JP5304011B2 - Focused ion beam device with local region temperature measuring device and local region temperature measuring method - Google Patents

Focused ion beam device with local region temperature measuring device and local region temperature measuring method Download PDF

Info

Publication number
JP5304011B2
JP5304011B2 JP2008114346A JP2008114346A JP5304011B2 JP 5304011 B2 JP5304011 B2 JP 5304011B2 JP 2008114346 A JP2008114346 A JP 2008114346A JP 2008114346 A JP2008114346 A JP 2008114346A JP 5304011 B2 JP5304011 B2 JP 5304011B2
Authority
JP
Japan
Prior art keywords
temperature
ion beam
temperature measurement
contact
focused ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114346A
Other languages
Japanese (ja)
Other versions
JP2009266586A (en
Inventor
昌章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008114346A priority Critical patent/JP5304011B2/en
Publication of JP2009266586A publication Critical patent/JP2009266586A/en
Application granted granted Critical
Publication of JP5304011B2 publication Critical patent/JP5304011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微細組織の観察並びに微細加工を目的とする集束イオンビーム装置に取り付けることにより、加熱ステージを用いて高温での組織変化を観察する際の観察部位の実質的な温度計測を可能とし、また、試料を集束イオンビーム微細加工する際には、イオンビーム照射により発生する局所的な温度変化を計測する装置を備えた集束イオンビーム装置と、この装置を用いた温度計測方法に関するものである。
The present invention enables a substantial temperature measurement of an observation site when observing a tissue change at a high temperature using a heating stage by being attached to a focused ion beam apparatus for the purpose of microstructural observation and microfabrication. Also, the present invention relates to a focused ion beam device equipped with a device for measuring a local temperature change generated by ion beam irradiation when a sample is subjected to focused ion beam microfabrication, and a temperature measurement method using this device. is there.

集束イオンビーム法を用いた微細加工技術は、最近のマイクロマシンニング(MEMS)技術と連動して、数十μmの小型コイルやばね、モーター等に代表されるような超小型機械部品の製造技術として期待されている。また、透過電子顕微鏡用の試料作製技術としての地位が不動のものとなり、金属から半導体、さらには、絶縁体や有機材料まで、幅広く集束イオンビーム加工法が適用されるようになってきた。特に、透過電子顕微鏡用の薄片試料の作製技術はますます進歩し、一例として、特許文献1に開示されているように、まず、数mmサイズの試験片から薄片化したい試料部位を、組織を観察しながら特定し、マニピュレータを集束イオンビーム装置内に導入し、十数μm以下の幅を持つ板形状の微小領域をイオンビーム加工とマニピュレータへの接着技術を活用して取り出し、その後、別に用意した電子顕微鏡用の3mmφの半月形状試料台に載せ、さらにその板形状の微小試料を電子線が試料を通過できるような薄さまで、同じくイオンビーム加工技術で薄片化する技術手法が開示されている。   The microfabrication technology using the focused ion beam method is linked with the recent micromachining (MEMS) technology as a technology for manufacturing ultra-small machine parts such as small coils, springs, and motors of several tens of μm. Expected. In addition, the position as a sample preparation technique for a transmission electron microscope has been fixed, and a focused ion beam processing method has been widely applied from metals to semiconductors to insulators and organic materials. In particular, the technique for producing a thin-section sample for a transmission electron microscope is further advanced. For example, as disclosed in Patent Document 1, first, a sample site to be thinned from a test piece having a size of several mm is extracted from a tissue. Identify while observing, introduce the manipulator into the focused ion beam device, take out a plate-shaped micro area with a width of less than 10 μm using ion beam processing and adhesion technology to the manipulator, and then prepare separately A technique is also disclosed in which a plate-shaped micro sample is mounted on a 3 mmφ half-moon sample stage for an electron microscope and thinned by an ion beam processing technique to such a thickness that an electron beam can pass through the sample. .

ところで、この加工法の原理は、ガリウム(Ga)イオンを数万Vの加速電圧で加速して試料に照射し、イオンスパッタリングの原理で原子をはじき飛ばしながら、微細加工していく方法であり、必然的に、イオンビームで加工中の材料の局所的な温度上昇が懸念される。   By the way, the principle of this processing method is a method in which gallium (Ga) ions are accelerated at an acceleration voltage of tens of thousands of V and irradiated onto a sample, and fine processing is performed while repelling atoms by the principle of ion sputtering. In particular, there is a concern about a local temperature rise of the material being processed by the ion beam.

また、試料を加熱した時の組織変化をその場観察する技術がよく知られているが、一般には、加熱ステージに取り付けられた熱電対による間接的な温度計測手法に止まっている。   A technique for in-situ observation of a tissue change when a sample is heated is well known, but generally only an indirect temperature measurement method using a thermocouple attached to a heating stage.

例えば、特許文献2では、極小の熱電対を用いて、局所領域の温度を計測する技術が開示された。ここでは、熱電対接点部と局所領域の測定部との熱的な点接触を避けるために、集束イオンビーム加工装置にイオンビームデポジション機能部をつけて、熱電対接点部と測定部を蒸着技術により一体化する技術が示されている。また古くは、半導体回路等の局所的な温度上昇部の検査が目的で、走査電子顕微鏡内で局所領域の温度計測を試みる技術が、特許文献3に開示されている。しかしながら、当時はイオンビーム加工やマニュピレータ技術もなく、外部から温度計測部を手動で操作する等、現在の微細加工技術に対応した温度計測技術の具体的技術は示されていなかった。   For example, Patent Document 2 discloses a technique for measuring the temperature of a local region using a very small thermocouple. Here, in order to avoid thermal point contact between the thermocouple contact part and the local area measurement part, the ion beam deposition function part is attached to the focused ion beam processing apparatus, and the thermocouple contact part and the measurement part are deposited. Technology that integrates with technology is shown. Also, in the old days, Patent Document 3 discloses a technique that attempts to measure the temperature of a local region within a scanning electron microscope for the purpose of inspecting a local temperature rise portion such as a semiconductor circuit. However, at that time, there was no ion beam processing or manipulator technology, and no specific technology of temperature measurement technology corresponding to the current micromachining technology was shown, such as manually operating the temperature measurement unit from the outside.

次に、小型熱電対の技術をみると、半導体分野等の微小領域の温度測定に使われている極細熱電対線は12.5〜50μmの太さであるが、細く弱いために、取り扱い時にすぐに切れ易いという問題がある。そのため、元線として強度の高い100〜300μm被覆熱電対線を用い、その一旦に同材質で太さ12.5〜100μmの極細熱電対線を接合し、この先端を球状接合するか、或いは球状接合後圧延し、円盤状の接点部を作る技術が、特許文献4に開示されている。   Next, looking at the technology of small thermocouples, the ultrathin thermocouple wire used for measuring the temperature in a minute region in the semiconductor field, etc. is 12.5-50 μm thick, but it is thin and weak, so it is difficult to handle There is a problem that it is easy to cut immediately. Therefore, a 100-300 μm coated thermocouple wire with high strength is used as the main line, and an ultrafine thermocouple wire having a thickness of 12.5-100 μm is joined at once with the same material, and the tip is spherically joined, or spherical Patent Document 4 discloses a technique of rolling after joining and making a disk-shaped contact portion.

特開平5−180739号公報Japanese Patent Laid-Open No. 5-180739 特開2002−25494号公報JP 2002-25494 A 特開昭51−25960号公報Japanese Patent Laid-Open No. 51-25960 特開2003−344178号公報JP 2003-344178 A

集束イオンビーム装置内での微細加工時の十数μm領域での温度上昇や周辺の温度分布を計測しようとした場合、従来の極細熱電対を用いても、その先端部は12.5μmの二本の素線先端を球状接合したり圧延したりしたものでは、その接点部径は25μm程度となり、測定対象領域と同程度か、或いは測定対象領域の方が小さい場合が多く、熱の逆流現象も起こり、正確な温度計測ができないことが判った。そこで、観察視野近傍の微小領域の正確な温度計測においては、極小の熱電対を蒸着技術により一体化させることは必須であることが再確認された。   When trying to measure the temperature rise in the tens of μm region and the surrounding temperature distribution at the time of microfabrication in the focused ion beam device, the tip of the tip is 12.5 μm even if a conventional ultrafine thermocouple is used. In the case where the ends of the strands of the wire are spherically bonded or rolled, the diameter of the contact portion is about 25 μm, which is almost the same as the measurement target region or smaller than the measurement target region, and the heat reverse flow phenomenon It was found that accurate temperature measurement was not possible. Therefore, it was reconfirmed that in order to accurately measure the temperature in the minute region near the observation field, it is essential to integrate a very small thermocouple by vapor deposition technology.

ところが、集束イオンビーム装置内に極小の熱電対線を挿入しただけでは、ビームアシストデポジションによって、該対象試料のμmオーダーの観察領域或いは加工領域の近傍に接着するためのガスを放出するノズルと熱電対細線がしばしば絡み合うことがあり、必ずしも作業性に優れた温度計測方法とならなかった。さらに、温度計測対象の表面が平滑ではなく、粒子の集合体のように凹凸が激しい場合、目的の粒子近傍の温度計測は必ずしも容易ではなかった。   However, only by inserting a very small thermocouple wire into the focused ion beam device, a nozzle that emits a gas for adhering to the observation region or processing region of the target sample in the vicinity of the μm order by beam assist deposition. Thermocouple wires are often intertwined, and the temperature measurement method is not necessarily excellent in workability. Furthermore, when the surface of the temperature measurement target is not smooth and there are severe irregularities such as an aggregate of particles, it is not always easy to measure the temperature in the vicinity of the target particle.

また、試料を加熱した際の組織変化を動的にその場観察する機会が増えると、数百℃の比較的低温な温度域だけではなく、1000℃以上の高温での組織変化の計測ニーズも増え、極小の熱電対の種類を容易に変えられるような構造が要求されるようになった。   In addition, if the opportunity to observe the tissue changes dynamically when the sample is heated increases, not only the relatively low temperature range of several hundred degrees Celsius, but also the need for measuring the tissue changes at high temperatures of 1000 degrees Celsius or higher. Increasingly, a structure that can easily change the type of the smallest thermocouple has been required.

さらに、加熱ステージに取り付けられた熱電対で間接的に温度を計測するのではなく、観察視野部に直接、極小の熱電対を取り付け直接的な観察部の温度計測をする際にも、目的の箇所に正確に熱電対先端部を接続させるための微動動作作業の向上が望まれていた。   Furthermore, instead of indirectly measuring the temperature with the thermocouple attached to the heating stage, the target thermometer can be directly attached to the observation field, and the target temperature can be measured directly. It has been desired to improve the fine movement operation for accurately connecting the tip of the thermocouple to the location.

そこで、本発明は、上記の問題点を解決し、観察視野近傍の微小領域の正確な温度計測が可能な集束イオンビーム装置用の局所領域温度計測装置及び局所領域の温度計測方法を提供することを目的とする。   Accordingly, the present invention provides a local region temperature measuring apparatus and a local region temperature measuring method for a focused ion beam device that can solve the above-described problems and can accurately measure a minute region in the vicinity of an observation field. With the goal.

本願発明者は、上記の目的を達成するために、集束イオンビーム加工装置内等に取り付ける極小の熱電対先端部の形態や構成について鋭意検討した結果、以下のような新しい局所領域温度計測装置を備えた集束イオンビーム装置の開発に至った。
In order to achieve the above object, the inventor of the present application has intensively studied the form and configuration of the tip of the extremely small thermocouple attached to the inside of the focused ion beam processing apparatus, etc. As a result, the following new local region temperature measuring apparatus has been developed. It led to the development of a focused ion beam equipment with.

(1) 局所領域温度計測機能及びビームアシストデポジション機能を有する集束イオンビーム装置であって、局所領域温度計測装置と、イオンビームを放射するイオン銃と、前記イオンビームを照射しながら微細加工または組織観察を行う対象とする試料を設置するための試料室と、イオンビームと反応させるデポジションガスを前記試料室に噴出するためのビームアシストデポジション用ガス放出ノズルと、を少なくとも備え、前記局所領域温度計測装置と前記ビームアシストデポジション用ガス放出ノズルとは、前記イオン銃から前記試料に向けて照射される前記イオンビームの照射軸を中心に対向する位置に配置され、前記局所領域温度計測装置は、局所領域温度計測装置のホルダー先端部に設けられる接触型温度計測部と、前記接触型温度計測部を保護する絶縁ガイドと、前記接触型温度計測部を前記絶縁ガイドから露出させる微動駆動制御部と、を少なくとも備え、前記絶縁ガイドがホルダー軸に対して45°以上の勾配を有し前記接触型温度計測部が、前記絶縁ガイドに沿って移動して露出することを特徴とする、局所領域温度計測装置を備えた集束イオンビーム装置。
(2) 前記接触型温度計測部が、熱電対からなり、前記熱電対の熱接点部分は、集束イオンビームにより加工されて、直径が50μm以下の棒形状である(1)に記載の局所領域温度計測装置を備えた集束イオンビーム装置。
) 前記接触型温度計測部が、前記ホルダー先端部と差込方式で着脱可能な構造である、(1)又は(2)に記載の局所領域温度計測装置を備えた集束イオンビーム装置。
) 前記(1)〜()のいずれかに記載の局所領域温度計測装置を備えた集束イオンビーム装置で加工時の温度計測対象物の温度を計測する集束イオンビーム装置内での局所領域の温度計測方法であって、接触型温度計測部を微動駆動制御部により絶縁ガイドから移動、露出させ、前記温度計測対象物の観察領域の近傍で、前記ビームアシストデポジション機能により前記温度計測対象物と前記接触型温度計測部とを接着した後に、前記温度計測対象物を通じてアースを取ると共に、前記温度計測対象物の温度を計測しながら、前記温度計測対象物の観察領域を集束イオンビーム加工法により所定の形状に加工し、該加工終了後、前記温度計測対象物と前記接触型温度計測部との接着部を集束イオンビーム加工法により切り離すことを特徴とする集束イオンビーム装置内での局所領域の温度計測方法。
) 前記(1)〜()のいずれかに記載の局所領域温度計測装置を備えた集束イオンビーム装置で、加熱時の温度計測対象物の温度を計測する集束イオンビーム装置内での局所領域の温度計測方法であって、前記温度計測対象物を通じてアースを取った後に前記温度計測対象物を所定の温度に加熱・冷却しながら観察領域の状態変化を観察し、任意の温度で、接触型温度計測部を微動駆動制御部により絶縁ガイドから移動、露出させ、前記温度計測対象物の観察領域の近傍で、ビームアシストデポジション機能により前記温度計測対象物と前記接触型温度計測部とを接着した上で、前記温度計測対象物の温度を計測し、温度計測終了後、前記温度計測対象物と前記接触型温度計測部との接着部を集束イオンビーム加工法により切り離すことを特徴とする集束イオンビーム装置内での試料加熱時の局所領域の温度計測方法。
) 前記接触型温度計測部を接着する位置が、観察領域から0.01〜50μmの範囲である、()又は()に記載の局所領域の温度計測方法。
(1) A focused ion beam device having a local region temperature measurement function and a beam-assisted deposition function, wherein the local region temperature measurement device, an ion gun that emits an ion beam, and fine processing or irradiation while irradiating the ion beam A sample chamber for installing a sample to be subjected to tissue observation, and a gas discharge nozzle for beam-assisted deposition for jetting a deposition gas to be reacted with an ion beam into the sample chamber, The region temperature measuring device and the beam assist deposition gas discharge nozzle are arranged at positions opposed to each other centering on an irradiation axis of the ion beam irradiated from the ion gun toward the sample. The apparatus includes a contact-type temperature measurement unit provided at a holder tip of the local region temperature measurement device, and the contact An insulating guide for protecting the mold temperature measuring unit, and the fine motion control unit for exposing the contact temperature measuring portion from the insulating guides, at least Bei example, a gradient of 45 ° or more with respect to the insulating guide holder shaft It has the contact temperature measuring unit, characterized in that exposed by moving along the insulating guide, the focused ion beam apparatus having a local region temperature measuring device.
(2) the contact temperature measuring part, Ri Do from the thermocouple, the thermal contact portions of the thermocouples, is processed by a focused ion beam, localized according to a diameter of less rod-shaped 50 [mu] m (1) A focused ion beam device equipped with a region temperature measuring device.
( 3 ) The focused ion beam device including the local region temperature measuring device according to (1) or (2) , wherein the contact-type temperature measuring unit has a structure that can be attached to and detached from the tip of the holder by an insertion method.
( 4 ) Local in a focused ion beam apparatus that measures the temperature of a temperature measurement object during processing by the focused ion beam apparatus including the local region temperature measuring apparatus according to any one of (1) to ( 3 ). A temperature measurement method for a region, wherein a contact-type temperature measurement unit is moved and exposed from an insulating guide by a fine movement drive control unit, and the temperature measurement is performed by the beam assist deposition function in the vicinity of the observation region of the temperature measurement object. After bonding the object and the contact-type temperature measuring unit, the ground is taken through the temperature measuring object, and the observation region of the temperature measuring object is measured while the temperature of the temperature measuring object is measured. A predetermined shape is processed by a processing method, and after the processing is completed, the bonded portion between the temperature measurement object and the contact-type temperature measurement unit is separated by a focused ion beam processing method. Temperature measurement method of a local region in the focused ion beam apparatus characterized.
( 5 ) A focused ion beam device including the local region temperature measurement device according to any one of (1) to ( 3 ), wherein the temperature of the temperature measurement object during heating is measured in the focused ion beam device. It is a temperature measurement method for a local region, and after taking the ground through the temperature measurement object, observe the state change of the observation region while heating and cooling the temperature measurement object to a predetermined temperature, at an arbitrary temperature, A contact-type temperature measurement unit is moved and exposed from the insulating guide by the fine movement drive control unit, and in the vicinity of the observation region of the temperature measurement object, the temperature-measurement object and the contact-type temperature measurement unit are After the temperature measurement is completed, the bonded portion between the temperature measurement object and the contact-type temperature measurement unit is separated by a focused ion beam processing method. Temperature measurement method of the local area during sample heating within a focused ion beam apparatus characterized by.
( 6 ) The local region temperature measurement method according to ( 4 ) or ( 5 ), wherein the position where the contact-type temperature measurement unit is bonded is in the range of 0.01 to 50 μm from the observation region.

本発明によれば、集束イオンビーム装置内で試料をイオンビーム加工している際の局所的な温度上昇量を計測することができる。また、加熱ステージを用いての加熱その場観察実験の際にも、観察用のイオンビームが照射されている環境下で、観察視野部分の直接的な測温が可能である。   ADVANTAGE OF THE INVENTION According to this invention, the local temperature rise amount at the time of ion beam processing of the sample within a focused ion beam apparatus can be measured. In addition, in the heating in-situ observation experiment using the heating stage, it is possible to directly measure the temperature of the observation field in the environment where the observation ion beam is irradiated.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本装置を適用するビームアシストデポジション機能を有する集束イオンビーム装置であるが、これは、3万〜4万Vに加速させたイオンビームを放射するイオン銃部分と、この放射されたイオンビームを集束するレンズ系と、そのイオンビームを照射しながら微細加工や組織観察を行う対象とする試料を設置するための試料室と、イオンビームと反応させるデポジションガスを試料室に噴出するためのガスノズル導入機構と、を主に備える。何れも真空系であり、イオンビーム源としては、一般にはGaイオンが用いられるが、時にはヘリウムイオン源も用いられる。デポジションガスとしては、タングステン(W)、炭素、白金等を蒸着するための様々なガス種が用いられる。   This is a focused ion beam device having a beam assist deposition function to which this device is applied. This ion beam unit emits an ion beam accelerated to 30,000 to 40,000 V, and the emitted ion beam is A focusing lens system, a sample chamber for installing a sample to be subjected to microfabrication and tissue observation while irradiating the ion beam, and a gas nozzle for ejecting a deposition gas that reacts with the ion beam into the sample chamber And an introduction mechanism. Both are vacuum systems, and as the ion beam source, Ga ions are generally used, but sometimes a helium ion source is also used. As the deposition gas, various gas types for depositing tungsten (W), carbon, platinum and the like are used.

ところで、イオンビームが対象試料に照射した際に発生する二次電子を検出する二次電子検出機器を有し、走査するイオンビームと同期させて、その二次電子強度をブラウン管に映し出せば、走査イオン顕微鏡像を得ることができる。例えば、走査するGaイオンビームは、直径十数nmまでにも絞ることができるので、数万倍の高倍率での走査イオン顕微鏡組織観察が同時に可能である。結果として、μmオーダーの微細組織を特定して温度計測する目的のためには、局所領域の温度計測装置に対しても、μmオーダー、或いはより高精度での熱電対先端部の移動操作が必要になる。   By the way, if there is a secondary electron detection device that detects secondary electrons generated when the target beam is irradiated with the ion beam, and the secondary electron intensity is reflected on the cathode ray tube in synchronization with the scanning ion beam, A scanning ion microscope image can be obtained. For example, since the Ga ion beam to be scanned can be narrowed down to a diameter of several tens of nm, it is possible to simultaneously observe a scanning ion microscope structure at a high magnification of several tens of thousands of times. As a result, for the purpose of measuring the temperature by specifying a micro structure on the order of μm, it is necessary to move the thermocouple tip with a precision of the order of μm or higher accuracy even for a local region temperature measurement device. become.

本集束イオンビーム装置には、先に述べたように、ビームアシストデポジション機能によって、該対象試料のμmオーダーの観察領域或いは加工領域の近傍に熱電対先端部を接着するためのガスを放出するノズル導入機構が取り付けられていることを必須とする。極小の領域の温度計測においては、熱電対先端部と試料とが点接触であると、その熱抵抗が大きな障害となるため、導電性のあるタングステンやカーボン、白金を用いた蒸着技術により、試料と熱電対先端部とを一体化する必要がある。   As described above, the focused ion beam apparatus emits a gas for adhering the tip of the thermocouple to the observation region or processing region of the target sample in the vicinity of the μm order by the beam assist deposition function. It is essential that the nozzle introduction mechanism is installed. When measuring the temperature in a very small region, if the tip of the thermocouple and the sample are in point contact, the thermal resistance is a major obstacle, so the sample can be deposited by vapor deposition using conductive tungsten, carbon, or platinum. And the thermocouple tip must be integrated.

例えば、タングステンを蒸着する場合は、ガス源としてヘキサカルボキシルタングステンの結晶粉末を用い、これを70℃程度に加熱することでガス化し、試料室の試料部近傍に吹き付ける。そこにGaイオンビームを走査することで、Gaイオンが照射された部分のみ化学反応が起こり、非晶質のタングステン膜が形成される。この機構により、Gaイオンビームを走査するμmサイズの領域に、自在に非晶質のタングステン蒸着膜を形成させることができる。   For example, in the case of depositing tungsten, a crystal powder of hexacarboxyl tungsten is used as a gas source, which is gasified by heating to about 70 ° C. and sprayed near the sample portion in the sample chamber. By scanning the Ga ion beam there, a chemical reaction occurs only in the portion irradiated with Ga ions, and an amorphous tungsten film is formed. With this mechanism, it is possible to freely form an amorphous tungsten vapor deposition film in a μm size region where the Ga ion beam is scanned.

第一図に、本装置の構成の一例について、本温度計測装置が集束イオンビーム装置に取り付けられた状態の断面図を示すことで説明する。イオンビームアシスト用ガス放出ノズルは、衝突を避ける位置に設置されるので、この図には記載されない。集束イオンビーム筐体壁1に取り付けられたチャンバー2を介して、本局所領域温度計測装置のホルダー3は、真空系の筐体内へ挿入される。なお、このチャンバー2の部分には、温度計測装置ホルダーを真空系に挿入する前の予備排気機構4が取り付けられる。もし装置制約上、常に筐体の中に挿入した状態で使うのであれば必要ないが、使用時のみ温度計測装置を挿入することの方が利便性は高い。   FIG. 1 illustrates an example of the configuration of the present apparatus by showing a sectional view of the temperature measuring apparatus attached to the focused ion beam apparatus. The ion beam assist gas discharge nozzle is not shown in this figure because it is installed at a position to avoid collision. The holder 3 of the local region temperature measuring device is inserted into the vacuum casing through the chamber 2 attached to the focused ion beam casing wall 1. A preliminary exhaust mechanism 4 is attached to the chamber 2 before the temperature measuring device holder is inserted into the vacuum system. If it is used in a state where it is always inserted into the housing due to device restrictions, it is more convenient to insert the temperature measuring device only during use.

本局所領域温度計測装置のホルダー先端の接触型温度計測部5が、集束イオンビーム装置内で目的とする材料組織を観察しながらμmオーダーで、筐体軸に対してx、y、zの三軸方向に自在に動くように、本温度計測装置ホルダー3は、微細駆動装置6とその駆動制御をする部分(微細駆動制御部)7とを有する。駆動の一例としては、例えば、ホルダー3に対し、3軸方向から圧電素子で動かせるような機構が適用でき、これらはリモートコントロールされる。   The contact-type temperature measuring unit 5 at the tip of the holder of the local region temperature measuring device observes the target material structure in the focused ion beam device and is in the order of μm, and three of x, y, z with respect to the housing axis. The temperature measuring device holder 3 includes a fine driving device 6 and a portion (fine driving control unit) 7 for controlling the driving thereof so as to freely move in the axial direction. As an example of driving, for example, a mechanism that can be moved by a piezoelectric element from three axial directions can be applied to the holder 3, and these are remotely controlled.

次に、本局所領域温度計測装置のホルダー3は、前後に移動可能な内菅構造11を有し、その中は絶縁された導線8が通されているが、温度計測精度を向上させるために、この導線には温度補償導線が用いられる。そして、その外部端子9は、温度計測部10とやはり導線で接続される。接触型温度計測部に熱電対をつける場合は、ここでその起電力を計測することになる。いずれの場合も、温度補償導線が用いられることが好ましい。   Next, the holder 3 of the local region temperature measurement apparatus has an inner flange structure 11 that can move back and forth, and an insulated conductor 8 is passed through it, but in order to improve temperature measurement accuracy A temperature compensating lead wire is used as this lead wire. The external terminal 9 is also connected to the temperature measurement unit 10 with a conductive wire. When a thermocouple is attached to the contact-type temperature measuring unit, the electromotive force is measured here. In either case, it is preferable to use a temperature compensation lead wire.

本局所領域温度計測装置のホルダー3の構造であるが、ホルダー軸部自身は、チャンバー2を介して筐体内部へと移動するが、さらにその内部構造として、前後に移動可能な内菅構造11を持つことを先に説明した。この試料側先端部に、接触型温度計測部が取り付けられる。一例として、第一図では、極小の熱電対からの接続端子12が取り付けられる。該極小の熱電対の先端構造は、熱電対先端側の接続口14と熱電対素線15、さらにはそれらを接合した熱接点16からなり、それらは、内菅11を通じて、導線(補償導線)8により外部と接続されている。なお、該内菅11は、局所領域温度計測装置のホルダー3の中を前後に動く。即ち、駆動動作部(微細駆動装置)6との間で真空を確保しながらスライド動作が可能なベローズ機構を有する部分13を保有する。なお第一図では、接続端子12、熱電対接続口14、熱電対素線15、熱接点16からなる部分が、先端部の接触型温度計測部に対応する。本局所領域温度計測装置は、ホルダー先端部に、この接触型温度計測部と、この接触型温度計測部を集束イオンビーム装置に出し入れする際に保護する絶縁ガイド17と、を有している。   The structure of the holder 3 of the local region temperature measuring apparatus is as follows. The holder shaft part itself moves into the housing through the chamber 2, and the inner structure 11 is movable back and forth as its internal structure. I explained earlier that I have. A contact-type temperature measurement unit is attached to the sample-side tip. As an example, in FIG. 1, the connection terminal 12 from a very small thermocouple is attached. The tip structure of the extremely small thermocouple includes a connection port 14 on the tip side of the thermocouple, a thermocouple element 15, and a thermal contact 16 that joins them together. 8 is connected to the outside. The inner rod 11 moves back and forth in the holder 3 of the local region temperature measuring device. That is, a portion 13 having a bellows mechanism capable of a sliding operation while securing a vacuum with the drive operation unit (fine drive device) 6 is held. In FIG. 1, a portion including the connection terminal 12, the thermocouple connection port 14, the thermocouple wire 15, and the thermal contact 16 corresponds to the contact-type temperature measurement unit at the tip. This local region temperature measuring device has a contact-type temperature measuring unit at the tip of the holder and an insulating guide 17 that protects the contact-type temperature measuring unit when it is taken in and out of the focused ion beam device.

次に、本温度計測装置の発明において重要な先端部の接触型温度計測部について、第二図を用いて、より詳細に説明する。極細線の熱電対素線並びに極小の熱電対先端部を装着する場合、その局所領域温度計測装置のホルダーの出し入れ、また、観察視野近傍での極小の熱電対先端部のx、y、z方向への移動において、ビームアシストデポジションノズル等との狭い試料室内での場所の衝突がしばしば発生する。そこで、該温度計測ホルダー先端部に絶縁体のガイド17を取り付けて、温度計測ホルダーの筐体への出し入れ時は、第二図(a)のように、格納型として極小の熱電対先端部を保護し、その後、観察しながら試料の温度計測対象部分へ近づけるためには、第二図(b)に示したように、ガイド17に沿うように、極小の熱電対先端部を試料の特定部位へ移動する。この時、ガイドが試料ホルダーと平行であっては、挿入時にガスデポジョンとぶつかるケースが増えるため、試料ホルダー軸から45°程度、可能であれば45°以上に下向きに極小の熱電対が移動できるようなガイド角度を有していることが好ましい。一般に、イオンビームデポジション銃の角度は80°程度で固定であるので、この絶縁ガイドの傾斜角を変化させた時の、操作時における試料室内での熱電対先端部の衝突具合を、表1にまとめた。このガイド角度が大きいほど、試料の凹部の温度計測をしたい場合等にも有利である。   Next, the contact-type temperature measuring unit at the tip which is important in the invention of the temperature measuring device will be described in more detail with reference to FIG. When attaching ultrafine thermocouple strands and extremely small thermocouple tips, insert / remove the holder of the local region temperature measurement device, and x, y, and z directions of the minimal thermocouple tips near the observation field When moving to a position, a location collision in a narrow sample chamber with a beam-assisted deposition nozzle or the like often occurs. Therefore, an insulator guide 17 is attached to the tip of the temperature measuring holder, and when the temperature measuring holder is inserted into and removed from the housing, the tip of the extremely small thermocouple is used as a retractable type as shown in FIG. In order to protect the sample and bring it closer to the temperature measurement target portion of the sample while observing it, as shown in FIG. Move to. At this time, if the guide is parallel to the sample holder, there will be more cases where it will collide with the gas deposit during insertion, so the minimum thermocouple will move downwards by about 45 ° from the sample holder axis, preferably 45 ° or more if possible. It is preferable to have such a guide angle as possible. In general, since the angle of the ion beam deposition gun is fixed at about 80 °, Table 1 shows the degree of impact of the tip of the thermocouple in the sample chamber during operation when the inclination angle of the insulating guide is changed. Summarized in The larger the guide angle, the more advantageous is the case where it is desired to measure the temperature of the concave portion of the sample.

第三図に局所領域温度計測装置の接触型温度計測部とイオンビームでポジション銃からのノズル先端部の観察試料に対する幾何学的配置の模式図を示した。   Fig. 3 shows a schematic diagram of the geometric arrangement of the contact-type temperature measuring unit of the local region temperature measuring device and the observation sample at the nozzle tip from the position gun with an ion beam.

次に、接触型温度計測部が熱電対からなる場合、該熱電対の熱接点部分についての詳細な説明をする。   Next, in the case where the contact-type temperature measuring unit is composed of a thermocouple, a detailed description will be given of the thermal contact portion of the thermocouple.

温度計測においては、測定対象より接触型温度計測部の熱接点、即ち、温度検知子部分の方が十分に小さくないと、正確な温度測定ができない。本発明における主な測定対象物のサイズは、数十μmと微細な場合がある。即ち、集束イオンビーム加工装置内で温度上昇が問題となるようなケースは、数mmの大きな試料サイズの極一部から、数十μm単位の微小切片を切り出す時であり、汎用の熱電対の熱接点の大きさが100μmもあるような熱電対では、熱接点を介して十分に熱電対先端部に温度が伝わらない。そこで、熱接点部分を直径が20μm程度、或いはそれ以下の棒形状に加工して、それを目的とする試料測定温度部位に接着する必要がある。このサイズになると、単なる接触では、熱抵抗が大きくなり過ぎて、温度計測ができないので、多くの汎用的な集束イオンビーム装置が保有するガスデポジション機能を用いて、棒形状の熱電対先端部を試料に接着する方法が必要である。熱電対先端部の加工は、集束イオンビーム加工技術により可能であるので、測定対象の試料サイズが10μmの場合は、熱電対の先端直径部分も10μm以下に加工することが望ましい。但し、サイズよりも、ビームアシストデポジションにより熱電対接点部と測定対象物とを一体化させることが重要で、これにより、熱抵抗をほぼ零にすることができ、このような微小領域の正確な温度計測が可能になる。なお、棒形状にするもう一つの理由は、温度計測が終了して熱電対を試料から外したい時に、その棒形状部分を集束イオンビーム加工法により切断加工して切り離すことが容易だからである。   In temperature measurement, accurate temperature measurement cannot be performed unless the thermal contact of the contact-type temperature measurement unit, that is, the temperature detector portion is sufficiently smaller than the measurement target. The size of the main measurement object in the present invention may be as fine as several tens of μm. That is, the case where the temperature rise becomes a problem in the focused ion beam processing apparatus is when a minute section of several tens of μm is cut out from a very small part of a large sample size of several millimeters. In a thermocouple having a hot junction size of 100 μm, the temperature is not sufficiently transmitted to the tip of the thermocouple via the hot junction. Therefore, it is necessary to process the hot contact portion into a rod shape having a diameter of about 20 μm or less and to adhere to the target sample measurement temperature portion. At this size, the thermal resistance becomes too large for simple contact, and temperature measurement is not possible, so the rod-shaped thermocouple tip can be obtained using the gas deposition function possessed by many general-purpose focused ion beam devices. There is a need for a method of adhering to the sample. Since the tip of the thermocouple can be processed by the focused ion beam processing technique, when the sample size to be measured is 10 μm, the tip diameter portion of the thermocouple is preferably processed to 10 μm or less. However, it is more important to integrate the thermocouple contact and measurement object than beam size by beam-assisted deposition. Temperature measurement becomes possible. Another reason for making the rod shape is that when the temperature measurement is completed and it is desired to remove the thermocouple from the sample, the rod-shaped portion can be easily cut and separated by the focused ion beam machining method.

実際に極小の熱電対とは言え、さらに小さな温度測定対象物を測定する際の上記の課題は、第四図に示した実際の写真からも明らかである。第四図(a)は、熱電対接点部と測定対象物が点接触している状態であり、このような点接触の場合の熱抵抗は大きく、ビームアシストデポジション機能により接着領域を増やすことが必要であった。また、第四図(b)は、直径70μmの熱電対接点部に比べて温度測定対象物が20μm以下と小さな場合であり、このようなケースでは、温度の流れが逆転していることも考えられ、現実的には安定した温度計測ができなかった。   Although it is actually a very small thermocouple, the above-mentioned problem when measuring a smaller temperature measurement object is apparent from the actual photograph shown in FIG. Fig. 4 (a) shows a state in which the thermocouple contact point and the measurement object are in point contact. The thermal resistance in such point contact is large, and the adhesion area is increased by the beam assist deposition function. Was necessary. FIG. 4 (b) shows a case where the temperature measurement object is as small as 20 μm or less compared to a thermocouple contact portion having a diameter of 70 μm. In such a case, it is considered that the temperature flow is reversed. In reality, stable temperature measurement was not possible.

なお、接触型温度計測部を接着する位置は、観察部温度計測位置から例えば0.01〜50μmの範囲であることが好ましい。0.01μmより近いと、観察領域を温度計測部が覆い隠すおそれがあり、また、50μmより離れると、観察領域の温度変化に対する温度計測部の追従性に問題が出るおそれがある。なお、室温で局所領域の温度計測をする際には、観察部の温度計測位置から10μm以内の方が精度として好ましい。   In addition, it is preferable that the position which adhere | attaches a contact-type temperature measurement part is the range of 0.01-50 micrometers from an observation part temperature measurement position, for example. When the distance is smaller than 0.01 μm, the temperature measurement unit may cover the observation area, and when the distance is more than 50 μm, there may be a problem in the followability of the temperature measurement section with respect to the temperature change in the observation area. In addition, when measuring the temperature of the local region at room temperature, the accuracy is preferably within 10 μm from the temperature measurement position of the observation unit.

次に、熱電対の材質に関して記述する。上述したように、熱電対先端部の固定を接着法で複数回使用することを考えると、シース型の熱電対は使い難い。また、市販のもので最小径のシース型熱電対は、直径100μm程度であり、本発明が対象とする十数μmの領域の温度計測には、大き過ぎて使うことができない。そこで、再加工も容易なむき出し型の極細線熱電対を利用することが好ましい。この際、極細線熱電対の線径も重要であり、通常は例えば30μm以下の極細線を用いるが、特に先端部分を棒形状に極細化した場合は、例えば20μm以下の極細線が好ましい。極細線熱電対の種類としては、例えばアルメル−クロメル型のものが常温から数百℃の温度範囲で安定して使用可能である。さらに低温では、例えばCu−コンスタンタン型のもの、また、高温では、例えば白金−白金・ロジウム型のもの等が選ばれるが、いずれも抵抗値の小さな優れた極細線熱電対を選択する必要がある。なお、市販の熱電対の先端は、一般には球状接点であり、これでは測定対象物が小さい場合、点接触時の熱抵抗が大きくなるため、使用することが困難である。そこで、球状接点を集束イオンビームで加工して、その先端部を棒形状とすることが好ましい。但し、球状でもイオンビームアシストデポジションにより目的対象物と十分に熱接触を得ることができれば問題はない。   Next, the material of the thermocouple will be described. As described above, the sheath-type thermocouple is difficult to use considering that the thermocouple tip is fixed a plurality of times by the adhesion method. In addition, a commercially available minimum diameter sheathed thermocouple has a diameter of about 100 μm, and is too large to be used for temperature measurement in a region of a few tens of μm, which is a subject of the present invention. Therefore, it is preferable to use a bare ultrafine wire thermocouple that can be easily reworked. At this time, the wire diameter of the ultrathin wire thermocouple is also important, and usually, for example, an ultrafine wire of 30 μm or less is used. However, when the tip portion is extremely thinned into a rod shape, for example, an ultrafine wire of 20 μm or less is preferable. As the type of the ultrafine wire thermocouple, for example, an alumel-chromel type can be stably used in a temperature range from room temperature to several hundred degrees Celsius. Further, at a low temperature, for example, a Cu-constantan type, and at a high temperature, for example, a platinum-platinum / rhodium type, etc. are selected. . Note that the tip of a commercially available thermocouple is generally a spherical contact. If the object to be measured is small, the thermal resistance at the point contact becomes large, making it difficult to use. Therefore, it is preferable to process the spherical contact with a focused ion beam so that the tip of the spherical contact has a rod shape. However, even if it is spherical, there is no problem if sufficient thermal contact with the target object can be obtained by ion beam assisted deposition.

また、既に述べたように、微小部の正確な温度計測のためには、極小の熱電対の先端棒状部分を測定時に目的対象物に接着する必要があり、測定後は切断され、徐々に短くなっていく。このために、極小の熱電対先端部分はしばしば交換する必要があり、第二図に示したように、熱電対接続口14の一例である電気端子ピンから先の極小の先端部が、試料ホルダー側の熱電対接続口18を介して、差込方式等で容易に取り外し交換ができるように工夫されている。   In addition, as described above, in order to accurately measure the temperature of the minute part, it is necessary to adhere the tip rod-shaped part of the extremely small thermocouple to the target object at the time of measurement, and after the measurement, it is cut and gradually shortened. It will become. For this reason, it is necessary to frequently replace the tip portion of the minimum thermocouple. As shown in FIG. 2, the tip portion of the tip which is the tip from the electric terminal pin which is an example of the thermocouple connection port 14 is the sample holder. It is devised so that it can be easily removed and replaced by an insertion method or the like via the thermocouple connection port 18 on the side.

次に、実際の温度計測方法について、再び,第三図を用いて説明する。   Next, the actual temperature measuring method will be described again with reference to FIG.

本発明の目的とする温度測定対象物は、集束イオンビーム加工装置の中で、微細加工されたり、抽出されたりする数十μmサイズの小さな領域や、加熱ステージを用いて高温観察をする際に、集束イオンビーム装置の走査イオン顕微鏡像で観察される領域、即ち、数十μm〜百数十μmの領域の場合が多い。そのような小さな対象物に対して、第三図に示すように、極小の熱電対先端部の棒状部分16(熱接点16に相当)を、ビームアシストデポジションノズル19から噴出されるガス、例えば、W(CO)ガスを試料観察部位に噴出し(図ではガス噴出領域を20で示す。)、このガス噴出領域20に、Gaイオンビームを照射することで、一種の化学気相反応を生じさせて、非晶質のW膜を、試料と棒状熱電対先端部の間に形成させることで接着する。第三図では、この接着領域を21で示す。この状態で、温度測定対象物23と極小の熱電対が接着するので、その棒状接点部16の感じる温度が、二本の熱電対線15間の電圧差として、熱電対接続口14及び電気端子ピン12を介して、外部の起電力測定用の電圧測定計へと接続する。 The object of temperature measurement which is the object of the present invention is used in a focused ion beam processing apparatus when performing high-temperature observation using a small area of several tens of μm that is finely processed or extracted, or a heating stage. In many cases, the region is observed with a scanning ion microscope image of the focused ion beam apparatus, that is, a region of several tens of μm to several hundreds of μm. With respect to such a small object, as shown in FIG. 3, the rod-like portion 16 (corresponding to the thermal contact 16) at the tip of the extremely small thermocouple is discharged from the beam assist deposition nozzle 19, for example, , W (CO) 6 gas is ejected to the sample observation site (in the figure, the gas ejection region is indicated by 20), and this gas ejection region 20 is irradiated with a Ga ion beam to perform a kind of chemical vapor reaction. The amorphous W film is formed and bonded between the sample and the tip of the rod-shaped thermocouple. In FIG. 3, this adhesion region is indicated by 21. In this state, since the temperature measurement object 23 and the extremely small thermocouple are bonded, the temperature sensed by the rod-like contact portion 16 is the voltage difference between the two thermocouple wires 15 as the thermocouple connection port 14 and the electric terminal. The pin 12 is connected to an external voltage measuring instrument for measuring electromotive force.

この時、通常の熱電対を利用した温度計測方法と大きく異なる点は、温度計測時にGaイオンが温度測定対象部位に照射されていることである。測定条件により発生する起電力値が揺らぐため、色々な視点で調査した結果、Gaイオン照射からくるイオン電流、並びに、その際に発生する二次電子による電流等が熱電対補償線を通して検出されるケースがあることが判明した。これを抜本的に防ぐために、第三図の符号22で示したように、温度計測対象物を電気的にアースする必要があることが判明した。このため、本発明の方法で正確に温度計測できる対象物は、導体に制限される。そして、極小の熱電対先端部分と温度測定対象物が電気的には電位ゼロであることが必要とされる。   At this time, a significant difference from the temperature measurement method using a normal thermocouple is that Ga ion is irradiated to the temperature measurement target part at the time of temperature measurement. Since the electromotive force value generated by the measurement conditions fluctuates, as a result of investigation from various viewpoints, the ion current resulting from Ga ion irradiation and the current due to secondary electrons generated at that time are detected through the thermocouple compensation line. It turns out that there is a case. In order to drastically prevent this, it has been found that it is necessary to electrically ground the temperature measurement object as indicated by reference numeral 22 in FIG. For this reason, the object which can measure temperature correctly with the method of this invention is restrict | limited to a conductor. In addition, it is necessary that the extremely small thermocouple tip and the temperature measurement object are electrically at zero potential.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
本発明の実施例として、微小領域をイオンビーム加工している時の加工部近傍の温度上昇量の計測が可能になった。第五図に示すような測定条件において、照射するGaイオンビームの照射電力を徐々に増加させた時の加工領域から0.01μm離れた地点での温度計測を行った。試料は、導通のある試料台上にアース接地させた。その結果、イオンビーム電流量を順次変化させた時の温度変化を、入力電力に換算した形で第六図に示す。汎用のビーム加工時の照射電力の最大値においても、温度上昇量は、高々60℃であることが判った。一般の加工に使うイオンビームでは、40℃以上の上昇がないことも判った。これは、導電性の金属の場合であり、イオンビーム加工時の温度上昇の有無が従来大きな問題であったが、この実験により、殆ど無視できる量であるとの結論に達することができた。勿論、絶縁材料の場合の結果は異なる。なお、この時、極小の熱電対接点部がビームアシストデポジション装置と衝突しないように、絶縁ガイドの角度は45°を採用した。また、熱電対接点部は直径30μmの棒形状である。さらに、この実施例において、熱電対の接点部を点接触とさせた場合や、試料をアースさせなかった場合には、ある一定の余分な起電力が発生し、温度上昇が生じているとの誤解を招く結果が得られた。本発明の温度計測方法の条件を全て満足させた時に始めて、このような局所領域の温度計測が可能になった。
Example 1
As an embodiment of the present invention, it is possible to measure the amount of temperature rise in the vicinity of a processed portion when a minute region is processed with an ion beam. Under the measurement conditions as shown in FIG. 5, the temperature was measured at a point 0.01 μm away from the processing region when the irradiation power of the irradiated Ga ion beam was gradually increased. The sample was grounded on a conductive sample stage. As a result, the temperature change when the ion beam current amount is sequentially changed is shown in FIG. It was found that the temperature rise amount was at most 60 ° C. even at the maximum value of the irradiation power during general beam processing. It was also found that the ion beam used for general processing did not rise above 40 ° C. This is a case of a conductive metal, and the presence or absence of temperature rise during ion beam processing has been a big problem in the past, but this experiment has led to the conclusion that the amount is almost negligible. Of course, the results with insulating materials are different. At this time, the angle of the insulating guide is 45 ° so that the extremely small thermocouple contact portion does not collide with the beam assist deposition device. The thermocouple contact portion has a rod shape with a diameter of 30 μm. Furthermore, in this example, when the contact portion of the thermocouple is a point contact, or when the sample is not grounded, a certain extra electromotive force is generated and the temperature rises. A misleading result was obtained. Only when all the conditions of the temperature measurement method of the present invention are satisfied, such a temperature measurement in the local region becomes possible.

(実施例2)
集束イオンビーム加工装置の組織観察装置としての利点の一つに、試料の微細な凹凸コントラストや方位変化に依存したコントラストが得られ易い点が上げられる。また、高温で試料表面からイオンビーム加工して、その内部組織を観察することもできる。このため、焼結過程の観察に際して、実際の試料温度を計測するために、本発明の装置を活用した。実験の様子を第七図(a)に模式的に示す。図に示したように、集束イオンビーム装置内に小型の加熱ステージを装着し、その試料台に粉体試料を充填した。この時凹凸が激しいので、極小の温度計測装置においても80°近い角度を持つ絶縁ガイドを用いて、粉体内部に熱電対接点部を押し込むように装着できるように準備した。
(Example 2)
One of the advantages of the focused ion beam processing apparatus as a tissue observation apparatus is that a fine unevenness contrast of the sample and a contrast depending on the azimuth change can be easily obtained. Further, the internal structure can be observed by ion beam processing from the sample surface at a high temperature. For this reason, when observing the sintering process, the apparatus of the present invention was used to measure the actual sample temperature. The state of the experiment is schematically shown in FIG. 7 (a). As shown in the figure, a small heating stage was mounted in the focused ion beam apparatus, and the sample stage was filled with a powder sample. At this time, since the unevenness was severe, an insulating guide having an angle of close to 80 ° was used even in an extremely small temperature measuring device so that the thermocouple contact portion could be pushed into the powder.

次に、アルメル−クロメル型の極小の熱電対を用いて、加熱電流値を250mAとしたまま、熱電対の温度が一定になるまで10分間、保持した。これは、事前の繰り返し実験により、この極小の熱電対を用い、ヒーターの加熱電流値を250mAで保持することで、加熱ステージと試料全体の温度上昇が均一になることを確認していたためである。本実験では、この状態で直径20μmの棒形状の熱電対接点部を粉体の中に押し込み、ビームアシストデポジション装置を用いて、試料と接着して一体化させた。観察視野中心部からは、50μm離れた位置である。そして、加熱電流値を徐々に増加させ、その時の発生起電力から試料部分の温度を計測した。その結果を、第七図(b)に示す。なお、第七図(b)において、ひし形のプロットが各加熱電流値における温度を示しており、正方形のプロットが各加熱電流値における発生起電力を示している。これより、1150℃程度まで、第七図(b)に示したような温度上昇変化で昇温されていることが判った。このグラフから明らかなように、本発明の局所領域温度計測装置を備えた集束イオンビーム装置を用いて、単純な比例ではない観察組織の温度上昇変化を正確に調べることができた。この結果は、焼結初期過程等の組織変化を観察することに応用された。これにより、高温その場観察実験技術が飛躍的に向上したことが明らかとなった。 Next, using an alumel-chromel type miniature thermocouple, the heating current value was kept at 250 mA and held for 10 minutes until the temperature of the thermocouple became constant. This is because it has been confirmed by repeated experiments in advance that the temperature rise of the heating stage and the entire sample becomes uniform by using this extremely small thermocouple and maintaining the heating current value of the heater at 250 mA. . In this experiment, in this state, a rod-shaped thermocouple contact portion having a diameter of 20 μm was pushed into the powder, and was bonded and integrated with the sample using a beam-assisted deposition apparatus. It is a position 50 μm away from the center of the observation field. Then, the heating current value was gradually increased, and the temperature of the sample portion was measured from the generated electromotive force at that time. The result is shown in FIG. 7 (b). In FIG. 7B, the rhombus plot indicates the temperature at each heating current value, and the square plot indicates the generated electromotive force at each heating current value. From this, it was found that the temperature was raised to about 1150 ° C. with a temperature rise change as shown in FIG. 7 (b). As is apparent from this graph, it was possible to accurately investigate the temperature rise change of the observed tissue which is not a simple proportion, using the focused ion beam apparatus equipped with the local region temperature measuring apparatus of the present invention. This result was applied to the observation of structural changes such as the initial sintering process. As a result, it has been clarified that the high-temperature in-situ observation experimental technique has been dramatically improved.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明の一実施形態に係る温度計測装置が集束イオンビーム装置に取り付けられた状態の断面模式図である。It is a cross-sectional schematic diagram of the state in which the temperature measuring device which concerns on one Embodiment of this invention was attached to the focused ion beam apparatus. 同実施形態に係る局所領域温度計測装置のホルダー先端部の詳細を説明するための模式図である。It is a schematic diagram for demonstrating the detail of the holder front-end | tip part of the local region temperature measuring device which concerns on the embodiment. 集束イオンビーム装置内の計測対象物とガスデポジションノズル及び接触型温度計測部の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the measuring object in a focused ion beam apparatus, a gas deposition nozzle, and a contact-type temperature measurement part. 測定対象物と熱電対の位置関係を示す写真である。It is a photograph which shows the positional relationship of a measuring object and a thermocouple. 実施例1での接触型温度計測部の測定対象物への接着状況を説明するための模式図である。6 is a schematic diagram for explaining a state of adhesion of a contact-type temperature measurement unit to a measurement object in Example 1. FIG. 実施例1におけるイオンビーム電流量と計測温度の関係を示すグラフ図であるIt is a graph which shows the relationship between the amount of ion beam electric currents in Example 1, and measurement temperature. 実施例2おける(a)測定状況と、(b)測定結果とを示す図である。It is a figure which shows the (a) measurement condition and (b) measurement result in Example 2. FIG.

符号の説明Explanation of symbols

1 集束イオンビーム筐体壁
2 チャンバー
3 ホルダー
4 予備排気機構
5 接触型温度計測部
6 微動駆動装置
7 微細駆動制御部
8 導線
9 外部端子
10 温度計測部
11 内管構造
12 接続端子
13 ベローズ機構
14 熱電対接続口
15 熱電対素線
16 熱接点
17 絶縁ガイド
18 熱電対接続口
19 ビームアシストデポジションノズル
20 ガス噴出領域
21 接着領域
22 アース
23 温度測定対象物
DESCRIPTION OF SYMBOLS 1 Focused ion beam housing | casing wall 2 Chamber 3 Holder 4 Pre-exhaust mechanism 5 Contact type | mold temperature measurement part 6 Fine movement drive device 7 Fine drive control part 8 Conductor 9 External terminal 10 Temperature measurement part 11 Inner tube structure 12 Connection terminal 13 Bellows mechanism 14 Thermocouple connection port 15 Thermocouple wire 16 Thermal contact 17 Insulation guide 18 Thermocouple connection port 19 Beam assist deposition nozzle 20 Gas ejection region 21 Adhesion region 22 Ground 23 Temperature measurement object

Claims (6)

局所領域温度計測機能及びビームアシストデポジション機能を有する集束イオンビーム装置であって、
局所領域温度計測装置と、
イオンビームを放射するイオン銃と、
前記イオンビームを照射しながら微細加工または組織観察を行う対象とする試料を設置するための試料室と、
イオンビームと反応させるデポジションガスを前記試料室に噴出するためのビームアシストデポジション用ガス放出ノズルと、
を少なくとも備え、
前記局所領域温度計測装置と前記ビームアシストデポジション用ガス放出ノズルとは、前記イオン銃から前記試料に向けて照射される前記イオンビームの照射軸を中心に対向する位置に配置され、
前記局所領域温度計測装置は、
該局所領域温度計測装置のホルダー先端部に設けられる接触型温度計測部と、
前記接触型温度計測部を保護する絶縁ガイドと、
前記接触型温度計測部を前記絶縁ガイドから露出させる微動駆動制御部と、
を少なくとも備え、
前記絶縁ガイドがホルダー軸に対して45°以上の勾配を有し
前記接触型温度計測部が、前記絶縁ガイドに沿って移動して露出することを特徴とする、局所領域温度計測装置を備えた集束イオンビーム装置。
A focused ion beam device having a local region temperature measurement function and a beam assist deposition function,
A local area temperature measuring device;
An ion gun that emits an ion beam;
A sample chamber for installing a sample to be subjected to fine processing or tissue observation while irradiating the ion beam;
A gas discharge nozzle for beam assist deposition for ejecting a deposition gas to be reacted with an ion beam into the sample chamber;
Comprising at least
The local region temperature measuring device and the beam assisted deposition gas discharge nozzle are arranged at positions opposed to the irradiation axis of the ion beam irradiated from the ion gun toward the sample ,
The local area temperature measuring device is:
A contact-type temperature measuring unit provided at the tip of the holder of the local region temperature measuring device;
An insulating guide for protecting the contact-type temperature measuring unit;
A fine movement drive control unit for exposing the contact-type temperature measurement unit from the insulating guide;
At least Bei to give a,
The insulating guide has a slope of 45 ° or more with respect to the holder axis ;
The focused ion beam device having a local region temperature measuring device, wherein the contact-type temperature measuring unit is moved along the insulating guide and exposed .
前記接触型温度計測部が、熱電対からなり、
前記熱電対の熱接点部分は、集束イオンビームにより加工されて、直径が50μm以下の棒形状であることを特徴とする、請求項に記載の局所領域温度計測装置を備えた集束イオンビーム装置。
The contact temperature measuring unit, Ri Do from the thermocouple,
2. The focused ion beam device having a local region temperature measuring device according to claim 1 , wherein a hot contact portion of the thermocouple is processed by a focused ion beam and has a rod shape having a diameter of 50 μm or less. .
前記接触型温度計測部が、前記ホルダー先端部と差込方式で着脱可能な構造であることを特徴とする、請求項1又は2に記載の局所領域温度計測装置を備えた集束イオンビーム装置。 The contact temperature measuring unit, characterized in that said a structure detachable in the holder tip and insertion system, focused ion beam apparatus having a local region temperature measuring device according to claim 1 or 2. 請求項1〜のいずれかに記載の局所領域温度計測装置を備えた集束イオンビーム装置で、加工時の温度計測対象物の温度を計測する集束イオンビーム装置内での局所領域の温度計測方法であって、
接触型温度計測部を微動駆動制御部により絶縁ガイドから移動、露出させ、前記温度計測対象物の観察領域の近傍で、前記ビームアシストデポジション機能により前記温度計測対象物と前記接触型温度計測部とを接着した後に、前記温度計測対象物を通じてアースを取ると共に、前記温度計測対象物の温度を計測しながら、前記温度計測対象物の観察領域を集束イオンビーム加工法により所定の形状に加工し、該加工終了後、前記温度計測対象物と前記接触型温度計測部との接着部を集束イオンビーム加工法により切り離すことを特徴とする、集束イオンビーム装置内での局所領域の温度計測方法。
A method of measuring a temperature of a local region in a focused ion beam device, which measures the temperature of a temperature measurement object during processing, in the focused ion beam device including the local region temperature measuring device according to any one of claims 1 to 3. Because
The contact-type temperature measurement unit is moved and exposed from the insulating guide by the fine movement drive control unit, and the temperature-measurement object and the contact-type temperature measurement unit are moved by the beam-assisted deposition function in the vicinity of the observation region of the temperature measurement object. Then, the ground is taken through the temperature measurement object, and the observation region of the temperature measurement object is processed into a predetermined shape by a focused ion beam processing method while measuring the temperature of the temperature measurement object. A method for measuring a temperature in a local region in a focused ion beam apparatus, wherein after the processing is finished, an adhesive portion between the temperature measuring object and the contact-type temperature measuring unit is separated by a focused ion beam processing method.
請求項1〜のいずれかに記載の局所領域温度計測装置を備えた集束イオンビーム装置で、加熱時の温度計測対象物の温度を計測する集束イオンビーム装置内での局所領域の温度計測方法であって、
前記温度計測対象物を通じてアースを取った後に前記温度計測対象物を所定の温度に加熱・冷却しながら観察領域の状態変化を観察し、任意の温度で、接触型温度計測部を微動駆動制御部により絶縁ガイドから移動、露出させ、前記温度計測対象物の観察領域の近傍で、ビームアシストデポジション機能により前記温度計測対象物と前記接触型温度計測部とを接着した上で、前記温度計測対象物の温度を計測し、温度計測終了後、前記温度計測対象物と前記接触型温度計測部との接着部を集束イオンビーム加工法により切り離すことを特徴とする、集束イオンビーム装置内での試料加熱時の局所領域の温度計測方法。
A temperature measurement method for a local region in a focused ion beam device, which measures the temperature of a temperature measurement object during heating in the focused ion beam device including the local region temperature measurement device according to any one of claims 1 to 3. Because
After grounding through the temperature measurement object, observe the state change of the observation region while heating / cooling the temperature measurement object to a predetermined temperature, and at any temperature, the contact-type temperature measurement unit is a fine movement drive control unit The temperature measurement object is moved and exposed from the insulation guide, and the temperature measurement object is bonded to the contact-type temperature measurement unit by a beam assist deposition function in the vicinity of the observation area of the temperature measurement object. A sample in a focused ion beam apparatus characterized by measuring the temperature of an object and, after completion of the temperature measurement, separating a bonded portion between the temperature measurement object and the contact-type temperature measuring unit by a focused ion beam processing method. A method for measuring the temperature of the local area during heating.
前記接触型温度計測部を接着する位置が、前記観察領域から0.01〜50μmの範囲であることを特徴とする、請求項又はに記載の局所領域の温度計測方法。
The local region temperature measurement method according to claim 4 or 5 , wherein a position where the contact-type temperature measurement unit is bonded is in a range of 0.01 to 50 µm from the observation region.
JP2008114346A 2008-04-24 2008-04-24 Focused ion beam device with local region temperature measuring device and local region temperature measuring method Expired - Fee Related JP5304011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114346A JP5304011B2 (en) 2008-04-24 2008-04-24 Focused ion beam device with local region temperature measuring device and local region temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114346A JP5304011B2 (en) 2008-04-24 2008-04-24 Focused ion beam device with local region temperature measuring device and local region temperature measuring method

Publications (2)

Publication Number Publication Date
JP2009266586A JP2009266586A (en) 2009-11-12
JP5304011B2 true JP5304011B2 (en) 2013-10-02

Family

ID=41392165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114346A Expired - Fee Related JP5304011B2 (en) 2008-04-24 2008-04-24 Focused ion beam device with local region temperature measuring device and local region temperature measuring method

Country Status (1)

Country Link
JP (1) JP5304011B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585941Y2 (en) * 1978-03-30 1983-02-01 三菱重工業株式会社 thermocouple thermometer
JPH05114377A (en) * 1991-10-23 1993-05-07 Jeol Ltd Sample holder for scanning electron microscope
JP2001305028A (en) * 2000-04-25 2001-10-31 Nippon Steel Corp Transmission electron microscope observation sample preparing method for solid phase reactive sample and charged particle beam device
JP3969935B2 (en) * 2000-07-05 2007-09-05 新日本製鐵株式会社 Charged particle beam device with temperature measurement function
JP4178741B2 (en) * 2000-11-02 2008-11-12 株式会社日立製作所 Charged particle beam apparatus and sample preparation apparatus
JP4577703B2 (en) * 2000-11-20 2010-11-10 いすゞ自動車株式会社 Thermocouple for melting furnace and temperature measurement method using the same
JP3731501B2 (en) * 2001-06-15 2006-01-05 いすゞ自動車株式会社 Thermocouple for molten metal
JP2003344178A (en) * 2002-05-28 2003-12-03 Yoshinobu Abe Thermocouple having extra fine tip temperature measurement part
JP2006164760A (en) * 2004-12-08 2006-06-22 Hitachi High-Technologies Corp Sample observation device, and focusing ion beam apparatus
JP2008004569A (en) * 2007-09-26 2008-01-10 Hitachi Ltd Electrostatic charge neutralization control method and charged particle beam device using it

Also Published As

Publication number Publication date
JP2009266586A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
Miller et al. Review of atom probe FIB-based specimen preparation methods
US7582885B2 (en) Charged particle beam apparatus
JP4200665B2 (en) Processing equipment
WO2010122717A1 (en) Sample holder, method for use of the sample holder, and charged particle device
KR20030081083A (en) High resolution analytical probe station
JP5094788B2 (en) Electron microscope and its sample holder
US9496116B2 (en) Method for measuring a distance of a component from an object and for setting a position of a component in a particle beam device
JP3851464B2 (en) Manipulator, probe device using the same, and sample preparation device
JP5723801B2 (en) Charged particle beam apparatus and wiring method
US10475620B2 (en) Charged particle instruments
KR102540604B1 (en) Charged particle beam apparatus
JP4199629B2 (en) Internal structure observation method and apparatus
JP5304011B2 (en) Focused ion beam device with local region temperature measuring device and local region temperature measuring method
JP3851640B2 (en) Manipulator, probe device using the same, and sample preparation device
JP2009037910A (en) Composite charged particle beam device, and process observation method
JP2001305028A (en) Transmission electron microscope observation sample preparing method for solid phase reactive sample and charged particle beam device
JP4012705B2 (en) Sample holder and charged particle beam apparatus using the same
Novák et al. MEMS-based Heating Element forin-situDynamical Experiments on FIB/SEM Systems
KR102559888B1 (en) Charged particle beam apparatus
JP2010197272A (en) Sample coating method of electron microscope
JP2002033366A (en) Probe unit and sample manipulating device using the same
JP3252410B2 (en) Micro-area property measurement device
JP2008004569A (en) Electrostatic charge neutralization control method and charged particle beam device using it
JP4534235B2 (en) Sample analysis method
JP2004309499A (en) Apparatus for preparing testpiece and method for preparing testpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees