JP3729403B2 - Resin electrode and electrostatic precipitator using the same - Google Patents
Resin electrode and electrostatic precipitator using the same Download PDFInfo
- Publication number
- JP3729403B2 JP3729403B2 JP2002113692A JP2002113692A JP3729403B2 JP 3729403 B2 JP3729403 B2 JP 3729403B2 JP 2002113692 A JP2002113692 A JP 2002113692A JP 2002113692 A JP2002113692 A JP 2002113692A JP 3729403 B2 JP3729403 B2 JP 3729403B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- resin
- carbon black
- collector
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/60—Use of special materials other than liquids
- B03C3/64—Use of special materials other than liquids synthetic resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/60—Use of special materials other than liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/08—Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/12—Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/36—Controlling flow of gases or vapour
- B03C3/368—Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/41—Ionising-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/47—Collecting-electrodes flat, e.g. plates, discs, gratings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/04—Ionising electrode being a wire
Landscapes
- Electrostatic Separation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、静電式集塵装置のアイオナイザ部、複写機、静電気除去装置、オゾン発生装置などのコロナ放電電極の対向電極に用いられる樹脂電極、静電式集塵装置のコレクタ部の集塵電極、並びにアイオナイザ部対向電極及びコレクタ部集塵電極を用いた静電式集塵装置に関する。
【0002】
【従来の技術】
例えば、静電式集塵装置は、気流中の塵埃粒子に対してコロナ放電などにより電荷を与え、この荷電粒子が電界中を通過する間に静電気力により荷電粒子を捕集して除去するもので、産業用の大型装置から家庭用の小型装置まで種々のタイプが用いられている。
【0003】
このような静電式集塵装置では、塵埃粒子に電荷を与えるアイオナイザ部の対向電極、荷電粒子を捕集する集塵電極には、通常アルミニウムやステンレスなどの金属材料が用いられている。
【0004】
かかる電極の構成は、一般的にはアイオナイザ部ではコロナ放電電極に対向する対向電極をスペーサーを介して配列し、コレクタ部も同様にプラス又はマイナスの電位を印加する高圧側電極と、それに対向する接地電極とを交互にスペーサーを介して平行に配列した構造となっている。
【0005】
しかしながら、電極に金属板を用いた場合には、導電率の点では良いが、電極自体の重さが重くなってしまうという問題がある。
【0006】
また、電極に金属板を用いる場合は、複数枚の金属板をスペーサーを介して積層して形成する必要があり、組み立て工程が煩雑であるという問題がある。
【0007】
このため、電極の組み立て工程を簡略化するために、電極を積層構造とせず、板金プレス加工等により一体成形する電極も考えられるが、極板間ピッチ以上に極板の奥行きを長くすることができず、大きな面積の電極を形成することができない。また、例えば、屈曲させた折り曲げ部など、粒子が荷電されずに通過してしまう領域が生じ、集塵性能が低下してしまうという問題がある。
【0008】
さらに、金属板からなる電極では、複雑な形状の電極を作成するのが困難であり、高コストとなってしまうという問題がある。
【0009】
このような問題を解決するために、導電性を有する樹脂で電極を形成する技術が開発された。
【0010】
導電性を有する樹脂としては、基材となる樹脂に、例えば、カーボンブラック、カーボンファイバー、導電性ウィスカー及びステンレス繊維などの導電材を適量配合することで得ることができる。
【0011】
しかしながら、従来、一般的には、導電材としてカーボンブラックを配合する場合、大量に配合しないと対向電極として必要な低い抵抗値を得ることができず、樹脂強度が大幅に低下してしまうとされている。そして、一般的には、ABS樹脂に導電材としてカーボンファイバーを配合した樹脂電極が使用されている。
【0012】
カーボンファイバーは繊維状であるため、粒子状のカーボンブラックに比べて少ない量でも必要な抵抗値が得られるという利点があるが、十分な集塵性能が得られないという問題がある。
【0013】
そこで、このような問題を解決するため、カーボンファイバーが配合されたABS樹脂からなる樹脂電極にさらに吸水性ポリマーを混入したものが提案されている(特開平08−227789号公報)。
【0014】
このような吸水性ポリマーを混入させた導電樹脂では、樹脂表面に常に均一な導電性を持たせることができ、導通し易く、樹脂に練り込むカーボンファイバーの量も少なくすることができるという利点がある。
【0015】
【発明が解決しようとする課題】
しかしながら、吸水性ポリマーを混入した樹脂電極は、高温湿度(15℃・30%よりも上)では集塵効率及び放電特性等の特性及び性能の良い樹脂電極が得られるが、低温湿度(15℃・30%以下)では特性及び性能が低下してしまうという問題がある。
【0016】
本発明は、このような事情に鑑み、電極として十分な導電性を有し且つ放電特性及び集塵特性の優れた樹脂電極及びそれを用いた静電式集塵装置を提供することを課題とする。
【0017】
【課題を解決するための手段】
前記課題を解決するために研究を重ねた結果、カーボンファイバーを導電材として用いた場合、導電材同士が接触していないと導通しないため、導電材同士が電気的に接触するように、樹脂中でファイバーがランダムに配置されるようにしないと導電性を持たせることができないが、この結果、樹脂表面はミクロ的に不均一であるため、均一な放電ができず、集塵効率が低下するということを知見した。また、カーボンブラックは、従来、樹脂電極として一般的に使用されているABS樹脂に対しては分散性が好ましくなく且つ強度低下を起こす傾向があり、実使用レベルでの導電性、強度及び成形性を得られないとされていたが、所定の導電性カーボンブラックは、ポリプロピレンなどの特定の樹脂に対しては均一に分散され且つ表面状態がミクロ的にみても偏在せずに均一になり易くなるため、良好な放電特性及び集塵特性が得られることを知見し、本発明を完成させた。
【0018】
かかる本発明の第1の態様は、放電電極の対向電極に用いられる樹脂電極であって、ポリオレフィン又はポリエステル樹脂に導電性カーボンブラックを配合した導電性樹脂からなることを特徴とする樹脂電極にある。
【0019】
かかる第1の態様では、基材となる樹脂にポリオレフィン又はポリエステル樹脂を用いることによって導電性カーボンブラックを均等に分散させることができる。また、樹脂表面はミクロ的にも均一であるため、均一な放電特性を得ることができ、集塵特性も向上する。
【0020】
本発明の第2の態様は、第1の態様において、前記導電性カーボンブラックが、窒素比表面積が500m2/g以上であり、DBP吸油量が200cm3/100g以上であることを特徴とする樹脂電極にある。
【0021】
かかる第2の態様では、ポリオレフィン又はポリエステル樹脂に良好に分散し、均一な放電が可能となる。
【0022】
本発明の第3の態様は、第1又は2の態様において、体積抵抗率が107Ωcmのオーダー以下であることを特徴とする樹脂電極にある。
【0023】
かかる第3の態様では、導電性カーボンブラックの均一な分散により、所定の体積抵抗率が得られる。
【0024】
本発明の第4の態様は、第1〜3の何れかの態様において、プラスに接続された放電電極の対向電極として用いられることを特徴とする樹脂電極にある。
【0025】
かかる第4の態様では、樹脂電極をプラスに接続された放電電極の対向電極として使用することによって、良好な集塵特性を得ることができる。
【0026】
本発明の第5の態様は、第1〜4の何れかの態様において、コロナ放電電極の対向電極、静電式集塵装置のコレクタ部集塵電極およびアイオナイザ−コレクタ一体型静電式集塵装置のアイオナイザ部対向電極とコレクタ部集塵電極の機能を有する電極の何れかに用いられることを特徴とする樹脂電極にある。
【0027】
かかる第5の態様では、これらの電極に本発明の樹脂電極を用いることにより、良好な集塵特性を得ることができる。
【0028】
本発明の第6の態様は、第1〜5の何れかの態様の樹脂電極をアイオナイザ部の対向電極として用いたことを特徴とする静電式集塵装置にある。
【0029】
かかる第6の態様では、放電特性の均一な樹脂電極を対向電極として用いることで、集塵特性を向上することができる。
【0030】
本発明の第7の態様は、第1〜5の何れかの態様の樹脂電極で、アイオナイザ部の対向電極及びコレクタ部の集塵電極を一体的に形成したことを特徴とする静電式集塵装置にある。
【0031】
かかる第7の態様では、対向電極と集塵電極とを一体的に形成することによって製造コストを大幅に低減し且つ集塵面積を増大させて集塵効率を向上することができると共に電極の強度を向上して変形等を防止することができる。
【0032】
本発明では、所定の導電性カーボンブラックを、ポリオレフィン又はポリエステル樹脂に配合することにより、導電性カーボンブラックを偏在させずに均一に分散することができ、この結果、樹脂表面がミクロ的にも著しく均一となるため、良好な放電特性及び集塵特性を得ることができる。
【0033】
ここでポリオレフィン樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等を挙げることができる。
【0034】
また、ポリエステル樹脂としては、例えば、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等を挙げることができる。
【0035】
このような樹脂は、ABS樹脂とは異なり、導電性カーボンブラックが均一に分散され、また、樹脂自体の強度低下も少ない。
【0036】
一方、導電性カーボンブラックは、これらの樹脂に均一に分散されて良好な導電性を示すものであれば特に限定されないが、窒素比表面積が500m2/g以上であり、DBP吸油量が200cm3/100g以上であることが好ましい。これにより、良好な分散性及び導電性が得られると推定される。
【0037】
このような導電性カーボンブラックとしては、例えば、ケッチェンブラック(商品名)を挙げることができる。
【0038】
また、このような導電性カーボンブラックの粒径も特に限定されないが、μmオーダ以下、好ましくはnmオーダ程度である。このような粒径を有するため、樹脂に均一に分散することができ、均一な放電と良好な集塵特性を発揮することができる。
【0039】
このように導電性カーボンブラックを添加した樹脂からなる樹脂電極の体積抵抗率は、107Ωcmのオーダー以下であることが望ましい。良好な放電特性及び集塵特性を得るためである。
【0040】
本発明の樹脂電極を成形するには、導電性カーボンブラックを配合した樹脂を用いる必要があるが、導電性カーボンブラックを基材となる樹脂に配合するには、例えば、ミキシングロール、バンバリーミキサー、連続ミキサーなどを用いて通常の方法により溶融混合することよって調製することができる。この場合、導電性カーボンブラックを基材となる樹脂に対して18重量%〜30重量%配合するのが好ましい。これより配合量が少ないと所望の導電性が得られず、ひいては、良好な放電特性及び集塵特性が得られない。また、これより配合量が多くなると導電性樹脂の機械的強度が低下してしまうためである。特に静電式集塵装置の電極として用いる場合、安全対策として難燃剤を配合することが一般的に行なわれるが、難燃剤を配合することで単に樹脂に導電性カーボンブラックを配合した場合より機械的強度が低下する傾向となる。このときにある強度以下に機械的強度が低下すると、集塵での電極汚れに伴う洗浄及び組み付け作業で、特殊な作業をしなければ電極が壊れてしまうなど、洗浄による電極の繰返し使用を特徴とする静電式集塵装置のメリットが失われることとなる。
【0041】
本発明の樹脂電極は、上述したように導電性カーボンブラックを配合した樹脂を用いて成形することにより製造することができるが、成形方法は特に限定されない。例えば、射出成形、プレス成形などにより成形すればよい。また、このように製造された本発明の樹脂電極は、静電式集塵装置のアイオナイザ部の対向電極や、アイオナイザ部の対向電極とコレクタ部の集塵電極とに共通の電位を与えるアイオナイザ−コレクタ一体型の電極などに適用することができる。
【0042】
【発明の実施の形態】
以下に、本発明を実施形態に基づいて詳細に説明する。
【0043】
(実施形態1)
図1は、本発明の実施形態1に係る樹脂電極を用いた静電式集塵装置の一例の概略を示す模式図である。
【0044】
図1に示すように、静電式集塵装置1は、放電電極11及びその対向電極12からなる荷電部であるアイオナイザ部10と、放電電極11がプラスに接続される場合は、相対的にプラス側の電位に接続される非集塵電極21及び相対的にマイナス側の電位に接続される集塵電極22からなる集塵部であるコレクタ部20とを有する。なお、放電電極11がマイナスに接続される場合は、非集塵電極21は相対的にマイナス側の電位に接続し、集塵電極22は相対的にプラス側の電位に接続されることとなる。
【0045】
アイオナイザ部10は、複数の平板状の対向電極12が並設されて相互に導通しており、各対向電極12の間には、対向電極12接触しないように放電電極11が配置されている。
【0046】
一方、コレクタ部20は、アイオナイザ部10の下流側に複数の平板状の集塵電極22が並設されており、各集塵電極22の間にはそれぞれ平板状の非集塵電極21が配置されている。すなわち、コレクタ部20は、集塵電極22と非集塵電極21とが交互に並設されている。
【0047】
また、集塵電極22と非集塵電極21とは直接接触してはならない。また非集塵電極21は給電部以外では、枠体やケースなどに接触しないようにするのが望ましい。これは、静電式集塵装置1の枠体やケースなどの絶縁物の表面を通じて間接的に接地され、電位降下が起きてしまうためである。
【0048】
このように本実施形態では、アイオナイザ部10及びコレクタ部20は、放電電極11、対向電極12、非集塵電極21及び集塵電極22の組み合わせにより形成し、対向電極12及び集塵電極22は体積抵抗率が107Ωcm以下の導電性樹脂材料で形成し、非集塵電極21は体積抵抗率が1010〜1013Ωcmの半導電性樹脂材料で形成するのが好ましい。
【0049】
このように構成したアイオナイザ部10及びコレクタ部20では、アイオナイザ部10により荷電された塵埃粒子の中に導電性粉塵が混在していても、非集塵電極21の電荷の移動が半導電性樹脂材料の抵抗で制限されるため、非集塵電極21と集塵電極22との間でのスパーク発生が防止できる。
【0050】
このような静電式集塵装置1の対向電極12を、導電性カーボンブラックを配合したポリオレフィン又はポリエステル樹脂で構成することにより、放電特性が良好で、集塵特性に優れた静電式集塵装置1とすることができる。
【0051】
勿論、集塵電極22も同様に導電性カーボンブラックを配合したポリオレフィン又はポリエステル樹脂で構成してもよい。
【0052】
一方、放電電極11は静電式集塵装置としては周知の線式や針式などを用い、非集塵電極21を形成する半導電性樹脂材料としては、特に限定されないが、例えば、ABS樹脂に導電材を配合したものや更に吸水性樹脂を配合した樹脂製電極などを挙げることができる。
【0053】
なお、本実施形態では、静電式集塵装置1として集塵部と荷電部とだけを示したが、この静電式集塵装置1は、空気を通風させる吸い込み手段や送風手段等と共に使用されるものであり、空気清浄装置、冷暖房装置、空気調和装置などに組み込まれて使用される。
【0054】
(実施形態2)
図2は、本発明の実施形態2に係る樹脂電極を用いた静電式集塵装置の一例の分解斜視図、図3はその模式図である。
【0055】
図2及び図3に示すように、静電式集塵装置1Aは、放電電極11Aとその対向電極12Aとからなる荷電部であるアイオナイザ部10Aと、放電電極がプラスに接続される場合は、相対的にプラス側の電位に接続される非集塵電極21Aと相対的にマイナス側の電位に接続される集塵電極22Aとからなる集塵部であるコレクタ部20Aとを有する。なお、放電電極11Aがマイナスに接続される場合は、前述の実施形態1と同様に各電極の電位を設定すればよい。
【0056】
アイオナイザ部10Aの対向電極12Aとコレクタ部20Aの集塵電極22Aとは、平板形状を有し、集塵する塵埃粒子を含む空気を通過させる枠部35の一方面に対向電極12Aが気流方向に突出するように並設され、枠部35の反対側の面には、集塵電極22Aが対向電極12Aの並列方向とは直交する方向に並設されて一体的に形成されている。
【0057】
このように対向電極12Aと集塵電極22Aとを一体的に形成することによって、集塵面積を増大することができ、荷電粒子の捕集効率を向上させることができる。また、対向電極12Aと集塵電極22Aとを互いに直交する方向に並設することによって強度を増大することができ、各電極の反りや撓み変形等の変形を防止することができると共に、対向電極12Aと集塵電極22A間の空間が不要になるので、静電式集塵装置1Aのコンパクト化にも貢献できる。
【0058】
コレクタ部20Aの非集塵電極21Aは、集塵電極22Aを挿通可能で且つ集塵電極22Aと非集塵電極21Aとが均等な間隔で接触しないように形成された開口部25を有する。この非集塵電極21Aの開口部25に集塵電極22Aを均等な間隔となるように挿通することで、非集塵電極21Aと集塵電極22A間に均一な電界を印加することができるコレクタ部20Aが形成されている。
【0059】
一方、アイオナイザ部10Aを構成する放電電極11Aは、枠部35に嵌合する嵌合部13の対向電極12Aに対向する位置に、その間に対向電極12Aを挿通できるように設けられている。すなわち、嵌合部13を枠部35に嵌合すると、対向電極12Aは嵌合部13に設けられた放電電極11Aの間に均等な間隔で挿通されて固定される。
【0060】
このような静電式集塵装置1Aの一体となった対向電極12A及び集塵電極22Aを、導電性カーボンブラックを配合したポリオレフィン又はポリエステル樹脂で構成することにより、放電特性が良好で、集塵特性に優れた静電式集塵装置1Aとすることができる。
【0061】
(実施例1)
ポリプロピレン樹脂に、導電性カーボンブラックとしてケッチェンブラック(CB)を30重量%配合した導電性樹脂を用いて100mm×26mm×0.8mm(厚さ)の樹脂電極を成形した。体積抵抗率は100〜101Ωcmであった。
【0062】
(実施例2)
ポリブチレンテレフタレート(PBT)に、導電性カーボンブラックとしてケッチェンブラック(CB)を20重量%配合した導電性樹脂を用いて100mm×26mm×0.8mm(厚さ)の樹脂電極を成形した。体積抵抗率は103Ωcmであった。
【0063】
(実施例3)
ポリプロピレン樹脂に、導電性カーボンブラックとしてケッチェンブラック(CB)を18重量%配合した導電性樹脂を用いて100mm×26mm×0.8mm(厚さ)の樹脂電極を成形した。体積抵抗率は105Ωcmであった。
【0064】
(比較例1)
ポリブチレンテレフタレート(PBT)に、カーボンファイバー(CF)を20重量%配合した導電性樹脂を用いて100mm×26mm×3.0mm(厚さ)の樹脂電極を成形した。体積抵抗率は103Ωcmであった。
【0065】
(比較例2)
ABS樹脂に、カーボンファイバー(CF)20重量%と、吸水性樹脂7重量%とを配合した導電性樹脂を用いて100mm×26mm×0.8mm(厚さ)の樹脂電極を成形した。体積抵抗率は101〜102Ωcmであった。
【0066】
(比較例3)
ポリプロピレン樹脂に、導電性カーボンブラックとしてケッチェンブラック(CB)を15重量%配合した導電性樹脂を用いて100mm×26mm×0.8mm(厚さ)の樹脂電極を成形した。体積抵抗率は108Ωcmであった。
【0067】
(試験例1)
実施例1〜3と比較例1〜3との樹脂電極を対向電極として放電特性の測定を行った。
【0068】
放電特性の測定は、図4に示すように、樹脂電極を対向電極12Bとして14mm間隔で平行に設置し、中心に金属(タングステン)線からなる極細の放電電極11Bを設置してプラス放電させ、標準動作点(20μm)での印加電圧を複数回測定することにより行った。
【0069】
このときの印加電圧が金属製の対向電極での印加電圧測定値に対する比率によって放電特性を評価した。この結果をバラツキ分を含んだ値として下記表1に示す。
【0070】
評価の基準としては下記式(1)を満たしているのが好ましく、これを合格基準とした。なお、この基準外の放電特性を示す場合は、金属線である放電電極11Aが振動したり、塵埃粒子が殆ど荷電されていないなどの所謂逆電離現象が発生し、静電式集塵装置としては機能を為さなかった。
【0071】
【数1】
【0072】
【表1】
【0073】
表1から分かるように、実施例1、2及び3のポリオレフィン樹脂又はポリエステル樹脂に導電性カーボンブラックを配合した対向電極12Bでは、どちらも基準内の安定した放電特性となることが分かった。また、比較例1のポリエステル樹脂にカーボンファイバーを配合した対向電極では、逆電離現象を起こしてしまった。
【0074】
また、実施例1の電極にて放電特性測定試験と同条件で連続放電を行なった結果、3000時間連続させても放電特性に変化はなく、それ以上継続させても問題は発生していない(現在継続中)。また、プラス放電ではコロナ放電によるオゾンの発生も少ないので、静電式集塵装置としては好都合である。
【0075】
(試験例2)
実施例1、3及び比較例1の樹脂電極の表面をSEMで観察した。この結果、実施例1の樹脂電極の表面は滑らかであり、表面の導通状態が確認でき、カーボンブラックの粒子は観察できなかったが、比較例1の樹脂電極では、カーボンファイバーが観察でき、カーボンファイバーが存在する箇所と存在しない箇所とが明確に観察され、導通している部分と導通していない部分が判別できた。
【0076】
実施例3は、表面の滑らかさや導通状態は実施例1と同様であり、同じくカーボンブラックの粒子は観察できないと同時に、実施例1との表面観察上の違いは見られなかった。
【0077】
(試験例3)
実施例1、実施例3、比較例2及び比較例3の樹脂電極で形成した対向電極12Bの性能評価を行った。
【0078】
性能評価は、15℃湿度27%RHでの集塵効率、表面状態のSEM観測、各対向電極12Bを静電式集塵装置に組み込んだ際の成型品としての放電効率の測定を行った。この結果を下記表2に示す。
【0079】
なお、集塵効率の測定は、図5に示すように、ダクト40の略中間に設けられた絞り部41に実施例1の対向電極12Bを設けた図2に示すものと同じ構成の静電式集塵装置1Bを設けて、その一方から粒子物質を送風手段50により送り、静電式集塵装置1Bの通過前と通過後との粒子物質の量を測定した。
【0080】
詳しくは、ダクト40の送風手段50側には、粒子発生器42によりDOP(フタル酸ジオクチル)からなる集塵用粒子を発生させ、送風手段50により風量1.3m3/minで静電式集塵装置1Bを通過させる。
【0081】
このときの通過前及び通過後の粒子量(粒子数)をダクト40の集塵前粒子採取口43と集塵後粒子採取口44とで粒子量測定器45(パーティクルカウンター)によって測定した。
【0082】
なお、粒子発生器42により発生された粒子物質の粒子径は0.3〜0.5μmであり、集塵前粒子量は1500〜3000個/L(リットル)であった。このような測定結果から集塵効率を下記式(2)により算出した。この結果を下記表2に示す。
【0083】
【数2】
【0084】
【表2】
【0085】
表2から分かるように、実施例1及び3の樹脂電極は環境状態に左右されず安定し、かつ、高い集塵性能を示したが、比較例2の樹脂電極は低温湿度では集塵効率が低下して、測定毎に数値が測定誤差範囲以上にばらつくような不安定な状況であった。
【0086】
また、比較例3の樹脂電極は集塵性能が著しく低くなった。これは、絶対的な導電材の配合量が不足しているために集塵性能が所望の値(例えば、80%)に達しなかったものと思われる。
【0087】
【発明の効果】
以上説明したように、本発明では、基材となる樹脂にポリオレフィン又はポリエステル樹脂に導電性カーボンブラックを配合した導電性樹脂で樹脂電極を構成することにより、導電性カーボンブラックが偏在することなく均一に分散されて導電性を示すので、環境状態に左右されることなく安定して、均一な放電が実現できこれを対向電極とした静電式集塵装置では、集塵効率を向上することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る静電式集塵装置の一例を示す模式図である。
【図2】本発明の実施形態2に係る静電式集塵装置の一例を示す分解斜視図である。
【図3】図2の模式図である。
【図4】本発明の試験例1に係る試験方法を示す平面図である。
【図5】本発明の試験例2に係る試験方法を示す平面図である。
【符号の説明】
1,1A,1B 静電式集塵装置
10,10A アイオナイザ部
11,11A 放電電極
12,12A,12B 対向電極
13 嵌合部
20,20A コレクタ部
21,21A 非集塵電極
22,22A 集塵電極
25 開口部
35 枠部
40 ダクト
42 粒子発生器
45 粒子量測定器
50 送風手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ionizer section of an electrostatic dust collector, a copier, a static eliminator, a resin electrode used as a counter electrode of a corona discharge electrode such as an ozone generator, and a dust collector of a collector section of an electrostatic dust collector. The present invention relates to an electrostatic dust collector using an electrode, an ionizer counter electrode and a collector dust collecting electrode.
[0002]
[Prior art]
For example, an electrostatic dust collector applies a charge to dust particles in an air stream by corona discharge or the like, and collects and removes charged particles by electrostatic force while the charged particles pass through an electric field. Various types are used from large industrial devices to small household devices.
[0003]
In such electrostatic dust collectors, metal materials such as aluminum and stainless steel are generally used for the counter electrode of the ionizer section that charges the dust particles and the dust collection electrode that collects the charged particles.
[0004]
In general, such an electrode is configured such that a counter electrode facing the corona discharge electrode is arranged via a spacer in the ionizer section, and a high-voltage side electrode to which a positive or negative potential is applied similarly to the collector section. The ground electrodes are alternately arranged in parallel via spacers.
[0005]
However, when a metal plate is used for the electrode, there is a problem that the weight of the electrode itself becomes heavy although it is good in terms of conductivity.
[0006]
Moreover, when using a metal plate for an electrode, it is necessary to form and laminate | stack several metal plates through a spacer, and there exists a problem that an assembly process is complicated.
[0007]
For this reason, in order to simplify the electrode assembly process, it is also possible to consider an electrode that is integrally formed by sheet metal press processing or the like without using a laminated structure, but it is possible to increase the depth of the electrode plate more than the pitch between the electrode plates. It is impossible to form an electrode having a large area. In addition, for example, there is a problem that a region in which particles pass through without being charged, such as a bent portion that is bent, and dust collection performance is deteriorated.
[0008]
Furthermore, with an electrode made of a metal plate, it is difficult to create an electrode having a complicated shape, and there is a problem that the cost becomes high.
[0009]
In order to solve such a problem, a technique for forming an electrode with a conductive resin has been developed.
[0010]
The conductive resin can be obtained by blending an appropriate amount of a conductive material such as carbon black, carbon fiber, conductive whisker, and stainless fiber with the resin serving as the base material.
[0011]
However, conventionally, generally, when carbon black is blended as a conductive material, a low resistance value required as a counter electrode cannot be obtained unless a large amount is blended, and the resin strength is greatly reduced. ing. In general, a resin electrode in which carbon fiber is mixed as a conductive material with ABS resin is used.
[0012]
Since carbon fibers are fibrous, there is an advantage that a necessary resistance value can be obtained even in a small amount as compared with particulate carbon black, but there is a problem that sufficient dust collection performance cannot be obtained.
[0013]
Therefore, in order to solve such a problem, there has been proposed a resin electrode made of ABS resin mixed with carbon fiber and further mixed with a water-absorbing polymer (Japanese Patent Laid-Open No. 08-227789).
[0014]
Such a conductive resin mixed with a water-absorbing polymer has the advantage that the resin surface can always have uniform conductivity, is easily conducted, and the amount of carbon fiber kneaded into the resin can be reduced. is there.
[0015]
[Problems to be solved by the invention]
However, a resin electrode mixed with a water-absorbing polymer can obtain a resin electrode having good characteristics and performance such as dust collection efficiency and discharge characteristics at high temperature and humidity (above 15 ° C. and 30%). There is a problem that characteristics and performance deteriorate at a temperature of 30 ° C. or less.
[0016]
In view of such circumstances, it is an object of the present invention to provide a resin electrode having sufficient conductivity as an electrode and having excellent discharge characteristics and dust collection characteristics, and an electrostatic dust collecting apparatus using the resin electrode. To do.
[0017]
[Means for Solving the Problems]
As a result of repeated research to solve the above problems, when carbon fiber is used as a conductive material, it does not conduct unless the conductive materials are in contact with each other, so that the conductive materials are in electrical contact with each other. However, if the fibers are not arranged randomly, it will not be possible to provide electrical conductivity, but as a result, the resin surface is microscopically uneven, so uniform discharge cannot be performed and dust collection efficiency is reduced. I found out. In addition, carbon black has a tendency to be less dispersible and lower in strength than the ABS resin that has been generally used as a resin electrode in the past, and has conductivity, strength, and moldability at an actual use level. However, the predetermined conductive carbon black is uniformly dispersed with respect to a specific resin such as polypropylene, and the surface state tends to be uniform without being unevenly distributed even when viewed microscopically. Therefore, it was found that good discharge characteristics and dust collection characteristics can be obtained, and the present invention has been completed.
[0018]
A first aspect of the present invention is a resin electrode used as a counter electrode of a discharge electrode, and is a resin electrode comprising a conductive resin in which a conductive carbon black is blended with a polyolefin or polyester resin. .
[0019]
In the first aspect, the conductive carbon black can be evenly dispersed by using a polyolefin or polyester resin as the base resin. Further, since the resin surface is microscopically uniform, uniform discharge characteristics can be obtained, and dust collection characteristics are also improved.
[0020]
A second aspect of the present invention, in the first embodiment, the conductive carbon black is a nitrogen specific surface area of 500 meters 2 / g or more, DBP oil absorption amount is equal to or is 200 cm 3/100 g or more Resin electrode.
[0021]
In the second aspect, the dispersion is satisfactorily dispersed in the polyolefin or polyester resin, and uniform discharge is possible.
[0022]
According to a third aspect of the present invention, in the first or second aspect, the volume resistivity is equal to or less than the order of 10 7 Ωcm.
[0023]
In the third aspect, a predetermined volume resistivity can be obtained by uniform dispersion of the conductive carbon black.
[0024]
According to a fourth aspect of the present invention, in any one of the first to third aspects, a resin electrode is used as a counter electrode of a discharge electrode connected to plus.
[0025]
In the fourth aspect, good dust collection characteristics can be obtained by using the resin electrode as the counter electrode of the discharge electrode connected to the plus.
[0026]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the counter electrode of the corona discharge electrode, the collector dust collecting electrode of the electrostatic dust collector, and the ionizer-collector integrated electrostatic dust collecting The resin electrode is used for any one of the electrodes having the functions of an ionizer counter electrode and a collector dust collecting electrode of the apparatus.
[0027]
In the fifth embodiment, good dust collection characteristics can be obtained by using the resin electrode of the present invention for these electrodes.
[0028]
According to a sixth aspect of the present invention, there is provided an electrostatic dust collector characterized in that the resin electrode according to any one of the first to fifth aspects is used as a counter electrode of an ionizer section.
[0029]
In the sixth aspect, the dust collection characteristic can be improved by using a resin electrode having a uniform discharge characteristic as the counter electrode.
[0030]
According to a seventh aspect of the present invention, there is provided the electrostatic collector according to any one of the first to fifth aspects, wherein the counter electrode of the ionizer portion and the dust collecting electrode of the collector portion are integrally formed. In the dust device.
[0031]
In the seventh aspect, by integrally forming the counter electrode and the dust collecting electrode, the manufacturing cost can be greatly reduced and the dust collecting area can be increased to improve the dust collecting efficiency and the strength of the electrode. Can be improved to prevent deformation and the like.
[0032]
In the present invention, by blending a predetermined conductive carbon black into a polyolefin or polyester resin, the conductive carbon black can be uniformly dispersed without being unevenly distributed. Since it becomes uniform, good discharge characteristics and dust collection characteristics can be obtained.
[0033]
Here, examples of the polyolefin resin include polypropylene (PP) and polyethylene (PE).
[0034]
Examples of the polyester resin include polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
[0035]
In such a resin, unlike the ABS resin, the conductive carbon black is uniformly dispersed, and the strength of the resin itself is not decreased significantly.
[0036]
On the other hand, the conductive carbon black is not particularly limited as long as it is uniformly dispersed in these resins and exhibits good conductivity, but has a nitrogen specific surface area of 500 m 2 / g or more and a DBP oil absorption of 200 cm 3. / 100g or more is preferable. Thereby, it is estimated that favorable dispersibility and electroconductivity are obtained.
[0037]
Examples of such conductive carbon black include ketjen black (trade name).
[0038]
Further, the particle size of such conductive carbon black is not particularly limited, but is not more than μm order, preferably about nm order. Since it has such a particle diameter, it can disperse | distribute uniformly to resin and can exhibit a uniform discharge and a favorable dust collection characteristic.
[0039]
Thus, it is desirable that the volume resistivity of the resin electrode made of a resin to which conductive carbon black is added is on the order of 10 7 Ωcm or less. This is to obtain good discharge characteristics and dust collection characteristics.
[0040]
In order to mold the resin electrode of the present invention, it is necessary to use a resin blended with conductive carbon black. To blend the conductive carbon black with a resin as a base material, for example, a mixing roll, a Banbury mixer, It can prepare by melt-mixing by a normal method using a continuous mixer. In this case, it is preferable to mix the conductive carbon black in an amount of 18% by weight to 30% by weight with respect to the base resin. If the blending amount is less than this, the desired conductivity cannot be obtained, and as a result, good discharge characteristics and dust collection characteristics cannot be obtained. Moreover, it is because the mechanical strength of conductive resin will fall when a compounding quantity increases more than this. In particular, when used as an electrode for electrostatic precipitators, a flame retardant is generally added as a safety measure. However, by adding a flame retardant, the machine is more mechanical than when conductive carbon black is added to the resin. There is a tendency for the mechanical strength to decrease. If the mechanical strength drops below a certain strength at this time, the electrode will be broken if it is not specially used in cleaning and assembly work associated with electrode contamination due to dust collection. The merit of the electrostatic dust collector is lost.
[0041]
Although the resin electrode of this invention can be manufactured by shape | molding using resin which mix | blended conductive carbon black as mentioned above, a shaping | molding method is not specifically limited. For example, what is necessary is just to shape | mold by injection molding, press molding, etc. In addition, the resin electrode of the present invention thus manufactured is an ionizer that applies a common potential to the counter electrode of the ionizer portion of the electrostatic dust collector or the counter electrode of the ionizer portion and the dust collection electrode of the collector portion. It can be applied to a collector-integrated electrode.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
[0043]
(Embodiment 1)
FIG. 1 is a schematic diagram showing an outline of an example of an electrostatic dust collector using a resin electrode according to Embodiment 1 of the present invention.
[0044]
As shown in FIG. 1, the electrostatic precipitator 1 has a relatively high
[0045]
In the
[0046]
On the other hand, the collector part 20 has a plurality of flat dust collecting electrodes 22 arranged in parallel on the downstream side of the
[0047]
Further, the dust collection electrode 22 and the
[0048]
Thus, in this embodiment, the
[0049]
In the
[0050]
By forming the
[0051]
Of course, the dust collecting electrode 22 may also be made of polyolefin or polyester resin containing conductive carbon black.
[0052]
On the other hand, the
[0053]
In the present embodiment, only the dust collecting unit and the charging unit are shown as the electrostatic dust collecting device 1, but the electrostatic dust collecting device 1 is used together with a suction unit, a blowing unit, or the like for passing air. It is used by being incorporated in an air purifier, an air conditioner, an air conditioner or the like.
[0054]
(Embodiment 2)
FIG. 2 is an exploded perspective view of an example of an electrostatic dust collector using a resin electrode according to
[0055]
As shown in FIGS. 2 and 3, the electrostatic precipitator 1 </ b> A includes an
[0056]
The
[0057]
Thus, by integrally forming the
[0058]
The
[0059]
On the other hand, 11 A of discharge electrodes which comprise the
[0060]
The
[0061]
(Example 1)
A resin electrode having a size of 100 mm × 26 mm × 0.8 mm (thickness) was formed using a conductive resin in which 30% by weight of Ketjen Black (CB) as a conductive carbon black was blended with polypropylene resin. The volume resistivity was 10 0 to 10 1 Ωcm.
[0062]
(Example 2)
A resin electrode having a size of 100 mm × 26 mm × 0.8 mm (thickness) was formed using a conductive resin in which 20% by weight of ketjen black (CB) was blended as a conductive carbon black with polybutylene terephthalate (PBT). The volume resistivity was 10 3 Ωcm.
[0063]
(Example 3)
A resin electrode having a size of 100 mm × 26 mm × 0.8 mm (thickness) was formed using a conductive resin in which 18% by weight of ketjen black (CB) was blended with polypropylene resin as conductive carbon black. The volume resistivity was 10 5 Ωcm.
[0064]
(Comparative Example 1)
A resin electrode having a size of 100 mm × 26 mm × 3.0 mm (thickness) was formed using a conductive resin in which 20% by weight of carbon fiber (CF) was blended with polybutylene terephthalate (PBT). The volume resistivity was 10 3 Ωcm.
[0065]
(Comparative Example 2)
A resin electrode of 100 mm × 26 mm × 0.8 mm (thickness) was formed using a conductive resin in which 20% by weight of carbon fiber (CF) and 7% by weight of a water-absorbing resin were blended with ABS resin. The volume resistivity was 10 1 to 10 2 Ωcm.
[0066]
(Comparative Example 3)
A resin electrode having a size of 100 mm × 26 mm × 0.8 mm (thickness) was formed using a conductive resin in which 15% by weight of Ketjen Black (CB) as a conductive carbon black was mixed with polypropylene resin. The volume resistivity was 10 8 Ωcm.
[0067]
(Test Example 1)
The discharge characteristics were measured using the resin electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 as counter electrodes.
[0068]
As shown in FIG. 4, the discharge characteristics are measured by placing resin electrodes parallel to each other at intervals of 14 mm as
[0069]
The discharge characteristics were evaluated by the ratio of the applied voltage to the measured value of the applied voltage at the metal counter electrode. The results are shown in the following Table 1 as values including variations.
[0070]
As an evaluation standard, it is preferable to satisfy the following formula (1), and this was set as an acceptance standard. When the discharge characteristics outside the standard are exhibited, a so-called reverse ionization phenomenon occurs such that the
[0071]
[Expression 1]
[0072]
[Table 1]
[0073]
As can be seen from Table 1, in the
[0074]
In addition, as a result of performing continuous discharge with the electrode of Example 1 under the same conditions as in the discharge characteristic measurement test, there was no change in the discharge characteristics even if the discharge was continued for 3000 hours, and no problem occurred even if the discharge was continued for a longer time ( Currently ongoing). In addition, since positive discharge generates less ozone due to corona discharge, it is convenient as an electrostatic dust collector.
[0075]
(Test Example 2)
The surfaces of the resin electrodes of Examples 1 and 3 and Comparative Example 1 were observed with SEM. As a result, the surface of the resin electrode of Example 1 was smooth, and the conduction state of the surface could be confirmed, and carbon black particles could not be observed. However, in the resin electrode of Comparative Example 1, carbon fibers could be observed, and carbon The portion where the fiber is present and the portion where the fiber is not present are clearly observed, and the portion that is conducting and the portion that is not conducting can be distinguished.
[0076]
In Example 3, the surface smoothness and conductive state were the same as in Example 1. Similarly, carbon black particles could not be observed, and at the same time, no difference in surface observation from Example 1 was observed.
[0077]
(Test Example 3)
Performance evaluation of the
[0078]
For performance evaluation, dust collection efficiency at 15 ° C. and humidity 27% RH, surface state SEM observation, and measurement of discharge efficiency as a molded product when each
[0079]
As shown in FIG. 5, the dust collection efficiency is measured by the electrostatic structure having the same configuration as that shown in FIG. 2 in which the
[0080]
Specifically, dust collecting particles made of DOP (dioctyl phthalate) are generated by the particle generator 42 on the air blowing means 50 side of the
[0081]
The particle amount (number of particles) before and after passing at this time was measured by a particle amount measuring device 45 (particle counter) at the pre-dust collection
[0082]
The particle size of the particulate material generated by the particle generator 42 was 0.3 to 0.5 μm, and the amount of particles before dust collection was 1500 to 3000 particles / L (liter). From such measurement results, the dust collection efficiency was calculated by the following formula (2). The results are shown in Table 2 below.
[0083]
[Expression 2]
[0084]
[Table 2]
[0085]
As can be seen from Table 2, the resin electrodes of Examples 1 and 3 were stable regardless of environmental conditions and showed high dust collection performance. However, the resin electrode of Comparative Example 2 had a dust collection efficiency at low temperature and humidity. It was an unstable situation in which the value decreased and the numerical value varied beyond the measurement error range for each measurement.
[0086]
In addition, the resin electrode of Comparative Example 3 has a significantly low dust collection performance. This is presumably because the dust collection performance did not reach a desired value (for example, 80%) due to an insufficient amount of the conductive material.
[0087]
【The invention's effect】
As described above, in the present invention, by forming a resin electrode with a conductive resin in which conductive carbon black is blended with polyolefin or polyester resin as a base resin, the conductive carbon black is uniformly distributed. Since it is dispersed and exhibits conductivity, it is possible to achieve stable and uniform discharge regardless of environmental conditions, and the electrostatic dust collector using this as a counter electrode can improve dust collection efficiency. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an electrostatic dust collecting apparatus according to Embodiment 1 of the present invention.
FIG. 2 is an exploded perspective view showing an example of an electrostatic dust collecting apparatus according to
FIG. 3 is a schematic diagram of FIG. 2;
FIG. 4 is a plan view showing a test method according to Test Example 1 of the present invention.
FIG. 5 is a plan view showing a test method according to Test Example 2 of the present invention.
[Explanation of symbols]
1, 1A, 1B
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002113692A JP3729403B2 (en) | 2001-05-02 | 2002-04-16 | Resin electrode and electrostatic precipitator using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-135473 | 2001-05-02 | ||
JP2001135473 | 2001-05-02 | ||
JP2002113692A JP3729403B2 (en) | 2001-05-02 | 2002-04-16 | Resin electrode and electrostatic precipitator using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003019444A JP2003019444A (en) | 2003-01-21 |
JP2003019444A5 JP2003019444A5 (en) | 2005-08-25 |
JP3729403B2 true JP3729403B2 (en) | 2005-12-21 |
Family
ID=18982932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002113692A Expired - Fee Related JP3729403B2 (en) | 2001-05-02 | 2002-04-16 | Resin electrode and electrostatic precipitator using the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3729403B2 (en) |
KR (1) | KR100868464B1 (en) |
CN (1) | CN1261227C (en) |
WO (1) | WO2002089990A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112015007142T5 (en) | 2015-11-24 | 2018-08-02 | Mitsubishi Electric Corporation | Discharge device and equipped with this air conditioner |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005138034A (en) * | 2003-11-07 | 2005-06-02 | Mitsubishi Electric Corp | Air cleaning apparatus and air conditioning machine fitted with air cleaning apparatus |
JP4553125B2 (en) * | 2003-12-25 | 2010-09-29 | ミドリ安全株式会社 | Charging device, collection device and electrostatic dust collection device |
JP2009509755A (en) * | 2005-09-29 | 2009-03-12 | サーノフ コーポレーション | Ballast circuit for electrostatic particle collection system |
US8795601B2 (en) | 2005-12-29 | 2014-08-05 | Environmental Management Confederation, Inc. | Filter media for active field polarized media air cleaner |
US7708813B2 (en) | 2005-12-29 | 2010-05-04 | Environmental Management Confederation, Inc. | Filter media for active field polarized media air cleaner |
US8814994B2 (en) | 2005-12-29 | 2014-08-26 | Environmental Management Confederation, Inc. | Active field polarized media air cleaner |
US9789494B2 (en) | 2005-12-29 | 2017-10-17 | Environmental Management Confederation, Inc. | Active field polarized media air cleaner |
ATE523256T1 (en) | 2006-06-15 | 2011-09-15 | Daikin Ind Ltd | DUST COLLECTOR |
JP2008023444A (en) * | 2006-07-20 | 2008-02-07 | Daikin Ind Ltd | Dust collector |
CN102123794B (en) * | 2008-08-21 | 2013-06-19 | 松下电器产业株式会社 | Electrical dust precipitator |
CN103567070B (en) * | 2012-10-12 | 2016-06-15 | 原皓 | A kind of device has the wet scrubber of corrosion-resistant dust collector pole |
KR101334927B1 (en) * | 2013-05-03 | 2013-11-29 | 한국기계연구원 | High temperature electrostatic precipitator |
KR101645847B1 (en) * | 2015-01-19 | 2016-08-04 | 원효식 | Dual channel electric precipitator |
EP3283226A4 (en) | 2015-04-14 | 2018-12-05 | Environmental Management Confederation Inc. | Corrugated filtration media for polarizing air cleaner |
JP6600555B2 (en) * | 2015-12-28 | 2019-10-30 | ミドリ安全株式会社 | Electric dust collector |
CN106733181B (en) * | 2017-02-28 | 2019-03-15 | 广东美的环境电器制造有限公司 | A kind of electrodecontamination component and air purifier |
FR3067618B1 (en) * | 2017-06-20 | 2019-07-19 | Mgi Coutier | METHOD FOR MANUFACTURING ELECTRO-FILTER AND ELECTRO-FILTER THEREFOR |
KR102027975B1 (en) * | 2017-09-04 | 2019-10-02 | 경북대학교 산학협력단 | Electrostatic Carbon Filter, Dust Collecting Device and Dust Collecting Method thereof |
CA3117260A1 (en) * | 2018-10-22 | 2020-04-30 | Shanghai Bixiufu Enterprise Management Co., Ltd. | System and method for removing dust from air |
CN115646654B (en) * | 2022-10-25 | 2023-09-08 | 国能(山东)能源环境有限公司 | Flame-retardant conductive silicon rubber anode film for wet electric precipitation and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS567547U (en) * | 1979-06-27 | 1981-01-22 | ||
JPS6351963A (en) * | 1986-08-21 | 1988-03-05 | Calp Corp | Electrode for dust collector |
SE9504205D0 (en) * | 1995-11-24 | 1995-11-24 | Pharmacia Biotech Ab | A chromatographic separation method and device |
JP3360582B2 (en) * | 1997-10-15 | 2002-12-24 | ダイキン工業株式会社 | Dust collection element for air purifier |
-
2002
- 2002-04-16 JP JP2002113692A patent/JP3729403B2/en not_active Expired - Fee Related
- 2002-05-02 CN CNB028031660A patent/CN1261227C/en not_active Expired - Fee Related
- 2002-05-02 KR KR1020037007435A patent/KR100868464B1/en not_active IP Right Cessation
- 2002-05-02 WO PCT/JP2002/004389 patent/WO2002089990A1/en active Search and Examination
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112015007142T5 (en) | 2015-11-24 | 2018-08-02 | Mitsubishi Electric Corporation | Discharge device and equipped with this air conditioner |
DE112015007142B4 (en) | 2015-11-24 | 2022-08-25 | Mitsubishi Electric Corporation | Unloading device and air conditioner equipped with it |
Also Published As
Publication number | Publication date |
---|---|
CN1486219A (en) | 2004-03-31 |
KR100868464B1 (en) | 2008-11-12 |
KR20040034583A (en) | 2004-04-28 |
JP2003019444A (en) | 2003-01-21 |
CN1261227C (en) | 2006-06-28 |
WO2002089990A1 (en) | 2002-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3729403B2 (en) | Resin electrode and electrostatic precipitator using the same | |
JP4033410B2 (en) | Electrostatic filter device | |
AU2007259679B2 (en) | Dust collector | |
WO2013161534A1 (en) | Corona discharge device and air conditioner | |
EP1262239A2 (en) | Electrostatic air cleaning device | |
KR100281769B1 (en) | Electrical dust collector | |
AU2007259678B2 (en) | Dust collector | |
JP4347837B2 (en) | Electric dust collecting device and air treatment apparatus equipped with the electric dust collecting device | |
JP2007007589A (en) | Electric dust collection device and air cleaning apparatus incorporating the same | |
JP4553125B2 (en) | Charging device, collection device and electrostatic dust collection device | |
JP4149526B2 (en) | Resin electrode | |
JP6834133B2 (en) | Air cleaner | |
JPH11151452A (en) | Electric dust collector | |
JP3674751B2 (en) | Electric dust collector | |
EP3932563B1 (en) | Charging device and dust collecting apparatus | |
JP2011161355A (en) | Dust collecting apparatus | |
KR102167328B1 (en) | Electric dust collector | |
JP2010063964A (en) | Dust collecting apparatus | |
JP3618591B2 (en) | Electrostatic dust collector | |
JP2018167189A (en) | Electric dust collector | |
CN210373804U (en) | Electrostatic dust removal module and air treatment device | |
JP7300298B2 (en) | Charging device and dust collector | |
EP2052782A1 (en) | Dust collecting apparatus | |
JP2011016056A (en) | Electrostatic precipitator and air cleaner | |
KR20200004458A (en) | Electric dust collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050929 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081014 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131014 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |