JP3730698B2 - Silica-alumina composite oxide - Google Patents
Silica-alumina composite oxide Download PDFInfo
- Publication number
- JP3730698B2 JP3730698B2 JP35430095A JP35430095A JP3730698B2 JP 3730698 B2 JP3730698 B2 JP 3730698B2 JP 35430095 A JP35430095 A JP 35430095A JP 35430095 A JP35430095 A JP 35430095A JP 3730698 B2 JP3730698 B2 JP 3730698B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- composite oxide
- aqueous solution
- alumina
- pore volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 67
- 239000002131 composite material Substances 0.000 title claims description 45
- 239000011148 porous material Substances 0.000 claims description 83
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 37
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 description 44
- 239000000654 additive Substances 0.000 description 31
- 239000003054 catalyst Substances 0.000 description 28
- 230000000996 additive effect Effects 0.000 description 25
- 239000007863 gel particle Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 11
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- -1 aluminum compound Chemical class 0.000 description 9
- 239000001099 ammonium carbonate Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 235000012501 ammonium carbonate Nutrition 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 150000003377 silicon compounds Chemical class 0.000 description 8
- 150000007514 bases Chemical class 0.000 description 7
- 239000000295 fuel oil Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- 235000019353 potassium silicate Nutrition 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004231 fluid catalytic cracking Methods 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/009—Porous or hollow ceramic granular materials, e.g. microballoons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
- C04B20/1066—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0081—Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、核としてのアルミナ粒子の表面上にシリカ層を5〜30重量%形成した構造を有するシリカ−アルミナ複合酸化物に関するものである。
【0002】
【従来の技術】
アルミナ粒子表面にシリカ層を形成させた構造を有するシリカ−アルミナ複合酸化物は知られており、このようなシリカ−アルミナ複合酸化物はその細孔特性を利用して触媒担体として用いられている(特公平5−39662号)。
前記触媒担体として用いられているシリカ−アルミナ複合酸化物は、その細孔容積の主ピークが細孔直径が40〜60Åの範囲に存在し、その平均細孔直径は64Å以下という小さいものである。
一方、特開平2−75341号公報にも、同様の構造を有するシリカ−アルミナ複合酸化物が記載されている。このシリカアルミナは、200Å以上の大孔径の細孔に富むもので、その200Å以上の直径を有する細孔容積が、全細孔容積の55%以上にも達するものである。
シリカ−アルミナ複合酸化物を触媒担体として用いる場合、その細孔特性は触媒性能に大きな影響を与え、前記した如き細孔特性を有するシリカ−アルミナ複合酸化物は、その細孔径が極端に小さすぎるか又は大きすぎるもので、特定の触媒反応にしか有効に使用することができない。
【0003】
【発明が解決しようとする課題】
本発明は、その平均細孔径が80〜100Åの範囲にあり、かつシャープな細孔分布を有する触媒担体として有用なシリカ−アルミナ複合酸化物を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、核としてのアルミナの表面上にシリカ層を形成した構造を有し、シリカを5〜30重量%含有するシリカ−アルミナ複合酸化物であって、細孔直径が80〜100Åの範囲に細孔容積分布の主ピークを有し、その主ピークを含む80〜100Åの範囲の直径を有する細孔の容積Aが60〜200Åの範囲の直径を有する細孔の容積Bの30%以上であり、かつ60〜200Åの直径を有する細孔の容積Bが全細孔容積Tの50%以上であり、さらに比表面積が240m2/g以上及び全細孔容積が0.65cc/g以上であることを特徴とするシリカ−アルミナ複合酸化物が提供される。
【0005】
【発明の実施の形態】
本発明により触媒担体として好適なシリカ−アルミナ複合酸化物を製造するには、先ず、水溶液中において酸性アルミニウム化合物に塩基性化合物を反応させて、アルミナ水和物の沈殿(アルミナヒドロゲル)を生成させる。酸性アルミニウム化合物としては、アルミニウムの硫酸塩、塩化物、硝酸塩等が用いられるが、好ましくは硫酸アルミニウムが用いられる。塩基性化合物としては、アンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等が用いられるが、好ましくはアンモニア水である。反応温度は常温〜40℃であり、反応圧力は常圧である。
【0006】
水溶液中における酸性アルミニウム化合物と塩基性化合物との反応を好ましく実施するには、あらかじめ酸性アルミニウム化合物の水溶液を充填した反応容器に対して、撹拌下において、塩基性化合物水溶液を添加し、混合する。酸性アルミニウム化合物水溶液中のアルミニウム化合物濃度は、特に制約されないが、通常、酸化アルミニウム基準で0.5〜10重量%、好ましくは1〜8重量%である。塩基性化合物水溶液中の塩基性化合物濃度は、0.1〜4規定、好ましくは0.5〜2規定である。塩基性化合物水溶液の添加速度は、その水溶液の添加開始から添加終了までの時間(添加時間)で表わして、0.25〜2時間、好ましくは0.5〜1時間である。このようにして反応を行うことにより、アルミナ水和物ゲル粒子(アルミナ水和物の沈殿)を含むpH6.5〜9、好ましくは7〜8.5の水溶液を得る。これによって、複合金属酸化物製造用のアルミナ原料として好ましいアルミナ水和物ゲル粒子を含む水溶液を得ることができる。
【0007】
次に、このようなアルミナ水和物ゲル粒子を含む水溶液に対し、複合化させるシリカに対応する水溶性ケイ素化合物の水溶液を添加混合する。水溶性ケイ素化合物としては、アルカリ金属ケイ酸塩の使用が好ましい。アルカリ金属ケイ酸塩としては、Na2O:SiO2のモル比が1:2〜1:4の範囲にあるケイ酸ナトリウムの使用が好ましい。水溶液中のケイ素化合物の濃度は、5〜10重量%、好ましくは6〜8重量%である。前記アルミナ水和物ゲル粒子を含む水溶液に対するケイ素化合物の添加量は、最終製品であるシリカ−アルミナ複合酸化物の組成に対応する量であり、シリカ−アルミナ複合酸化物中のそのシリカ含有量が5〜50重量%、好ましくは10〜20重量%になるような量である。アルミナ水和物ゲル粒子を含む水溶液に対する水溶性ケイ素化合物の水溶液の添加混合を好ましく行うには、アルミナ水和物ゲル粒子を含む水溶液に対し、水溶性ケイ素化合物の水溶液を、1〜60分、好ましくは10〜30分の添加時間で添加混合させる。アルミナ水和物ゲル粒子を含む水溶液と水溶性ケイ素化合物の水溶液との混合溶液は、pH6.5〜9、好ましくはpH7〜8.5、より好ましくはpH約8の条件に保持する。この場合、必要に応じて、鉱酸水溶液や水酸化ナトリウム水溶液等のpH調節剤を添加し、混合水溶液のpHを前記範囲に保持する。水溶性ケイ素化合物の添加終了後、混合水溶液を加熱し、温度40〜80℃、好ましくは60〜75℃に昇温し、この温度に保持する。その保持時間は0.5〜24時間、好ましくは1〜12時間である。この操作により、アルミナ水和物ゲル粒子上にシリカ水和物ゲルが沈着したゲル粒子が得られる。このゲル粒子は、濾過等の固液分離手段により、液中から分離する。
前記のようにして、アルミナ水和物ゲル粒子上にシリカ水和物ゲルが沈着した構造のゲル粒子が得られるが、このゲル粒子は、本発明により、その細孔特性を制御するために、アンモニウム塩水溶液中に分散し、撹拌処理する。この場合の一般的処理条件を示すと、アンモニウム塩水溶液として、炭酸アンモニウム水溶液を用いる場合、そのアンモニウムイオンの濃度は0.01〜8モル/リットル、好ましくは0.05〜6モル/リットルである。また、その炭酸アンモニウム水溶液の使用量は、シリカ−アルミナ複合酸化物の水和物ゲル粒子1g(シリカ−アルミナ複合酸化物基準)に対し、0.1〜2リットル、好ましくは0.15〜1リットルである。また、シリカ−アルミナ複合酸化物の水和物ゲル粒子1g(シリカ−アルミナ複合酸化物基準)当りのアンモニウムイオンは0.01〜2モル、好ましくは0.03〜0.5モルである。撹拌温度は、常温〜60℃、好ましくは30〜40℃である。撹拌時間は0.5〜6時間、好ましくは1〜4時間である。
前記アンモニウム塩水溶液としては、たとえば、炭酸アンモニウム水溶液や炭酸水素アンモニウム水溶液、カルバミン酸アンモニウム水溶液、塩化アンモニウム水溶液、硝酸アンモニウム水溶液、硫酸アンモニウム水溶液等が挙げられる。
【0008】
前記のようにしてアンモニウム塩水溶液処理されたシリカ−アルミナ複合酸化物水和物ゲル粒子は、これを濾過等の固液分離手段により分離し、その分離されたゲル粒子をイオン交換水を用いて洗浄し、得られた水洗物を乾燥し、必要に応じて焼成する。乾燥は、酸素の存在下又は非存在下で常温〜200℃の温度で行う。また、焼成は、酸素の存在下で、450〜1200℃、好ましくは500〜800℃で行う。このようにして、核としてのアルミナ表面上にシリカ層が形成した構造を有するシリカ−アルミナ複合酸化物を得ることができる。このようにして得られる本発明のシリカ−アルミナ複合酸化物は、次の特性を有する。
(1)細孔直径が80〜100Åの範囲に細孔容積分布の主ピークを有する。
(2)その主ピークを含む80〜100Åの範囲の直径を有する細孔の容積Aが、60〜200Åの範囲の直径を有する細孔容積Bの30%以上、好ましくは40%以上であり、かつ60〜200Åの直径を有する細孔容積Bが、全細孔容積Tの50%以上、好ましくは75%以上である。
(3)100〜200Åの範囲の直径を有する細孔容積Cが、全細孔容積Tの40%以下、好ましくは25%以下であり、また、その細孔容積Bの50%以下、好ましくは25%以下である。
(4)比表面積が240m2/g以上、好ましくは300m2/g以上である。
(5)全細孔容積が0.65cc/g以上、好ましくは0.8cc/g以上である。
(6)シリカ含有量が5〜30重量%、好ましくは7〜20重量%である。
【0009】
本発明のシリカ−アルミナ複合酸化物は、重質油分解用添加剤成分としてすぐれた効果を示す。本発明のシリカ−アルミナ複合酸化物を用いて重質油分解用添加剤を調製するには、シリカゾル液に、粘土(例えば、カオリン、ベントナイト、木節粘土等)及びシリカ−アルミナ複合酸化物を添加し、均一に撹拌して分散液を作る。この場合、粘土の平均粒径は、0.5〜5μm、好ましくは2〜3μmである。シリカ−アルミナ複合酸化物の平均粒径は、0.5〜10μm、好ましくは3〜7μmである。また、分散液中の全固形分濃度は、10〜50重量%、好ましくは20〜30重量%である。
次に、このようにして得られた分散液を噴霧乾燥する。この場合の乾燥温度は、180〜300℃、好ましくは200〜270℃である。この噴霧乾燥により添加剤が粉末状で得られる。この粉末の平均粒径は、50〜80μm、好ましくは55〜70μmである。また、このようにして得られる乾燥品は、必要に応じ、300〜700℃、好ましくは400〜600℃に焼成して用いることができ、さらに、これらの粉末状の添加剤は、必要に応じ、押出成形等により成形し、顆粒状、球状、筒状、棒状等の形状の成形品とすることもできる。
【0010】
この添加剤において、そのシリカ−アルミナ複合酸化物の含有量は、5〜70重量%、好ましくは10〜60重量%であり、その粘土の含有量は、10〜70重量%、好ましくは20〜60重量%である。シリカの含有量は、10〜30重量%、好ましくは15〜25重量%であり、その粘土分を除く全ケイ素の含有量は、SiO2換算量で、10〜60重量%、好ましくは20〜50重量%の範囲に規定するのがよい。全ケイ素の含有量が前記範囲より多くなると、添加剤の水熱安定性が悪くなり、一方、前記範囲より少なくなると重質成分に対する分解活性が低下する。
【0011】
前記添加剤において、その比表面積は30〜80m2/g、好ましくは40〜60m2/gであり、その全細孔容積Tは0.14〜0.45ml/g、好ましくは0.20〜0.40ml/gである。また、細孔直径が80〜100Åの細孔容積Aは、全細孔容積Tの10%以上、好ましくは15%以上であり、かつ60〜200Åの範囲の直径を有する細孔容積Bの15%以上、好ましくは20%以上である。また、細孔容積Bは全細孔容積Tの45%以上、好ましくは60%以上である。細孔直径が100〜200Åの細孔容積Cは全細孔容積Tの30%以上、好ましくは40%以上である。そのC/Bの比は50〜70%、好ましくは55〜65%である。また、この添加剤は80〜120Åの範囲に細孔容積分布の主ピークを有する。
【0012】
前記添加剤は、その比表面積が大きくなると、それに応じて全酸量も多くなる傾向を示すが、その比表面積及び全酸量が前記範囲を超えるようになると、重質油分解触媒に対する実質的添加効果が得られなくなり、重質油分解触媒を単独で使用した場合に比較して、転化率、ナフサ収率及びLCO(ライトサイクルオイル)収率の実質的向上を示さない。また、この添加剤は、0.14〜0.45ml/gの全細孔容積を有するが、その細孔直径が60〜200Åの比較的大きな細孔の容積は、全細孔容積に対して10%以上に保持され、それより小さくなると、コーク生成防止効果が不十分なものとなる。
【0013】
添加剤に関する前記物性値は、その製造条件により調節することができる。例えば、比表面積及び全細孔容積は添加する複合金属酸化物の比表面積を調節することやその粒径を調節してシリカゾルとの反応性を調節することにより調節することができる。
【0014】
前記添加剤は、微粉末状で重質物中に分散させて使用することができる他、従来公知の重質油分解触媒に混合して用いることができる。この添加剤は、粉末状でFCC触媒に混入して用いるのが好ましい。FCC触媒は、多孔性無機酸化物とゼオライトから構成されるもので、その多孔性無機酸化物としては、シリカ−アルミナ複合酸化物、シリカ−ジルコニア、シリカ−マグネシア等が用いられている。本発明のシリカ−アルミナ複合酸化物を含有する添加剤は、特に、ゼオライト、シリカ、アルミナ、カオリンから構成されるFCC触媒に対して適用するのが好ましい。本発明の添加剤のFCC触媒に対する添加量は、FCC触媒100重量部に対して、2〜30重量部、好ましくは4〜20重量部の割合量である。
【0015】
【実施例】
次に、本発明を実施例について説明する。なお、以下において示す%は重量%である。
【0016】
実施例1
容積2リットルの容器に、イオン交換水700mlを投入し、これに硫酸アルミニウムをAl2O3換算量で9.7gを添加し、溶液の温度を30℃に保持して撹拌して、硫酸アルミニウム水溶液(pH:3.0)を作った。
次に、前記のようにして得た硫酸アルミニウム水溶液を激しく撹拌しながら、この水溶液に、1規定のアンモニア水を混合溶液のpHが8.0となるまで約0.5時間をかけて添加し(アンモニア水の添加速度:20ml/分)、白色のアルミナ水和物ゲル粒子(沈殿)を生成させた。
【0017】
次に、このようにして得られたアルミナ水和物ゲル粒子を含むスラリー溶液に、撹拌下、水ガラス3号(SiO2含有量:29wt%)のイオン交換水溶液(SiO2含有量:6wt%)を、シリカ含量が6%のシリカ−アルミナ複合酸化物を得るために、SiO2として0.62gとなるように、約2分をかけて添加した(添加速度:10ml/分)。
次に、溶液を30分かけて60℃に昇温し、この温度において3時間保持した。これにより、アルミナ水和物ゲル粒子の表面にシリカ水和物が沈着したゲル粒子を含むスラリー液が得られた。
このスラリー溶液を濾過し、得られた濾過ケーキを、濃度6%の炭酸アンモニウム水溶液中に分散させ、温度30℃で60分間撹拌処理した。
次に、前記撹拌処理されたスラリー液を濾過し、得られた濾過ケーキ上にイオン交換水を2リットル散布し、ケーキ中のアンモニウムイオン等の残存イオンを除去した。
次に、このようにして得たケーキを、120℃で15時間乾燥し、乾燥固体(シリカ含有量10重量%のシリカ−アルミナ複合酸化物)を得た。この乾燥固体を500℃で3時間空気中で焼成し、得られた焼成固体について、その比表面積、全細孔容積、平均細孔径、細孔分布を測定した。その結果を表1に示す。
【0018】
実施例2
実施例1において、シリカ含量が10%のシリカ−アルミナ複合酸化物を得るために、水ガラス3号水溶液の量をSiO2として1.1g用いた以外は同様にして実験を行った。
【0019】
実施例3
実施例2において、硫酸アルミニウム水溶液に対するアンモニア水の添加速度を2倍にした以外は同様にして実験を行った。
【0020】
実施例4
実施例2において、炭酸アンモニウム水溶液中でのシリカ−アルミナ複合酸化物水和物粒子処理の時間を3倍にした以外は同様にして実験を行った。
【0021】
実施例5
実施例1において、水ガラス3号水溶液の量をSiO2として2.43g用いた以外は同様にして実験を行った。
【0022】
比較例1
実施例2において、炭酸アンモニウム水溶液中でのシリカ−アルミナ複合酸化物水和物粒子処理を実施しない以外は同様にして実験を行った。
【0023】
比較例2
実施例2において、炭酸アンモニウム水溶液の代りにイオン交換水を用いた以外は同様にして実験を行った。
【0024】
比較例3
実施例3において、炭酸アンモニウム水溶液の代りにイオン交換水を用いた以外は同様にして実験を行った。
【0025】
比較例4
実施例2において、水ガラス水溶液を添加した後の溶液の保持温度を室温とした以外は同様にして実験を行った。
【0026】
前記実施例1〜5で得られたシリカ−アルミナ複合酸化物についての性状を表1〜表2に示し、比較例1〜4で得られたシリカ−アルミナ複合酸化物についての性状を表3に示す。 なお、表1〜表3に示した符号は次の内容を示す。
A:80〜100Åの範囲の直径を有する細孔の容積
B:60〜200Åの範囲の直径を有する細孔の容積
C:100〜200Åの範囲の直径を有する細孔の容積
T:全細孔容積
【0027】
【表1】
【0028】
【表2】
【0029】
【表3】
【0030】
なお、前記シリカ−アルミナ複合酸化物に関する細孔特性は500℃焼成品についての値である。
【0031】
次に本発明のシリカ−アルミナ複合酸化物を含む重質油分解用添加剤の調製例及びその性能実験例を応用例として以下に示す。
【0032】
応用例1(添加剤Aの調製)
SiO2含有量が15.2wt%の水ガラス水溶液(pH:12)660gを2規定の硫酸に添加して、そのpHを3に調節してシリカゾルを得た。
次に、このシリカゾル液1180gに、カオリン100g、実施例1で得たSiO2−Al2O3を乾燥重量換算で300g添加し、均一に分散させた後、噴霧乾燥し、表4に示す組成及び細孔特性を有する平均粒径60μmの添加剤Aを得た。
【0033】
比較応用例1(添加剤Bの調製)
応用例1において、シリカ−アルミナ複合酸化物として比較例1のシリカアルミナを使用した以外は同様にして実験を行って比較用の添加剤Bを得た。
【0034】
応用例2(性能テスト)
応用例1及び比較応用例1で得た各添加剤A、Bの性能試験を行うために、添加剤A、BをFCC触媒に均一に混合した後、この触媒組成物をマイクロアクティビティテスト(MAT)装置を用い、同一原料油、同一条件で流動接触分解反応を行った。その結果を表4に示す。
FCC触媒に対する添加剤の添加量は、FCC触媒100重量部に対し、10重量部とした。
前記原料重質油としては、脱硫VGOを用いた。また、試験に先立ち、FCC触媒と添加剤からなる触媒組成物は、650℃で1時間焼成した後、760℃で16時間100%スチーム雰囲気で処理した。
【0035】
なお、前記試験における流動接触分解条件は以下の通りであった。
(1)反応温度:510℃
(2)反応圧力:常圧
(3)触媒組成物/油比:2.5〜4.5wt/wt
(4)接触時間:32hr-1
【0036】
また、表4に示した添加剤の細孔特性において、A、B、C、T、ピーク位置及び平均細孔直径の内容は次の通りである。
A:直径80〜100Åの細孔容積
B:直径60〜200Åの細孔容積
C:直径100〜200Åの細孔容積
T:全細孔容積
ピーク位置:細孔容積のピークを示す細孔の直径(Å)を示す。
平均細孔直径:細孔の形状を円柱状と仮定して、4×細孔容積/比表面積に
より算出した。
【0037】
また、前記シリカーアルミナ及び添加剤A、Bに関して示した比表面積及び細孔容積は以下のようにして測定されたものである。
(比表面積)
試料0.2gを200℃、1×10-3トールの条件下に1時間保持した後、液体窒素温度(77K)にて窒素ガスの吸着を行い、その吸着量を用いて比表面積を求めた。その算出にはBET法を用いた。
(細孔容積)
上記比表面積測定に続いて、液体窒素温度(77K)にて、窒素ガスを相対圧1.0まで吸着した後、窒素ガスの脱着を相対圧0.14まで行い、その脱着量を用いて細孔容積を求めた。その算出には、BJH法を用いた。
なお、前記比表面積及び細孔容積の測定においては、直径10Å以下の微小細孔は無視されている。
【0038】
【表4】
【0039】
なお、表4に反応結果として示した転化率上昇は、添加剤を添加しないFCC触媒を用いた転化率を基準にし、FCC触媒に添加剤を添加した触媒組成物を用いた転化率の測定値から、その基準転化率の値を差引いた値である。
【0040】
【発明の効果】
本発明によるシリカ−アルミナ複合酸化物は、その細孔容積分布の主ピークが直径80〜100Åの範囲にある中細孔容積に富むものであり、80〜100Åの範囲の直径を有する細孔の容積の60〜200Åの細孔容積に対する割合は30%以上であり、しかも、その比表面積は240m2/g以上でその細孔容積は0.65cc/g以上と非常に高いものである。
本発明のシリカ−アルミナ複合酸化物は、触媒担体として有利に用いられる他、固体酸触媒、吸着剤等として有利に利用される。特に流動接触分解用触媒において、その活性成分として有効に活用することができ、FCC触媒へ添加して用いる添加剤における添加剤成分としても有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silica-alumina composite oxide having a structure in which a silica layer is formed in an amount of 5 to 30% by weight on the surface of alumina particles as nuclei.
[0002]
[Prior art]
A silica-alumina composite oxide having a structure in which a silica layer is formed on the surface of alumina particles is known, and such a silica-alumina composite oxide is used as a catalyst support by utilizing its pore characteristics. (Japanese Patent Publication No. 5-39662).
The silica-alumina composite oxide used as the catalyst carrier has a main peak of pore volume in the range of pore diameter of 40-60 mm, and the average pore diameter is as small as 64 mm or less. .
On the other hand, JP-A-2-75341 also describes a silica-alumina composite oxide having a similar structure. This silica alumina is rich in pores having a large pore diameter of 200 mm or more, and the pore volume having a diameter of 200 mm or more reaches 55% or more of the total pore volume.
When silica-alumina composite oxide is used as a catalyst carrier, the pore characteristics greatly affect the catalyst performance, and the silica-alumina composite oxide having the pore characteristics as described above has an extremely small pore diameter. Or too large and can only be used effectively for certain catalytic reactions.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a silica-alumina composite oxide useful as a catalyst carrier having an average pore diameter in the range of 80 to 100 mm and having a sharp pore distribution.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, a silica-alumina composite oxide having a structure in which a silica layer is formed on the surface of alumina as a nucleus and containing 5 to 30% by weight of silica, having a pore diameter of 80 A pore volume B having a main peak of pore volume distribution in the range of ˜100 Å, and a pore volume A having a diameter in the range of 80˜100 含 む including the main peak and having a diameter in the range of 60˜200 Å The volume B of the pores having a diameter of 60 to 200 mm is 50% or more of the total pore volume T, the specific surface area is 240 m 2 / g or more, and the total pore volume is 0.1. A silica-alumina composite oxide characterized in that it is 65 cc / g or more is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In order to produce a silica-alumina composite oxide suitable as a catalyst support according to the present invention, first, a basic compound is reacted with an acidic aluminum compound in an aqueous solution to form an alumina hydrate precipitate (alumina hydrogel). . As the acidic aluminum compound, aluminum sulfate, chloride, nitrate and the like are used, and aluminum sulfate is preferably used. As the basic compound, ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate and the like are used, and ammonia water is preferable. The reaction temperature is from room temperature to 40 ° C., and the reaction pressure is normal pressure.
[0006]
In order to preferably carry out the reaction between the acidic aluminum compound and the basic compound in the aqueous solution, the basic compound aqueous solution is added and mixed with stirring to a reaction vessel previously filled with the aqueous solution of the acidic aluminum compound. The concentration of the aluminum compound in the acidic aluminum compound aqueous solution is not particularly limited, but is usually 0.5 to 10% by weight, preferably 1 to 8% by weight based on the aluminum oxide. The basic compound concentration in the basic compound aqueous solution is 0.1 to 4 N, preferably 0.5 to 2 N. The addition rate of the basic compound aqueous solution is 0.25 to 2 hours, preferably 0.5 to 1 hour, expressed as the time (addition time) from the start of addition of the aqueous solution to the end of addition. By carrying out the reaction in this manner, an aqueous solution having a pH of 6.5 to 9, preferably 7 to 8.5, containing alumina hydrate gel particles (precipitation of alumina hydrate) is obtained. This makes it possible to obtain an aqueous solution containing alumina hydrate gel particles that is preferable as an alumina raw material for producing a composite metal oxide.
[0007]
Next, an aqueous solution of a water-soluble silicon compound corresponding to the silica to be combined is added to and mixed with the aqueous solution containing such alumina hydrate gel particles. As the water-soluble silicon compound, alkali metal silicate is preferably used. As the alkali metal silicate, sodium silicate having a Na 2 O: SiO 2 molar ratio in the range of 1: 2 to 1: 4 is preferably used. The concentration of the silicon compound in the aqueous solution is 5 to 10% by weight, preferably 6 to 8% by weight. The addition amount of the silicon compound to the aqueous solution containing the alumina hydrate gel particles is an amount corresponding to the composition of the silica-alumina composite oxide as the final product, and the silica content in the silica-alumina composite oxide is The amount is 5 to 50% by weight, preferably 10 to 20% by weight. In order to preferably add and mix the aqueous solution of the water-soluble silicon compound to the aqueous solution containing the alumina hydrate gel particles, the aqueous solution of the water-soluble silicon compound is added to the aqueous solution containing the alumina hydrate gel particles for 1 to 60 minutes, Preferably, the mixture is added and mixed for an addition time of 10 to 30 minutes. The mixed solution of the aqueous solution containing the alumina hydrate gel particles and the aqueous solution of the water-soluble silicon compound is maintained at pH 6.5 to 9, preferably pH 7 to 8.5, more preferably about pH 8. In this case, if necessary, a pH adjusting agent such as a mineral acid aqueous solution or a sodium hydroxide aqueous solution is added to maintain the pH of the mixed aqueous solution in the above range. After completion of the addition of the water-soluble silicon compound, the mixed aqueous solution is heated, heated to a temperature of 40 to 80 ° C., preferably 60 to 75 ° C., and maintained at this temperature. The holding time is 0.5 to 24 hours, preferably 1 to 12 hours. By this operation, gel particles in which silica hydrate gel is deposited on alumina hydrate gel particles are obtained. The gel particles are separated from the liquid by solid-liquid separation means such as filtration.
As described above, a gel particle having a structure in which a silica hydrate gel is deposited on an alumina hydrate gel particle is obtained. According to the present invention, in order to control the pore characteristics of the gel particle, Disperse in an aqueous ammonium salt solution and stir. In general treatment conditions in this case, when an ammonium carbonate aqueous solution is used as the ammonium salt aqueous solution, the concentration of ammonium ions is 0.01 to 8 mol / liter, preferably 0.05 to 6 mol / liter. . The amount of the ammonium carbonate aqueous solution used is 0.1 to 2 liters, preferably 0.15 to 1, with respect to 1 g of silica-alumina composite oxide hydrate gel particles (based on silica-alumina composite oxide). Liters. The amount of ammonium ions per 1 g of silica-alumina composite oxide hydrate gel particles (based on silica-alumina composite oxide) is 0.01 to 2 mol, preferably 0.03 to 0.5 mol. The stirring temperature is room temperature to 60 ° C, preferably 30 to 40 ° C. The stirring time is 0.5 to 6 hours, preferably 1 to 4 hours.
Examples of the ammonium salt aqueous solution include an ammonium carbonate aqueous solution, an ammonium hydrogen carbonate aqueous solution, an ammonium carbamate aqueous solution, an ammonium chloride aqueous solution, an ammonium nitrate aqueous solution, and an ammonium sulfate aqueous solution.
[0008]
As described above, the silica-alumina composite oxide hydrate gel particles treated with the aqueous ammonium salt solution are separated by solid-liquid separation means such as filtration, and the separated gel particles are separated using ion-exchanged water. Wash and dry the resulting water-washed product, and calcinate as necessary. Drying is performed at room temperature to 200 ° C. in the presence or absence of oxygen. Moreover, baking is performed at 450-1200 degreeC in the presence of oxygen, Preferably it is 500-800 degreeC. Thus, a silica-alumina composite oxide having a structure in which a silica layer is formed on the alumina surface as a nucleus can be obtained. The silica-alumina composite oxide of the present invention thus obtained has the following characteristics.
(1) It has a main peak of pore volume distribution in a pore diameter range of 80 to 100 mm.
(2) The volume A of the pores having a diameter in the range of 80 to 100 mm including the main peak is 30% or more, preferably 40% or more of the pore volume B having a diameter in the range of 60 to 200 mm, The pore volume B having a diameter of 60 to 200 mm is 50% or more of the total pore volume T, preferably 75% or more.
(3) The pore volume C having a diameter in the range of 100 to 200 mm is 40% or less of the total pore volume T, preferably 25% or less, and 50% or less of the pore volume B, preferably 25% or less.
(4) The specific surface area is 240 m 2 / g or more, preferably 300 m 2 / g or more.
(5) The total pore volume is 0.65 cc / g or more, preferably 0.8 cc / g or more.
(6) The silica content is 5 to 30% by weight, preferably 7 to 20% by weight.
[0009]
The silica-alumina composite oxide of the present invention exhibits excellent effects as an additive component for heavy oil decomposition. In order to prepare an additive for heavy oil decomposition using the silica-alumina composite oxide of the present invention, clay (for example, kaolin, bentonite, kibushi clay, etc.) and silica-alumina composite oxide are added to a silica sol solution. Add and stir uniformly to make a dispersion. In this case, the average particle size of the clay is 0.5 to 5 μm, preferably 2 to 3 μm. The average particle diameter of the silica-alumina composite oxide is 0.5 to 10 μm, preferably 3 to 7 μm. The total solid content in the dispersion is 10 to 50% by weight, preferably 20 to 30% by weight.
Next, the dispersion thus obtained is spray-dried. The drying temperature in this case is 180 to 300 ° C, preferably 200 to 270 ° C. The additive is obtained in powder form by this spray drying. The average particle size of this powder is 50 to 80 μm, preferably 55 to 70 μm. In addition, the dried product thus obtained can be used after firing at 300 to 700 ° C., preferably 400 to 600 ° C., if necessary, and these powder additives can be used as needed. Further, it can be molded by extrusion molding or the like to obtain a molded product having a granular shape, a spherical shape, a cylindrical shape, a rod shape, or the like.
[0010]
In this additive, the content of the silica-alumina composite oxide is 5 to 70 wt%, preferably 10 to 60 wt%, and the clay content is 10 to 70 wt%, preferably 20 to 20 wt%. 60% by weight. The content of silica is 10 to 30% by weight, preferably 15 to 25% by weight, and the total silicon content excluding the clay content is 10 to 60% by weight, preferably 20 to 20% in terms of SiO 2. It is good to prescribe | regulate in the range of 50 weight%. When the total silicon content is more than the above range, the hydrothermal stability of the additive is deteriorated. On the other hand, when the total silicon content is less than the above range, the decomposition activity for heavy components is lowered.
[0011]
In the additive, the specific surface area is 30 to 80 m 2 / g, preferably 40 to 60 m 2 / g, and the total pore volume T is 0.14 to 0.45 ml / g, preferably 0.20. 0.40 ml / g. The pore volume A having a pore diameter of 80 to 100 mm is 10% or more of the total pore volume T, preferably 15% or more, and 15 of the pore volume B having a diameter in the range of 60 to 200 mm. % Or more, preferably 20% or more. The pore volume B is 45% or more of the total pore volume T, preferably 60% or more. The pore volume C having a pore diameter of 100 to 200 mm is 30% or more, preferably 40% or more of the total pore volume T. The C / B ratio is 50 to 70%, preferably 55 to 65%. Moreover, this additive has a main peak of pore volume distribution in the range of 80 to 120%.
[0012]
When the specific surface area of the additive increases, the total acid amount tends to increase accordingly. However, when the specific surface area and total acid amount exceed the above ranges, the additive has a substantial effect on the heavy oil cracking catalyst. The addition effect cannot be obtained, and the conversion, naphtha yield, and LCO (light cycle oil) yield are not substantially improved as compared with the case where the heavy oil cracking catalyst is used alone. This additive has a total pore volume of 0.14 to 0.45 ml / g, but the volume of a relatively large pore having a pore diameter of 60 to 200 mm is smaller than the total pore volume. If it is kept at 10% or more and smaller than that, the effect of preventing coke formation will be insufficient.
[0013]
The said physical-property value regarding an additive can be adjusted with the manufacturing conditions. For example, the specific surface area and the total pore volume can be adjusted by adjusting the specific surface area of the composite metal oxide to be added or adjusting the particle size of the composite metal oxide to adjust the reactivity with the silica sol.
[0014]
The additive can be used in the form of fine powder dispersed in a heavy material, or can be used by mixing with a conventionally known heavy oil cracking catalyst. This additive is preferably used in the form of powder mixed with the FCC catalyst. The FCC catalyst is composed of a porous inorganic oxide and zeolite. As the porous inorganic oxide, silica-alumina composite oxide, silica-zirconia, silica-magnesia and the like are used. The additive containing the silica-alumina composite oxide of the present invention is particularly preferably applied to an FCC catalyst composed of zeolite, silica, alumina and kaolin. The amount of the additive of the present invention added to the FCC catalyst is 2 to 30 parts by weight, preferably 4 to 20 parts by weight, based on 100 parts by weight of the FCC catalyst.
[0015]
【Example】
Next, examples of the present invention will be described. In addition,% shown below is weight%.
[0016]
Example 1
In a 2 liter container, 700 ml of ion-exchanged water is added, and 9.7 g of aluminum sulfate in terms of Al 2 O 3 is added thereto, and the temperature of the solution is maintained at 30 ° C. and stirred. An aqueous solution (pH: 3.0) was made.
Next, with vigorous stirring of the aqueous aluminum sulfate solution obtained as described above, 1N aqueous ammonia was added to this aqueous solution over about 0.5 hour until the pH of the mixed solution reached 8.0. (Ammonia water addition rate: 20 ml / min), white alumina hydrate gel particles (precipitation) were produced.
[0017]
Next, an aqueous solution of ion exchange (SiO 2 content: 6 wt%) of water glass No. 3 (SiO 2 content: 29 wt%) was added to the slurry solution containing the alumina hydrate gel particles thus obtained under stirring. In order to obtain a silica-alumina composite oxide having a silica content of 6%, it was added over a period of about 2 minutes so that the SiO 2 was 0.62 g (addition rate: 10 ml / min).
The solution was then heated to 60 ° C. over 30 minutes and held at this temperature for 3 hours. Thereby, the slurry liquid containing the gel particle which the silica hydrate deposited on the surface of the alumina hydrate gel particle was obtained.
The slurry solution was filtered, and the obtained filter cake was dispersed in an aqueous ammonium carbonate solution having a concentration of 6% and stirred at a temperature of 30 ° C. for 60 minutes.
Next, the stirred slurry liquid was filtered, and 2 liters of ion-exchanged water was sprayed on the obtained filter cake to remove residual ions such as ammonium ions in the cake.
Next, the cake thus obtained was dried at 120 ° C. for 15 hours to obtain a dry solid (silica-alumina composite oxide having a silica content of 10% by weight). This dried solid was calcined in air at 500 ° C. for 3 hours, and the specific surface area, total pore volume, average pore diameter, and pore distribution of the obtained calcined solid were measured. The results are shown in Table 1.
[0018]
Example 2
In Example 1, a silica content of 10% silica - in order to obtain an alumina composite oxide, except that the amount of water glass No. 3 aqueous solution was used 1.1g as SiO 2 was experimented in the same manner.
[0019]
Example 3
In Example 2, an experiment was performed in the same manner except that the addition rate of ammonia water to the aluminum sulfate aqueous solution was doubled.
[0020]
Example 4
In Example 2, an experiment was performed in the same manner except that the time for treating silica-alumina composite oxide hydrate particles in an aqueous ammonium carbonate solution was tripled.
[0021]
Example 5
In Example 1, an experiment was performed in the same manner except that 2.43 g of water glass No. 3 aqueous solution was used as SiO 2 .
[0022]
Comparative Example 1
In Example 2, an experiment was performed in the same manner except that the silica-alumina composite oxide hydrate treatment in an ammonium carbonate aqueous solution was not performed.
[0023]
Comparative Example 2
In Example 2, an experiment was performed in the same manner except that ion-exchanged water was used instead of the aqueous ammonium carbonate solution.
[0024]
Comparative Example 3
In Example 3, an experiment was performed in the same manner except that ion-exchanged water was used instead of the ammonium carbonate aqueous solution.
[0025]
Comparative Example 4
In Example 2, the experiment was performed in the same manner except that the solution holding temperature after adding the water glass aqueous solution was set to room temperature.
[0026]
Properties for the silica-alumina composite oxides obtained in Examples 1 to 5 are shown in Tables 1 and 2, and properties for the silica-alumina composite oxides obtained in Comparative Examples 1 to 4 are shown in Table 3. Show. In addition, the code | symbol shown in Table 1-Table 3 shows the following content.
A: Volume of pores having a diameter in the range of 80 to 100 mm B: Volume of pores having a diameter in the range of 60 to 200 mm C: Volume of pores having a diameter in the range of 100 to 200 mm T: Total pores Volume 【0027】
[Table 1]
[0028]
[Table 2]
[0029]
[Table 3]
[0030]
In addition, the pore characteristic regarding the said silica-alumina composite oxide is a value about a 500 degreeC baking product.
[0031]
Next, preparation examples of heavy oil decomposition additives containing the silica-alumina composite oxide of the present invention and performance experiment examples thereof will be shown below as application examples.
[0032]
Application Example 1 (Preparation of Additive A)
A silica glass sol was obtained by adding 660 g of a water glass aqueous solution (pH: 12) having a SiO 2 content of 15.2 wt% to 2 N sulfuric acid and adjusting the pH to 3.
Next, 100 g of kaolin and 300 g of SiO 2 —Al 2 O 3 obtained in Example 1 were added to 1180 g of this silica sol solution in terms of dry weight, dispersed uniformly, and then spray-dried. The composition shown in Table 4 And additive A having an average particle diameter of 60 μm having pore characteristics was obtained.
[0033]
Comparative application example 1 (Preparation of additive B)
In application example 1, the same experiment was performed except that the silica alumina of comparative example 1 was used as the silica-alumina composite oxide, and additive B for comparison was obtained.
[0034]
Application example 2 (performance test)
In order to perform the performance test of the additives A and B obtained in Application Example 1 and Comparative Application Example 1, the additives A and B were uniformly mixed with the FCC catalyst, and then the catalyst composition was subjected to a microactivity test (MAT ) Using the apparatus, the fluid catalytic cracking reaction was performed under the same feedstock and the same conditions. The results are shown in Table 4.
The amount of additive added to the FCC catalyst was 10 parts by weight with respect to 100 parts by weight of the FCC catalyst.
Desulfurized VGO was used as the raw material heavy oil. Prior to the test, the catalyst composition comprising the FCC catalyst and the additive was calcined at 650 ° C. for 1 hour and then treated at 760 ° C. for 16 hours in a 100% steam atmosphere.
[0035]
The fluid catalytic cracking conditions in the test were as follows.
(1) Reaction temperature: 510 ° C
(2) Reaction pressure: normal pressure (3) Catalyst composition / oil ratio: 2.5-4.5 wt / wt
(4) Contact time: 32 hr −1
[0036]
In addition, in the pore characteristics of the additives shown in Table 4, the contents of A, B, C, T, peak position, and average pore diameter are as follows.
A: Pore volume with a diameter of 80 to 100 B B: Pore volume with a diameter of 60 to 200 C C: Pore volume with a diameter of 100 to 200 T T: Total pore volume peak position: Diameter of the pore showing the peak of the pore volume (Å) is shown.
Average pore diameter: Calculated by 4 × pore volume / specific surface area assuming that the pore shape is cylindrical.
[0037]
The specific surface area and pore volume shown for the silica-alumina and the additives A and B were measured as follows.
(Specific surface area)
After holding 0.2 g of a sample at 200 ° C. and 1 × 10 −3 Torr for 1 hour, nitrogen gas was adsorbed at a liquid nitrogen temperature (77 K), and the specific surface area was obtained using the adsorbed amount. . The BET method was used for the calculation.
(Pore volume)
Following the measurement of the specific surface area, after adsorbing nitrogen gas to a relative pressure of 1.0 at a liquid nitrogen temperature (77 K), desorption of the nitrogen gas is performed up to a relative pressure of 0.14, and the desorption amount is used to subtract the nitrogen gas. The pore volume was determined. The BJH method was used for the calculation.
In the measurement of the specific surface area and pore volume, fine pores having a diameter of 10 mm or less are ignored.
[0038]
[Table 4]
[0039]
In addition, the conversion rate increase shown as a reaction result in Table 4 is based on the conversion rate using the FCC catalyst to which no additive is added, and the measured value of the conversion rate using the catalyst composition in which the additive is added to the FCC catalyst. Is the value obtained by subtracting the value of the standard conversion rate.
[0040]
【The invention's effect】
The silica-alumina composite oxide according to the present invention has a medium pore volume whose main peak of the pore volume distribution is in the range of 80 to 100 mm in diameter, and has pores having a diameter in the range of 80 to 100 mm. The ratio of the volume to the pore volume of 60 to 200 mm is 30% or more, and the specific surface area is 240 m 2 / g or more and the pore volume is very high, 0.65 cc / g or more.
The silica-alumina composite oxide of the present invention is advantageously used as a catalyst carrier, and is also advantageously used as a solid acid catalyst, an adsorbent and the like. In particular, in a catalyst for fluid catalytic cracking, it can be effectively used as an active component, and is also effective as an additive component in an additive used by adding to an FCC catalyst.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35430095A JP3730698B2 (en) | 1995-12-27 | 1995-12-27 | Silica-alumina composite oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35430095A JP3730698B2 (en) | 1995-12-27 | 1995-12-27 | Silica-alumina composite oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09183609A JPH09183609A (en) | 1997-07-15 |
JP3730698B2 true JP3730698B2 (en) | 2006-01-05 |
Family
ID=18436613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35430095A Expired - Fee Related JP3730698B2 (en) | 1995-12-27 | 1995-12-27 | Silica-alumina composite oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3730698B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI502061B (en) * | 2009-12-25 | 2015-10-01 | Jgc Catalysts & Chemicals Ltd | Additive for fluid catalytic cracking catalysts |
JP2021151942A (en) * | 2020-03-25 | 2021-09-30 | 日揮触媒化成株式会社 | Porous silica alumina particles and method for producing the same |
-
1995
- 1995-12-27 JP JP35430095A patent/JP3730698B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09183609A (en) | 1997-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4458023A (en) | Catalyst manufacture | |
RU2306177C2 (en) | Method of production of the microporous materials with the coating made out of the rare-earth metal oxide | |
US4499197A (en) | Co-gel catalyst manufacture | |
US4332699A (en) | Catalyst preparation | |
JPH11300208A (en) | Catalytically cracking catalyst | |
JP2017087204A (en) | Catalyst for residual oil decomposition active fluid catalytic cracking and manufacturing method therefor | |
JP3949778B2 (en) | Catalytic cracking catalyst | |
CA1171054A (en) | Hydrocarbon conversion catalysts and processes utilizing the same | |
US4376039A (en) | Hydrocarbon conversion catalysts and processes utilizing the same | |
EP0882777B1 (en) | Additive catalyst for the cracking of heavy oil | |
JP3730703B2 (en) | Silica-alumina composite oxide and method for producing the same | |
JP3730698B2 (en) | Silica-alumina composite oxide | |
CN108940351A (en) | A kind of preparation method of catalysis material | |
JPS62265389A (en) | Cracking of hydrocarbon | |
JPS6128376B2 (en) | ||
JP3949336B2 (en) | Process for producing catalyst composition for catalytic cracking of hydrocarbons | |
JPS61278351A (en) | Cracking catalyst and its use | |
JP3827351B2 (en) | Method for controlling pore characteristics of alumina composite metal oxide and method for producing alumina composite metal oxide | |
US4636484A (en) | Method for the preparation of catalyst composition for use in cracking hydrocarbons | |
US2688002A (en) | Method of preparing a silica-magnesia-alumina gel catalyst | |
JP4167123B2 (en) | Hydrocarbon fluid catalytic cracking catalyst composition and fluid catalytic cracking method of heavy hydrocarbons using the same | |
CN105709713A (en) | High-silicon aluminum oxide dry glue, and preparation method thereof | |
JPH0516907B2 (en) | ||
JP3643843B2 (en) | Additive for fluid catalytic cracking catalyst of heavy oil | |
JP2004130193A (en) | Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041102 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050603 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20050628 |
|
RD15 | Notification of revocation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7435 Effective date: 20050628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051007 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |