JP3731010B2 - Production method of polysaccharides - Google Patents

Production method of polysaccharides Download PDF

Info

Publication number
JP3731010B2
JP3731010B2 JP14635295A JP14635295A JP3731010B2 JP 3731010 B2 JP3731010 B2 JP 3731010B2 JP 14635295 A JP14635295 A JP 14635295A JP 14635295 A JP14635295 A JP 14635295A JP 3731010 B2 JP3731010 B2 JP 3731010B2
Authority
JP
Japan
Prior art keywords
strain
culture
polysaccharides
polysaccharide
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14635295A
Other languages
Japanese (ja)
Other versions
JPH08336394A (en
Inventor
隆一郎 倉根
秀治 穴澤
芳典 近間
智 中川
靖浩 野畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hakuto Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hakuto Co Ltd
Priority to JP14635295A priority Critical patent/JP3731010B2/en
Publication of JPH08336394A publication Critical patent/JPH08336394A/en
Application granted granted Critical
Publication of JP3731010B2 publication Critical patent/JP3731010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、多糖類の製造法に関するものである。多糖類は、食品、化粧品、衛生用品、土壌改良剤またはコンクリート混和剤などに利用できる。
【0002】
【従来の技術】
多糖類および色素を生成する能力を有する微生物を培養すると、培養物中に生成蓄積する多糖類に色素が混入するため、該培養物から多糖類を採取する場合に色素を除去する必要がある。
多糖類から色素を除去するには、有機溶媒などを用いて色素を抽出するなどの工程が必要となる上に、該工程において多糖類のもつ有用な物性が低下することがある。
キサントモナス属に属し、かつ黄色の色素を生成する能力を有しない微生物を用いて多糖類を製造する方法(DD77−196809)は知られている。
【0003】
【発明が解決しようとする課題】
本発明の目的は、微生物による多糖類の製造に際して、培養物中に色素を含まない多糖類を蓄積させることにより、多糖類の精製工程を容易とするなど、多糖類を効率よく製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、アルカリゲネス属に属し、多糖類および色素を生成する能力を併有する菌株を親株として変異処理により、色素を生成する能力が低下または欠失した微生物を培地に培養し、培養物中に多糖類を生成蓄積させ、該培養物より多糖類を採取することを特徴とする、多糖類の製造法を提供することができる。
以下に本発明を詳細に説明する。
本発明における多糖類としては、アカリゲネス属に属する微生物が生産する多糖類であれば、同一種類の単糖類から構成される単純多糖類(ホモ多糖類)、複数の単糖類から構成される複合多糖類(ヘテロ多糖類)、または単純多糖類もしくは複合多糖類にウロン酸もしくはエステル硫酸などを構成成分として含む、酸性多糖類などいずれでもよい。これらの多糖類は、糖タンパク質、プロテオグリカンまたは糖脂質などを構成する糖鎖として複合糖質を形成していてもよい。
【0005】
単糖類としては、グルコース、フラクトース、マンノース、ガラクトース、フコース、アラビノース、ラムノース、キシロースもしくはプシコースなどの中性糖類またはグルコサミンもしくはガラクトサミンなどのアミノ糖類が、ウロン酸としては、グルクロン酸、ガラクツロン酸またはマンヌロン酸などが、エステル硫酸としては、アリル硫酸、糖硫酸またはコリン硫酸などがあげられる。
単純多糖類としては、セルロースまたはβ-1,3- グルカンなどが、複合多糖類としては、ウエランガム、サクシノグリカンまたは特開昭56−45901号、特開昭57−206382号、特開昭58−78597号、特開平2−291292号もしくは特開平5−301904号の公報に記載の多糖類などが、酸性多糖類としては、ヒアルロン酸、ペクチンまたはコンドロイチン硫酸などがあげられる。
【0006】
本発明に用いられる微生物は、アルカリゲネス属に属し、多糖類および色素を生成する能力を併有する微生物から誘導され、かつ色素を生成する能力が低下または欠失した変異株であれば、いずれの微生物でもよい。
このような変異株は、アルカリゲネス属に属し、多糖類および色素を生成する能力を併有する微生物を寒天培地上で単集落分離(single colony isolaion)してコロニーの色調が白色に変化した菌株を選択するか、あるいは該微生物を液体培地中で培養し、多糖類を培養物中に蓄積しても培養物または培養液が着色しないような変異株を選択することにより分離することができる。
【0007】
変異株を分離する際に、アルカリゲネス属に属し、多糖類および色素を生成する能力を併有する微生物に、N−メチル−N’−ニトロ−N−ニトロソグアニジン処理、紫外線照射など、通常の変異手段によって、変異させた後に単集落分離を行うと、コロニーの形態の多様性が増し、目的の菌株を見いだす頻度が向上する。
本発明で用いられる微生物の、好適な例としては、アルカリゲネス・レータス(Alcaligenes latus)B−16株(FERM BP−2015)より分離したアルカリゲネス・レータスWB−1株、あるいはアルカリゲネス・レータスP−1株(FERM BP−4459)より分離したアルカリゲネス・レータスWP−1株があげられる。これらの菌株は、ブダペスト条約に基づいて平成6年4月21日付で工業技術院生命工学工業技術研究所にそれぞれFERM BP−4651およびFERM BP−4650として寄託されている。
【0008】
本発明の微生物による多糖類の生産は、通常の微生物の培養法にて実施可能であるが、好適な例として特開平2−291292号公報または特開平4−200389号公報に記載されている培養法が用いられる。
本発明の微生物に用いられる培地としては、炭素源、窒素源、無機物、その他使用菌株の必要とする栄養素を程よく含有するものならば、合成培地または天然培地いずれも使用可能である。
炭素源としては、グルコース、フラクトース、シュクロース、マルトース、ラクトース、糖蜜、セルロース加水分解物、粗糖加水分解物もしくは澱粉加水分解物などの炭水化物、ピルビン酸、酢酸、フマル酸、リンゴ酸もしくは乳酸などの有機酸など、ヘミセルロース、澱粉もしくはコーンスターチなどの天然高分子またはオリーブなどの油類などが用いられる。
【0009】
窒素源としては、アンモニア、塩化アンモニウム、硝酸アンモニウムもしくは硫酸アンモニウムなどの各種無機塩類、尿素などの有機酸のアンモニウム塩、アミン、その他の窒素化合物、ペプトン、トリプトン、酵母エキス、肉エキス、麦芽エキス、コーンスティープリカー、カゼイン加水分解物、大豆粕加水分解物または、各種発酵菌体もしくはその消化物などが用いられる。
無機物としては、リン酸第一カリウム、リン酸第二カリウム、硫酸マグネシウム、リン酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅または炭酸カルシウムなどが用いられる。
【0010】
その他の栄養素としては、必要に応じてアミノ酸、微量金属塩などが用いられる。
培養は、振盪培養または通気攪拌培養などの好気的条件下にて、温度15〜40℃、pH4〜10で、通常1〜10日間行う。
培養終了後、培養物をそのまま用いてもよいし、培養物を遠心分離または濾過などにより分離し、菌体および多糖類を含む混合物(以下、混合物という)として用いてもよい。さらに必要に応じて、培養物または混合物をアルカリ処理や熱処理などによって溶解した後、エタノール沈澱法など通常の多糖類の分離精製法を用いることにより溶解液から多糖類を回収し、これを用いてもよい。
【0011】
本発明における培養物または混合物は色素をほとんど、あるいはまったく含まない。すなわち、本発明における微生物を培養して得られる混合物をロータリーエバポレーターなどで乾燥させ、さらに100メッシュ以下に粉砕して得られる乾燥粉末標品のエタノール抽出物(以下、本発明の微生物由来のエタノール抽出物という)は、該微生物の親株から同様の方法で得られるエタノール抽出物(以下、親株由来のエタノール抽出物という)が吸光極大をとる波長において、実質的に光を吸収しない。たとえば、目的とする色素について、吸光極大を示す波長のうち最大の吸光度を示す波長(以下、最大吸光極大を示す波長という)付近、好ましくは最大吸光極大を示す波長から−10〜10nmの範囲内の波長、さらに好ましくは最大吸光極大を示す波長における吸光度を色素量として表した場合、本発明の微生物由来のエタノール抽出物の色素量は親株由来のエタノール抽出物の色素量と比べて、1/10以下の値しか示さない。
以下に本発明の実施例を示す。
【0012】
【実施例】
実施例1 変異株の分離
ブイヨン寒天培地(粉末ブイヨン2%、寒天2%)(極東製薬製)に生育したアルカリゲネス・レータスB−16株(以下、B−16株という)を、グルコース1%を含むブイヨン培地30mlを入れた300ml容三角フラスコに植菌し、30℃で24時間振盪培養を行った。培養終了後、遠心分離により菌体を回収し、これを希釈してブイヨン寒天培地に塗布し、細胞の90%程度が死滅するような処理条件で紫外線を照射した。紫外線照射後、30℃で2〜5日間培養して生じたコロニーのうち、B−16株の特徴である黄色のコロニーではなく、白色のコロニーを形成した菌株を選択し、釣菌分離した。このようにして得た変異株をGY培地〔グルコース 20g/L、KH2PO4 4.5g/L、K2HPO4 1.5g/L 、NaCl 0.1g/L 、MgSO4 ・7H2O 0.2g/L、尿素 1.0g/L 、酵母エキス(シグマ社製)0.5g/L、(pH7.2) 〕50mlを入れた300ml容三角フラスコに植菌し、30℃で3日間振盪培養し、培養物が白色を呈する菌株であるアルカリゲネス・レータスWB−1株(以下、WB−1株という)を選抜した。
また、B−16株に代えて黄色のコロニーを形成するアルカリゲネス・レータスP−1株(以下、P−1株という)を用いること以外は上記と同様に行って、アルカリゲネス・レータスWP−1株(以下、WP−1株という)を選抜した。
【0013】
実施例2 多糖類の生産
WB−1株およびWP−1株を、FG培地〔グルコース 20g/L、グリシン 0.6g/L 、KH2PO4 4.5g/L 、K2HPO4 1.5g/L 、NaCl 0.1g/L 、MgSO4 ・7H2O 0.2g/L、尿素 1.0g/L 、FeSO4 10mg/L、(pH7.2) 〕10mlを入れた60ml容太型試験管(直径25mm×長さ200mm)に植菌し、30℃で3日間、振盪培養した。B−16株およびP−1株も同様な方法で培養した。
培養終了後、それぞれの菌株について、以下の方法を用いて多糖類の生産量および色素量を測定した。
多糖類の生産量は培養液の全量を可溶化後、硫酸カルバゾール法にて測定し、グルクロン酸量として表した。
色素量は培養液10mlにエタノール20mlを加えて攪拌して抽出を行った後、遠心分離によって上清を回収し、回収した上清を減圧濃縮し、濃縮物をエタノールで5mlになるように希釈した。このエタノール溶液を450nmにて吸光度を測定し、色素量をOD450 値として表した。
【0014】
結果を第1表に示す。
【0015】
【表1】

Figure 0003731010
なお、B−16株およびWB−1株の培養液から色素量の測定で用いた方法と同じ方法で得られたエタノール溶液の吸光スペクトルを、それぞれ図1(A)および図1(B)に示す。図1(A)と(B)に示されるように、B−16株の培養液から得られるエタノール溶液では、433nm、457nmおよび488nmで吸光極大が認められ、457nmで最大の吸光極大が認められたのに対して、WB−1株の培養液から得られるエタノール溶液では、これらの波長で吸光極大が認められなかった。
【0016】
実施例3 多糖類の乾燥粉末標品の製造
WB−1株およびWP−1株を、それぞれGY培地10mlを入れた60ml容太型試験管(直径25mm×長さ200mm)に植菌し、30℃、24時間振盪培養した。この培養液全量をFG培地300mlを入れた1L三角フラスコに移し、30℃で24時間振盪培養した。FG培地2.7Lを入れた5L容培養槽(ミツワバイオシステム社製)に、上記種培養液300ml全量をそれぞれ植菌し、30℃、通気量3.0L/分、攪拌500rpmの条件で5日間培養した。B−16株およびP−1株も同様な方法で培養した。
培養終了後、多糖類の生産量は実施例2と同様な方法を用いて測定した。
それぞれの菌株が生産する多糖類の乾燥粉末標品として、培養物の直接乾燥粉末標品および培養物のエタノール処理乾燥粉末標品を以下の方法を用いて調製した。
【0017】
培養液300mlをロータリーエバポレーターで乾燥し、乾燥物を乳鉢で粉砕して100メッシュ以下の粉末を1〜1.6g取得し、これらを培養物の直接乾燥粉末標品(以下、直接乾燥標品という)とした。
培養液300mlに精製水200mlを加え、これに塩化ナトリウムを0.5Mになるように加えて攪拌の後、エタノールを0.7容加えて攪拌し、沈澱物を遠心分離によって回収し、ロータリーエバポレーターで乾燥した。乾燥物を乳鉢で粉砕して、100メッシュ以下の粉末を0.6〜1.1g取得し、これらを培養物のエタノール処理乾燥粉末標品(以下、エタノール処理標品という)とした。
【0018】
直接乾燥標品およびエタノール処理標品について、精製水を加えてそれぞれ2g/L水溶液を調製し、各々の水溶液10mlにエタノール20mlを加え、攪拌して抽出した後、遠心分離して上清を回収し、回収した上清を減圧濃縮した。濃縮物をエタノールで5mlになるようにそれぞれ希釈し、このエタノール溶液を450nmにて吸光度を測定し、色素量をOD450 値として表した。
多糖類の生産量ならびに直接乾燥標品およびエタノール処理標品に含まれる色素量を第2表に示す。
【表2】
Figure 0003731010
【0019】
実施例4 多糖類の物理化学的性質
実施例3で調製したWB−1株、WP−1株、B−16株およびP−1株が生産する培養物に由来するエタノール処理標品について、それぞれ吸水率および粘性を測定した。
吸水率は、特開平2ー291292号公報に記載のティーバックテスト法に従い、以下の方法を用いて測定した。まず、不織布で作った容器に40mgのエタノール処理標品を入れ、精製水に2時間浸漬した後、1時間静置して水切りし、吸水後の重量を測定した。次に、105℃で24時間乾燥して水分を完全に除去した後、乾燥重量を測定した。エタノール処理標品の吸水後の重量と乾燥重量との差を吸水量とし、吸水率は吸水量の乾燥重量に対する倍率として表した。
【0020】
粘性は、エタノール処理標品を1g/Lに溶かした水溶液の粘度を、B型粘度計で測定した。
結果は第3表に示すとおり、WB−1株およびWP−1株が生産する培養物に由来するエタノール処理標品は、それぞれB−16株およびP−1株が生産する培養物に由来するエタノール処理標品と同様の吸水率および粘性を有していた。
【表3】
Figure 0003731010
【0021】
実施例3で調製したWB−1株、WP−1株、B−16株およびP−1株が生産する培養物に由来するエタノール処理標品について、それぞれ5g/Lの10ml水溶液になるように、70℃で攪拌しながら溶解した。室温に冷却した後、エタノール30mlを加え、沈澱物を回収した。回収した沈澱物を、0.025%水酸化ナトリウム水溶液10mlに懸濁し、121℃で15分間加熱した後、70℃で30分間攪拌しながら処理を行い、固形物をできるだけ溶解させた。溶解液は40,000g×40分の遠心分離を行って沈澱物を除去した後、0.1N塩酸で中和し、ロータリーエバポレーターを用いて濃縮した。濃縮物に純水を加えて10mlとした後、70℃で再び溶解させた。溶解液にエタノール30mlを加え、再び沈澱物を得た。上記の溶解操作および沈澱操作を3回ずつ繰り返し、多糖類を精製した。最後に得られた沈澱物を常温にて真空乾燥し、これを乳鉢で粉砕して100メッシュ以下の粉末を取得し、これを多糖類の精製乾燥粉末標品(以下、精製標品という)とした。
【0022】
精製標品を2N硫酸により構成糖に加水分解した後、CarboPac PA1を装着したダイオネクス4500i型イオンクロマトグラフィーを用いて分離し、パルスドアンペロメトリーにより構成糖の検出および定量を行った。
多糖類の定量は、特開平2−291292号公報に記載のエタノール沈澱法によるものと、硫酸カルバゾール法により定量したグルクロン酸の値を4倍した数値のいずれかを用いた。
結果は第4表に示すとおり、WB−1株およびWP−1株が生産する培養物に由来する精製標品は、それぞれB−16株およびP−1株が生産する培養物に由来する精製標品と同様な構成糖の組成を有していた。
【表4】
Figure 0003731010
【0023】
【本発明の効果】
本発明により、微生物による多糖類の製造に際して培養物中に色素を含まない多糖類を蓄積させることにより、多糖類の精製工程を容易とするなど、多糖類を効率よく製造する方法が提供される。
【図面の簡単な説明】
【図1】(A)は、B−16株の培養液から得られるエタノール溶液の吸光スペクトルを示す。
(B)は、WB−1株の培養液から得られるエタノール溶液の吸光スペクトルを示す。[0001]
[Industrial application fields]
The present invention relates to a method for producing a polysaccharide. Polysaccharides can be used in foods, cosmetics, hygiene products, soil conditioners or concrete admixtures.
[0002]
[Prior art]
When microorganisms having the ability to produce polysaccharides and pigments are cultured, the pigments are mixed into the polysaccharides produced and accumulated in the culture. Therefore, when collecting polysaccharides from the culture, it is necessary to remove the pigments.
In order to remove the pigment from the polysaccharide, a step of extracting the pigment using an organic solvent or the like is required, and useful physical properties of the polysaccharide may be reduced in the step.
A method (DD77-196809) for producing a polysaccharide using a microorganism belonging to the genus Xanthomonas and having no ability to produce a yellow pigment is known.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing a polysaccharide, for example, by facilitating a polysaccharide purification step by accumulating a polysaccharide containing no pigment in a culture during the production of the polysaccharide by a microorganism. It is to provide.
[0004]
[Means for Solving the Problems]
According to the present invention, a microorganism belonging to the genus Alkagenes and having the ability to produce polysaccharides and pigments as a parent strain is cultivated in a medium by culturing a microorganism having a reduced or deleted ability to produce pigments in a culture medium. It is possible to provide a method for producing a polysaccharide, wherein the polysaccharide is produced and accumulated therein, and the polysaccharide is collected from the culture.
The present invention is described in detail below.
As polysaccharides in the present invention, simple polysaccharides (homopolysaccharides) composed of the same type of monosaccharide, complex polysaccharides composed of a plurality of monosaccharides, as long as the polysaccharides are produced by microorganisms belonging to the genus Acarigenes. Any of saccharides (heteropolysaccharides) or simple polysaccharides or complex polysaccharides containing uronic acid or ester sulfate as a constituent component may be used. These polysaccharides may form complex carbohydrates as sugar chains constituting glycoproteins, proteoglycans or glycolipids.
[0005]
Monosaccharides include neutral sugars such as glucose, fructose, mannose, galactose, fucose, arabinose, rhamnose, xylose or psicose, or amino sugars such as glucosamine or galactosamine, and uronic acids include glucuronic acid, galacturonic acid or mannuronic acid. Examples of the ester sulfate include allyl sulfate, sugar sulfate, and choline sulfate.
Examples of simple polysaccharides include cellulose or β-1,3-glucan, and examples of complex polysaccharides include welan gum, succinoglycan, and JP-A-56-45901, JP-A-57-206382, and JP-A-58. The polysaccharides described in JP-A-78597, JP-A-2-291292, or JP-A-5-301904, and the acidic polysaccharides include hyaluronic acid, pectin, and chondroitin sulfate.
[0006]
The microorganism used in the present invention is any microorganism as long as it belongs to the genus Alkagenes, is derived from a microorganism having the ability to produce polysaccharides and pigments, and has a reduced or deleted ability to produce pigments. But you can.
Such mutant strains belong to the genus Alkagenes and select strains whose colony color has changed to white by single colony isolaion of microorganisms that have the ability to produce polysaccharides and pigments on an agar medium. Alternatively, the microorganism can be isolated by culturing the microorganism in a liquid medium and selecting a mutant strain that does not color the culture or culture solution even if the polysaccharide is accumulated in the culture.
[0007]
When isolating mutant strains, microorganisms belonging to the genus Alkagegenes and having the ability to produce polysaccharides and pigments are treated with ordinary mutation means such as N-methyl-N′-nitro-N-nitrosoguanidine treatment and ultraviolet irradiation. By performing single colony separation after mutation, the diversity of colony morphology increases and the frequency of finding the target strain increases.
As a preferable example of the microorganism used in the present invention, Alkaligenes latus WB-1 strain isolated from Alcaligenes latus B-16 strain (FERM BP-2015), or Alkalinegenes latus P-1 strain. Alkaligenes latus WP-1 strain isolated from (FERM BP-4459). These strains are deposited as FERM BP-4651 and FERM BP-4650, respectively, on April 21, 1994 based on the Budapest Treaty.
[0008]
The production of polysaccharides by the microorganisms of the present invention can be carried out by the usual culturing method of microorganisms, but as a preferred example, the culture described in JP-A-2-291292 or JP-A-4-240309 is described. The method is used.
As a medium used for the microorganism of the present invention, any of a synthetic medium or a natural medium can be used as long as it contains a carbon source, a nitrogen source, an inorganic substance, and other nutrients required by the strain used.
Carbon sources include carbohydrates such as glucose, fructose, sucrose, maltose, lactose, molasses, cellulose hydrolysates, crude sugar hydrolysates or starch hydrolysates, pyruvic acid, acetic acid, fumaric acid, malic acid or lactic acid. Organic acids, natural polymers such as hemicellulose, starch or corn starch or oils such as olives are used.
[0009]
Nitrogen sources include ammonia, ammonium chloride, various inorganic salts such as ammonium nitrate or ammonium sulfate, ammonium salts of organic acids such as urea, amines, other nitrogen compounds, peptone, tryptone, yeast extract, meat extract, malt extract, corn steep Liquor, casein hydrolyzate, soybean meal hydrolyzate, various fermented cells or digested products thereof are used.
As the inorganic substance, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, magnesium phosphate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, or calcium carbonate is used.
[0010]
As other nutrients, amino acids, trace metal salts and the like are used as necessary.
The culture is performed under aerobic conditions such as shaking culture or aeration and agitation culture at a temperature of 15 to 40 ° C. and a pH of 4 to 10, usually for 1 to 10 days.
After completion of the culture, the culture may be used as it is, or the culture may be separated by centrifugation or filtration and used as a mixture (hereinafter referred to as a mixture) containing microbial cells and polysaccharides. Furthermore, if necessary, the culture or mixture is dissolved by alkali treatment or heat treatment, and then the polysaccharide is recovered from the lysate by using a normal polysaccharide separation and purification method such as ethanol precipitation, and this is used. Also good.
[0011]
The culture or mixture according to the invention contains little or no pigment. That is, an ethanol extract of a dry powder sample obtained by drying a mixture obtained by culturing the microorganisms of the present invention with a rotary evaporator or the like and further pulverizing the mixture to 100 mesh or less (hereinafter, the microorganism-derived ethanol extraction of the present invention). (Hereinafter referred to as “product”) does not substantially absorb light at a wavelength at which the ethanol extract obtained from the parent strain of the microorganism by the same method (hereinafter referred to as “ethanol extract derived from the parent strain”) has an absorption maximum. For example, with respect to the target dye, in the vicinity of the wavelength showing the maximum absorbance among the wavelengths showing the absorption maximum (hereinafter referred to as the wavelength showing the maximum absorption maximum), preferably in the range of −10 to 10 nm from the wavelength showing the maximum absorption maximum When the absorbance at a wavelength exhibiting the maximum absorbance maximum is expressed as the amount of pigment, the pigment amount of the ethanol extract derived from the microorganism of the present invention is 1 / compared with the pigment amount of the ethanol extract derived from the parent strain. Only values less than 10 are shown.
Examples of the present invention are shown below.
[0012]
【Example】
Example 1 Isolation of Mutant Strains Alkagenes latus B-16 strain (hereinafter referred to as B-16 strain) grown on bouillon agar medium (powder bouillon 2%, agar 2%) (manufactured by Kyokuto Seiyaku) A 300 ml Erlenmeyer flask containing 30 ml of bouillon medium containing was inoculated and subjected to shaking culture at 30 ° C. for 24 hours. After completion of the culture, the cells were collected by centrifugation, diluted and applied to a bouillon agar medium, and irradiated with ultraviolet rays under a treatment condition such that about 90% of the cells were killed. Among the colonies formed by culturing at 30 ° C. for 2 to 5 days after ultraviolet irradiation, a strain that formed a white colony was selected instead of the yellow colony characteristic of the B-16 strain, and the fish were isolated. The mutant strain thus obtained was added to GY medium [glucose 20 g / L, KH 2 PO 4 4.5 g / L, K 2 HPO 4 1.5 g / L, NaCl 0.1 g / L, MgSO 4 .7H 2 O 0.2 g / L, urea 1.0 g / L, yeast extract (manufactured by Sigma) 0.5 g / L, (pH 7.2)] Inoculate in a 300 ml Erlenmeyer flask containing 50 ml, shake culture at 30 ° C. for 3 days, and culture Alkaline Genus latus WB-1 strain (hereinafter referred to as WB-1 strain) was selected.
Moreover, it replaced with B-16 strain | stump | stock, and it carried out similarly to the above except using the alkali genus larus P-1 strain | stump | stock (henceforth P-1 strain | stump | stock) which forms a yellow colony. (Hereinafter referred to as WP-1 strain) was selected.
[0013]
Example 2 Production of Polysaccharides WB-1 and WP-1 strains were added to FG medium [glucose 20 g / L, glycine 0.6 g / L, KH 2 PO 4 4.5 g / L, K 2 HPO 4 1.5 g / L, NaCl 0.1 g / L, MgSO 4 · 7H 2 O 0.2 g / L, urea 1.0 g / L, FeSO 4 10 mg / L, (pH 7.2)] 60 ml thick test tube (diameter 25 mm × length 200 mm) ) And cultured with shaking at 30 ° C. for 3 days. B-16 strain and P-1 strain were also cultured in the same manner.
After the completion of the culture, the amount of polysaccharide produced and the amount of pigment were measured for each strain using the following method.
The amount of polysaccharide produced was measured by the carbazole sulfate method after solubilizing the entire culture solution, and expressed as the amount of glucuronic acid.
The amount of pigment was extracted by adding 20 ml of ethanol to 10 ml of the culture solution and stirring, and then collecting the supernatant by centrifugation, concentrating the collected supernatant under reduced pressure, and diluting the concentrate to 5 ml with ethanol. did. The absorbance of this ethanol solution was measured at 450 nm, and the amount of dye was expressed as an OD 450 value.
[0014]
The results are shown in Table 1.
[0015]
[Table 1]
Figure 0003731010
In addition, the absorption spectrum of the ethanol solution obtained by the same method as the method used by the measurement of the pigment | dye amount from the culture solution of B-16 stock | strain and WB-1 stock | strain is shown to FIG. 1 (A) and FIG. 1 (B), respectively. Show. As shown in FIGS. 1 (A) and (B), in the ethanol solution obtained from the culture solution of the B-16 strain, the absorption maximum was observed at 433 nm, 457 nm and 488 nm, and the maximum absorption maximum was observed at 457 nm. On the other hand, in the ethanol solution obtained from the culture solution of the WB-1 strain, no absorption maximum was observed at these wavelengths.
[0016]
Example 3 Manufacture of dry powder preparation of polysaccharides WB-1 and WP-1 strains were inoculated into 60 ml thick test tubes (diameter 25 mm × length 200 mm) each containing 10 ml of GY medium. The culture was shaken at 24 ° C. for 24 hours. The entire culture was transferred to a 1 L Erlenmeyer flask containing 300 ml of FG medium, and cultured with shaking at 30 ° C. for 24 hours. Inoculate a total volume of 300 ml of the above seed culture solution into a 5 L culture tank (manufactured by Mitsuwa Biosystems) containing 2.7 L of FG medium, 5 under the conditions of 30 ° C., aeration rate 3.0 L / min, and stirring 500 rpm Cultured for days. B-16 strain and P-1 strain were also cultured in the same manner.
After completion of the culture, the amount of polysaccharide produced was measured using the same method as in Example 2.
As a dry powder preparation of polysaccharides produced by each strain, a direct dry powder preparation of the culture and an ethanol-treated dry powder preparation of the culture were prepared using the following methods.
[0017]
300 ml of the culture solution is dried with a rotary evaporator, the dried product is pulverized with a mortar to obtain 1 to 1.6 g of powder of 100 mesh or less, and these are referred to as direct dry powder preparations of culture (hereinafter referred to as direct dry preparations). ).
Add 200 ml of purified water to 300 ml of the culture solution, add sodium chloride to 0.5 M and stir, add 0.7 volume of ethanol, stir, collect the precipitate by centrifugation, and remove the rotary evaporator. And dried. The dried product was pulverized in a mortar to obtain 0.6 to 1.1 g of powder of 100 mesh or less, and these were used as ethanol-treated dry powder samples (hereinafter referred to as ethanol-treated samples) of the culture.
[0018]
For directly dried and ethanol-treated samples, add purified water to prepare 2 g / L aqueous solutions, add 20 ml of ethanol to each 10 ml of aqueous solution, extract by stirring, and then collect the supernatant by centrifugation The recovered supernatant was concentrated under reduced pressure. The concentrate was diluted to 5 ml with ethanol, the absorbance of this ethanol solution was measured at 450 nm, and the amount of dye was expressed as an OD 450 value.
Table 2 shows the amount of polysaccharide produced and the amount of pigment contained in the directly dried sample and the ethanol-treated sample.
[Table 2]
Figure 0003731010
[0019]
Example 4 Physicochemical properties of polysaccharide For ethanol-treated preparations derived from cultures produced by WB-1 strain, WP-1 strain, B-16 strain and P-1 strain prepared in Example 3, respectively. The water absorption and viscosity were measured.
The water absorption was measured by the following method according to the tea-back test method described in JP-A-2-291292. First, 40 mg of an ethanol-treated preparation was put in a container made of a nonwoven fabric, immersed in purified water for 2 hours, left standing for 1 hour, drained, and the weight after water absorption was measured. Next, after drying at 105 ° C. for 24 hours to completely remove moisture, the dry weight was measured. The difference between the weight after water absorption of the ethanol-treated sample and the dry weight was taken as the water absorption, and the water absorption was expressed as the ratio of the water absorption to the dry weight.
[0020]
Viscosity was measured with a B-type viscometer, the viscosity of an aqueous solution obtained by dissolving an ethanol-treated sample at 1 g / L.
As shown in Table 3, the ethanol-treated samples derived from the cultures produced by the WB-1 strain and the WP-1 strain are derived from the cultures produced by the B-16 strain and the P-1 strain, respectively. It had the same water absorption and viscosity as the ethanol-treated sample.
[Table 3]
Figure 0003731010
[0021]
The ethanol-treated preparations derived from the cultures produced by the WB-1 strain, WP-1 strain, B-16 strain and P-1 strain prepared in Example 3 were each made into a 10 ml aqueous solution of 5 g / L. And dissolved at 70 ° C. with stirring. After cooling to room temperature, 30 ml of ethanol was added to collect the precipitate. The collected precipitate was suspended in 10 ml of a 0.025% aqueous sodium hydroxide solution, heated at 121 ° C. for 15 minutes, and then treated with stirring at 70 ° C. for 30 minutes to dissolve the solid as much as possible. The solution was centrifuged at 40,000 g × 40 minutes to remove precipitates, neutralized with 0.1N hydrochloric acid, and concentrated using a rotary evaporator. Pure water was added to the concentrate to 10 ml, and then dissolved again at 70 ° C. 30 ml of ethanol was added to the solution, and a precipitate was obtained again. The above-described dissolution operation and precipitation operation were repeated three times to purify the polysaccharide. Finally, the obtained precipitate is vacuum-dried at room temperature, pulverized in a mortar to obtain a powder of 100 mesh or less, and this is a purified dry powder preparation of polysaccharide (hereinafter referred to as a purified preparation) and did.
[0022]
The purified sample was hydrolyzed to a constituent sugar with 2N sulfuric acid, and then separated using a Dionex 4500i ion chromatography equipped with CarboPac PA1, and the constituent sugar was detected and quantified by pulsed amperometry.
The polysaccharide was quantified using either the ethanol precipitation method described in JP-A-2-291292 or a value obtained by multiplying the value of glucuronic acid quantified by the carbazole sulfate method by four.
As shown in Table 4, the purified samples derived from the cultures produced by the WB-1 and WP-1 strains were purified from the cultures produced by the B-16 and P-1 strains, respectively. It had the same constituent sugar composition as the sample.
[Table 4]
Figure 0003731010
[0023]
[Effect of the present invention]
According to the present invention, there is provided a method for efficiently producing a polysaccharide, for example, by facilitating a polysaccharide purification process by accumulating a polysaccharide containing no pigment in a culture during the production of the polysaccharide by a microorganism. .
[Brief description of the drawings]
FIG. 1 (A) shows an absorption spectrum of an ethanol solution obtained from a culture solution of B-16 strain.
(B) shows the absorption spectrum of the ethanol solution obtained from the culture solution of WB-1 strain.

Claims (3)

アルカリゲネス属に属し、多糖類および色素を生成する能力を併有する菌株を親株として変異処理により、色素を生成する能力が低下または欠失した微生物を培地に培養し、培養物中に多糖類を生成蓄積させ、該培養物より多糖類を採取することを特徴とする多糖類の製造法。  A strain that belongs to the genus Alkagenes and has both the ability to produce polysaccharides and pigments is treated as a parent strain by culturing microorganisms that have reduced or lacked the ability to produce pigments in a medium and produce polysaccharides in the culture. A method for producing a polysaccharide, characterized in that the polysaccharide is collected and collected from the culture. 微生物が、アルカリゲネス・レータスWB−1株(FERM BP−4651)またはアルカリゲネス・レータスWP−1株(FERM BP−4650)である請求項1記載の方法。  The method according to claim 1, wherein the microorganism is Alkalinegenes Radus WB-1 strain (FERM BP-4651) or Alkalinegenes Latus WP-1 strain (FERM BP-4650). アルカリゲネス・レータスに属し、多糖類および色素を生成する能力を併有する菌株を親株として変異処理により、色素を生成する能力が低下または欠失した、アルカリゲネス・レータスWB−1株(FERM BP−4651)またはアルカリゲネス・レータスWP−1株(FERM BP−4650)である微生物。 Alkagenes latus WB-1 strain (FERM BP-4651) , which belongs to Alkalinegenes latus and has the ability to produce pigments reduced or deleted by mutation treatment with a strain having both the ability to produce polysaccharides and pigment as a parent strain Alternatively, a microorganism which is Alkalinegenes Radus WP-1 strain (FERM BP-4650) .
JP14635295A 1995-06-13 1995-06-13 Production method of polysaccharides Expired - Lifetime JP3731010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14635295A JP3731010B2 (en) 1995-06-13 1995-06-13 Production method of polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14635295A JP3731010B2 (en) 1995-06-13 1995-06-13 Production method of polysaccharides

Publications (2)

Publication Number Publication Date
JPH08336394A JPH08336394A (en) 1996-12-24
JP3731010B2 true JP3731010B2 (en) 2006-01-05

Family

ID=15405777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14635295A Expired - Lifetime JP3731010B2 (en) 1995-06-13 1995-06-13 Production method of polysaccharides

Country Status (1)

Country Link
JP (1) JP3731010B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121538A (en) * 2000-10-13 2002-04-26 Hakuto Co Ltd Thickener and cosmetic containing the same
JP2002030243A (en) * 2001-01-30 2002-01-31 Hakuto Co Ltd Aqueous ink composition
JP2003055641A (en) * 2001-08-10 2003-02-26 Hakuto Co Ltd Tackifier
JP5320449B2 (en) * 2011-10-31 2013-10-23 伯東株式会社 Method for producing thickener
JP5622894B2 (en) * 2013-05-31 2014-11-12 伯東株式会社 Thickener

Also Published As

Publication number Publication date
JPH08336394A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
WO2011035530A1 (en) Yellow pigments generation deficient sphingomonas strain and application thereof in gellan gum production
Bilanovic et al. Xanthan fermentation of citrus waste
CN108948227A (en) A kind of method that high-voltage pulse extracts okra pectin
JP2766165B2 (en) Method for producing bacterial cellulose
Hisamatsu Cyclic (1→ 2)-β-d-glucans (cyclosophorans) produced by Agrobacterium and Rhizobium species
JP3731010B2 (en) Production method of polysaccharides
Forsyth et al. Polysaccharides synthesized by aerobic mesophilic spore-forming bacteria
US4908310A (en) Water insoluble polysaccharide polymer and method thereof
US5789579A (en) Acidic polysaccharide
JPH07119243B2 (en) β-glucan and method for producing the same
Martin Some observations on the synthesis of polysaccharides by soil bacteria
JP3475246B2 (en) Method for producing polysaccharide
JPH038756B2 (en)
JPS6359679B2 (en)
US4940663A (en) Fermentation process for the production of xanthane
CN114410714B (en) Method for preparing chitosan by two-step fermentation of shrimp shells
EP0410604A1 (en) Heteropolysaccharide 105-4
JP2816939B2 (en) Method for producing bacterial cellulose
JPH0219393A (en) N-acetylogalactosaminooligosaccahride and production thereof
JP2929065B2 (en) Method for producing bacterial cellulose using sulfa drug resistant strain
DE2803681A1 (en) NEW POLYSACCARIDES AND METHODS FOR THEIR PRODUCTION
JP3096838B2 (en) Method for producing bacterial cellulose using pyrimidine analog resistant strain
JPS6147518B2 (en)
JPH0515388A (en) Production of galactan from marine alga of porphyra
JPS6147519B2 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050830

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term