tubes 3 and 4. By filling the filler 14 of heat-resistant ceramic powder made of silicon, aluminum phosphate or magnesia, oxidation of the metal wire made of W-Re alloy can be prevented, and temperature measurement in a higher temperature range becomes possible.
[0018]
When measuring the temperature of the molten metal using the thermocouple for molten metal according to the present invention, most of the outer sleeve 5 is immersed in the molten metal. The silicon nitride ceramic constituting the outer sleeve 5 has excellent heat resistance and low heat transfer, the air layer 17 exists between the outer sleeve 5 and the inner sleeve 3, and the ceramic fiber constituting the fixing member 16 is Since heat resistance is excellent and heat conductivity is small, and the tip portion of the first inner protective tube 3 protruding from the outer sleeve 5 is small, the heat capacity of the portion immersed in the molten metal of the molten metal thermocouple is small, Responsiveness to temperature measurement of the molten metal is improved.
[0019]
FIG. 7 shows the result of a temperature measurement test performed on the molten metal at a temperature of 1450 ° C. using the molten metal thermocouple according to the present invention. In the conventional thermocouple, the time required for the temperature measurement value to settle to a predetermined value is 10 seconds, whereas in the thermocouple for molten metal according to the present invention, the improvement in responsiveness was confirmed to 8 seconds.
[0020]
Moreover, when the durability test which repeatedly immerses in the molten metal of temperature 1450 degreeC was done, the frequency | count of temperature measurement until a metal strand reaches a disconnection is as showing in FIG. In the conventional thermocouple, the temperature of the temperature measurement was about 100 times, and the metal wire was broken. On the other hand, the molten metal thermocouple according to the present invention can measure the temperature repeatedly about 400 times. The durability was almost 4 times that of the pair. Moreover, in the thermocouple for molten metal according to the present invention, no damage to the outer sleeve 5 is observed even after 400 times of temperature measurement, no slag adheres to the surface of the outer sleeve 5, and the water repellency to the molten metal. Was found to be high.
[0021]
In addition, the results of examining the relationship between the bonding strength of the sheet A containing silicon nitride as the main component and the sheet B obtained by adding boron nitride BN to silicon nitride and the amount of boron nitride BN added to the sheet B are shown in Fig. As shown in FIG. It was confirmed that when the amount of boron nitride BN added to silicon nitride (including the sintering aid) exceeds 40 vol.%, The bonding strength is extremely reduced. Further, when the outer sleeve 5 made of a sheet B made of silicon nitride and boron nitride BN added to the outermost layer is immersed in the molten metal, the amount of boron nitride BN added with respect to the contact angle between the surface of the sheet B and the molten metal The result of investigating the relationship is shown in FIG. It was confirmed that when the amount of boron nitride BN added was 10 vol.% Or less, the contact angle was extremely reduced, and the repellency to the molten metal was lowered. From this result, it was found that the addition ratio of boron nitride BN added to silicon nitride which is the main component in sheet B is most preferably 10 to 40 vol.
[0022]
【The invention's effect】
In the present invention, as described above, a second internal protective tube made of a stainless steel pipe is connected to the proximal end portion of the first ceramic internal protective tube whose tip is closed, and the distal end is connected to the first internal protective tube. Is inserted into the gap between the first and second inner protective tubes and the metal strand, and a filler made of a heat-resistant ceramic is inserted into the first inner protective tube. The front end of the first inner protective tube protrudes from the outer sleeve that covers the outer sleeve, both ends of the outer sleeve are fixed to the first and second inner protective tubes by fixing members, and air is interposed between the outer sleeve and the inner protective tube. The silicon nitride ceramic that constitutes the outer sleeve is excellent in heat resistance and has low heat conductivity, that there is an air layer between the outer sleeve and the inner sleeve, and that constitutes the fixing member. Ceramic fiber has excellent heat resistance The first end of the first inner protective tube protrudes from the outer sleeve when the molten metal thermocouple is immersed in the molten metal because of the low performance and the end portion of the first inner protective tube protruding from the outer sleeve is small. The amount of heat transfer to the part or in the reverse direction is small, the heat capacity of the part of the metal melt thermocouple immersed in the metal melt is small, and the responsiveness to the temperature measurement of the metal melt is improved.
[0023]
Since silicon nitride is used for the internal protective tube, it has excellent heat resistance and thermal shock resistance, and since the outer sleeve outer layer is made of silicon nitride added with boron nitride, it also has excellent heat resistance and thermal shock resistance. Further, when the outer sleeve is immersed in the molten metal, it exhibits a water repellency with respect to the molten metal and the number of repeated temperature measurements can be increased.
[0024]
By using a W-Re alloy for the metal element and filling a filler such as silicon nitride between the metal element and the inner protective tube, oxidation of the metal element is prevented and the thermocouple is heated in the high temperature range. Temperature measurement is possible.
[Brief description of the drawings]
FIG. 1 is a side view of a molten metal thermocouple according to the present invention.
FIG. 2 is an enlarged side cross-sectional view showing a base end portion of the molten metal thermocouple.
FIG. 3 is an enlarged side cross-sectional view of a tip portion of the molten metal thermocouple.
FIG. 4 is a side view showing a schematic configuration of a connector for connecting a metal element wire and a compensating conductor in the molten metal thermocouple.
FIG. 5 is a plan sectional view of an outer sleeve in the molten metal thermocouple.
FIG. 6 is a plan sectional view of another example of an external sleeve in the molten metal thermocouple.
FIG. 7 is a diagram showing temperature measurement responsiveness between the molten metal thermocouple and the conventional thermocouple.
FIG. 8 is a diagram showing temperature measurement durability of the molten metal thermocouple and the conventional thermocouple.
FIG. 9 is a diagram showing the relationship between the amount of boron nitride added to silicon nitride and the bonding strength of the sheet on which the outer sleeve of the molten metal thermocouple is laminated.
FIG. 10 is a diagram showing the relationship between the amount of boron nitride added to silicon nitride and the contact angle with respect to the molten metal in the outermost layer sheet on which the outer sleeve of the molten metal thermocouple is laminated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a: Metal wire 2: Measuring contact 3: 1st internal protection pipe 4: 2nd internal protection pipe 5: External sleeve 6: Stainless steel pipe 7: Connection pipe 8: Stainless steel pipe 9: Connection pipe 10: Temperature Indicator 11: Male connector 12: Female connector 13, 13a: Compensation conductor 14: Filler 15: Sealing part 16: Fixing member 17: Air layer

Claims (7)

先端が閉鎖されたセラミック製の第1の内部保護管の基端部に、ステンレス鋼管からなる第2の内部保護管を接続し、第1の内部保護管に先端が測定接点をなす1対の金属素線を挿入し、第1,第2の内部保護管と前記金属素線との隙間に耐熱性セラミック粉末からなる充填材を充填し、第1の内部保護管を覆う外部スリーブから第1の内部保護管の先端を突出し、前記外部スリーブの両端を第1,第2の内部保護管に固定部材により固定し、かつ外部スリーブと内部保護管との間に空気層を設けたことを特徴とする金属溶湯用熱電対。A second internal protective tube made of a stainless steel tube is connected to the base end of the first internal protective tube made of ceramic whose tip is closed, and a pair of tips whose measurement contacts are connected to the first internal protective tube A metal strand is inserted, a filler made of a heat-resistant ceramic powder is filled in the gap between the first and second inner protective tubes and the metal strand, and the first is started from the outer sleeve covering the first inner protective tube. The end of the inner protective tube protrudes, both ends of the outer sleeve are fixed to the first and second inner protective tubes by fixing members, and an air layer is provided between the outer sleeve and the inner protective tube. A thermocouple for molten metal. 前記外部スリーブは窒化珪素 Si3N4を主成分とする層と、窒化珪素 Si3N4を主成分とし10〜40vol.%の窒化硼素BNの添加量を変えながら作製した層とを傾斜させながら交互に、同心円状または渦巻き状に積層し、かつ最外層に窒化珪素 Si3N4を主成分とし窒化硼素BNを添加した層を配した多重積層構造のものである、請求項1に記載の金属溶湯用熱電対。The outer sleeve is formed by inclining a layer mainly composed of silicon nitride Si 3 N 4 and a layer composed mainly of silicon nitride Si 3 N 4 while changing the addition amount of boron nitride BN of 10 to 40 vol.%. However, it has a multi-layered structure in which concentric layers or spiral layers are alternately stacked, and layers in which silicon nitride Si 3 N 4 is a main component and boron nitride BN is added are arranged on the outermost layer. Thermocouple for molten metal. 前記外部スリーブは窒化珪素 Si3N4を主成分とし40vol.%の窒化硼素BNを添加した肉厚層を外側に、窒化珪素 Si3N4を主成分とする薄肉層を内側に配し、前記2層の厚さ200〜300μmの層を、同心円状または渦巻き状に積層した多重積層構造のものである、請求項1に記載の金属溶湯用熱電対。The outer sleeve has a thick layer containing silicon nitride Si 3 N 4 as a main component and 40 vol.% Boron nitride BN added outside, and a thin layer mainly containing silicon nitride Si 3 N 4 arranged inside. 2. The molten metal thermocouple according to claim 1, which has a multilayer structure in which the two layers having a thickness of 200 to 300 μm are stacked concentrically or spirally. 前記内部保護管は窒化珪素 Si3N4を主成分とする材料からなる、請求項1に記載の金属溶湯用熱電対。The thermocouple for molten metal according to claim 1, wherein the inner protective tube is made of a material mainly composed of silicon nitride Si 3 N 4 . 前記固定部材は炭化珪素SiC またはアルミナAl2O3 のセラミックファイバーと、ジルコニアZrO2,アルミナAl2O3 またはシリカSiO2の無機系ガラスとの内の1つからなる、請求項1に記載の金属溶湯用熱電対。2. The fixing member according to claim 1, wherein the fixing member is made of one of silicon carbide SiC or alumina Al 2 O 3 ceramic fiber and zirconia ZrO 2 , alumina Al 2 O 3 or silica SiO 2 inorganic glass. Thermocouple for molten metal. 前記充填材は窒化珪素 Si3N4,酸化マグネシウムMgO またはリン酸アルミニウムAl3(PO4)2からなる、請求項1に記載の金属溶湯用熱電対。 2. The thermocouple for molten metal according to claim 1, wherein the filler is made of silicon nitride Si 3 N 4 , magnesium oxide MgO, or aluminum phosphate Al 3 (PO 4 ) 2 . 前記金属素線はW-Re(タングステン−レニウム)合金からなる、請求項1に記載の金属溶湯用熱電対。The thermocouple for molten metal according to claim 1, wherein the metal strand is made of a W-Re (tungsten-rhenium) alloy.
JP2001182655A 2001-06-15 2001-06-15 Thermocouple for molten metal Expired - Fee Related JP3731501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182655A JP3731501B2 (en) 2001-06-15 2001-06-15 Thermocouple for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182655A JP3731501B2 (en) 2001-06-15 2001-06-15 Thermocouple for molten metal

Publications (2)

Publication Number Publication Date
JP2003004546A JP2003004546A (en) 2003-01-08
JP3731501B2 true JP3731501B2 (en) 2006-01-05

Family

ID=19022709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182655A Expired - Fee Related JP3731501B2 (en) 2001-06-15 2001-06-15 Thermocouple for molten metal

Country Status (1)

Country Link
JP (1) JP3731501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141415B2 (en) * 2004-06-30 2008-08-27 義臣 近藤 Integrated parallel Peltier Seebeck element chip and manufacturing method thereof, integrated Peltier Seebeck element panel or sheet, and direct energy conversion system and energy transfer system
JP2008182254A (en) * 2008-02-18 2008-08-07 Yoshiomi Kondo Method of connecting integrally juxtaposed peltier/seebeck element chips
JP5304011B2 (en) * 2008-04-24 2013-10-02 新日鐵住金株式会社 Focused ion beam device with local region temperature measuring device and local region temperature measuring method

Also Published As

Publication number Publication date
JP2003004546A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US9714869B2 (en) Temperature sensor including thermosensitive element
JP5437304B2 (en) TEMPERATURE SENSOR ELEMENT, ITS MANUFACTURING METHOD, AND TEMPERATURE SENSOR
JP4437592B2 (en) Fast response thermocouple
US6190038B1 (en) Thermocouple lance with alternating molybdenum layered sheath for measuring temperature in molten metal bath
US5696348A (en) Thermocouple structure
JP4990256B2 (en) Temperature sensor and manufacturing method thereof
JP3731501B2 (en) Thermocouple for molten metal
JP4832626B2 (en) thermocouple
JP3572312B2 (en) Ceramic sheath type thermocouple
JP3603614B2 (en) thermocouple
JP4484129B2 (en) thermocouple
JP4416146B2 (en) thermocouple
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
JP3952132B2 (en) Thermocouple for molten metal
JP3533944B2 (en) Structure of thermocouple protection tube with destruction detection function
JP3603557B2 (en) Ceramic thermocouple for measuring molten metal temperature
JPH11201831A (en) Metal fusion temperature measuring thermocouple
JP3627317B2 (en) Thermocouple structure
JP3550915B2 (en) Ceramic thermocouple for high temperature measurement
JP2002214052A (en) Thermocouple for molten metal and manufacturing method thereof
JP3398105B2 (en) thermocouple
JP3550828B2 (en) Thermocouple structure
JP3641759B2 (en) Manufacturing method of temperature sensor with integrated thermocouple and protective tube
JP2002131141A (en) Thermometer
JP2002372461A (en) Thermocouple for molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees