JP7300298B2 - Charging device and dust collector - Google Patents

Charging device and dust collector Download PDF

Info

Publication number
JP7300298B2
JP7300298B2 JP2019070672A JP2019070672A JP7300298B2 JP 7300298 B2 JP7300298 B2 JP 7300298B2 JP 2019070672 A JP2019070672 A JP 2019070672A JP 2019070672 A JP2019070672 A JP 2019070672A JP 7300298 B2 JP7300298 B2 JP 7300298B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
charging device
airflow
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019070672A
Other languages
Japanese (ja)
Other versions
JP2020168597A (en
Inventor
大輔 福岡
学 武沢
政郎 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2019070672A priority Critical patent/JP7300298B2/en
Priority to KR1020200036648A priority patent/KR20200117868A/en
Priority to US17/594,125 priority patent/US20220161273A1/en
Priority to PCT/KR2020/004361 priority patent/WO2020204546A1/en
Priority to EP20783908.5A priority patent/EP3932563A4/en
Publication of JP2020168597A publication Critical patent/JP2020168597A/en
Application granted granted Critical
Publication of JP7300298B2 publication Critical patent/JP7300298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/04Ionising electrode being a wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Description

本発明は、帯電装置及び集塵装置に関する。 The present invention relates to charging devices and dust collectors.

コロナ放電用高圧電源の高圧側出力端子が導線および碍管を介してコロナ放電極の端子部に接続され、また接地側出力端子が導線を介して対向電極に接続され、且つ接地されており、対向電極はガス流に平行でかつ相互に平行に設けられた板状の電極で、その天井板、底板と共に断面が矩形のガスダクトを形成しており、コロナ放電極は相隣る対向電極の間隙の中心に中心軸にそって鉛直に絶縁配設され、上部で天井板を貫通する碍管に、下部で底板に設けた碍子にそれぞれ固定支持されており、ガスダクトの上流側および下流側に付設された金網状保護体が対向電極群と共に接地され、補助的な対向電極の役目も果たしているコロナ放電ユニットは、知られている(例えば、特許文献1)。 A high-voltage side output terminal of a high-voltage power supply for corona discharge is connected to a terminal portion of the corona discharge electrode via a conductor and a porcelain tube, and a ground side output terminal is connected to and grounded via a conductor to the counter electrode. The electrodes are plate-shaped electrodes arranged parallel to the gas flow and parallel to each other. Together with the ceiling plate and the bottom plate, they form a gas duct with a rectangular cross section. It is vertically insulated along the center axis, and is fixedly supported by the porcelain pipe that penetrates the ceiling plate at the top and the insulator provided on the bottom plate at the bottom, respectively. A corona discharge unit is known in which a wire mesh protector is grounded together with a group of counter electrodes and also serves as an auxiliary counter electrode (for example, Patent Document 1).

特開平8-112549号公報JP-A-8-112549

ここで、接地電極の処理気流の最上流側の端部よりも処理気流の上流側に放電電極を配置する構成を採用した場合、接地電極は、放電電極により発生され拡散されたイオンを、処理気流に交わる方向に引き寄せることができないので、処理気流中に含まれる浮遊微粒子を帯電させるための広い空間を確保することができない。 Here, in the case of adopting a configuration in which the discharge electrode is arranged upstream of the processing airflow from the most upstream end of the processing airflow of the ground electrode, the ground electrode treats the ions generated and diffused by the discharge electrode. Since the particles cannot be drawn in the direction intersecting the airflow, it is not possible to secure a large space for charging the suspended fine particles contained in the processing airflow.

また、放電電極により発生され拡散されたイオンを引き寄せる接地電極として、処理気流に沿う方向に平板状の接地電極を配置する構成を採用した場合、イオンが拡散する空間を広くとる必要があるので、処理気流中に含まれる浮遊微粒子を帯電させる装置をコンパクトにすることができない。 Further, when adopting a configuration in which a flat plate-shaped ground electrode is arranged in a direction along the processing airflow as the ground electrode that attracts the ions generated and diffused by the discharge electrode, it is necessary to secure a wide space for the ions to diffuse. It is not possible to make a compact device for charging suspended particles contained in the processing air stream.

本発明の目的は、接地電極の処理気流の最上流側の端部よりも処理気流の上流側に放電電極を配置するよう構成された場合に比較して、処理気流中に含まれる浮遊微粒子を帯電させるための広い空間を確保できるようにすることにある。 An object of the present invention is to reduce suspended particulates contained in a processing airflow as compared to a configuration in which a discharge electrode is arranged upstream of the processing airflow from the most upstream end of the processing airflow of a ground electrode. To secure a wide space for electrification.

また、本発明の他の目的は、放電電極により発生され拡散されたイオンを引き寄せる接地電極として、処理気流に沿う方向に平板状の接地電極を配置するよう構成された場合に比較して、処理気流中に含まれる浮遊微粒子を帯電させる装置をコンパクトにすることにある。 Another object of the present invention is to provide a ground electrode for attracting ions generated and diffused by the discharge electrode, which is arranged in the direction along the processing gas flow. To make a device for charging floating fine particles contained in an air stream compact.

かかる目的のもと、本発明は、複数の繊維状導電体により形成され、放電によりイオンを発生させ拡散させる放電電極と、接地電位に保たれ、放電電極により発生され拡散されたイオンを引き寄せて、処理気流中に含まれる浮遊微粒子をイオンにより帯電させる接地電極とを備え、放電電極は、処理気流内で接地電極間に配設され、少なくとも、放電電極の複数の繊維状導電体の全部又は一部が、接地電極の処理気流の最上流側の端部よりも処理気流の下流側に配置されている帯電装置を提供する。 Based on this object, the present invention provides a discharge electrode formed of a plurality of fibrous conductors for generating and diffusing ions by discharge, and a discharge electrode maintained at ground potential to attract the ions generated and diffused by the discharge electrode. and a ground electrode for ion-charging suspended fine particles contained in the treatment gas stream, the discharge electrode being disposed between the ground electrodes in the treatment gas stream, and at least all or all of the plurality of fibrous conductors of the discharge electrode. A portion of the charging device is located downstream of the process airflow from the most upstream end of the ground electrode.

ここで、放電電極は、隣接する2つの接地電極間の中央に配設され、処理気流に直交する方向の接地電極までの離間距離が20mm以上100mm以下となるように、配置されている、ものであってよい。 Here, the discharge electrode is arranged in the center between two adjacent ground electrodes, and is arranged so that the separation distance to the ground electrode in the direction perpendicular to the processing airflow is 20 mm or more and 100 mm or less. can be

また、接地電極は、平板状の導電性部材により形成されている、ものであってよい。その場合、接地電極は、処理気流に直交する方向の特定の位置に放電電極に対向するように配置されている、ものであってよい。 Also, the ground electrode may be formed of a flat plate-like conductive member. In that case, the ground electrode may be arranged so as to face the discharge electrode at a specific position in the direction orthogonal to the process airflow.

また、本発明は、複数の繊維状導電体により形成され、放電によりイオンを発生させ拡散させる放電電極と、接地電位に保たれ、放電電極により発生され拡散されたイオンを引き寄せて、処理気流中に含まれる浮遊微粒子をイオンにより帯電させる接地電極とを備え、接地電極は、放電電極により発生され拡散されたイオンを、処理気流に交わる方向に引き寄せる位置に配置されている帯電装置も提供する。 In addition, the present invention includes a discharge electrode formed of a plurality of fibrous conductors for generating and diffusing ions by discharge, and a discharge electrode maintained at a ground potential, attracting the ions generated and diffused by the discharge electrode, and Also provided is a charging device provided with a ground electrode for charging floating fine particles contained in the discharge electrode with ions, wherein the ground electrode is arranged at a position to draw the ions generated and diffused by the discharge electrode in a direction intersecting the processing air flow.

更に、本発明は、複数の繊維状導電体により形成され、放電によりイオンを発生させ拡散させる放電電極と、接地電位に保たれ、放電電極により発生され拡散されたイオンを引き寄せて、処理気流中に含まれる浮遊微粒子をイオンにより帯電させる接地電極とを備え、接地電極は、処理気流に沿う方向に配置された平板状の第1の電極部と、処理気流に交差する方向に配置された平板状の第2の電極部とを含む帯電装置も提供する。 Furthermore, the present invention includes a discharge electrode that is formed of a plurality of fibrous conductors and that generates and diffuses ions by discharge, and a discharge electrode that is maintained at a ground potential and attracts the ions generated and diffused by the discharge electrode into the process gas stream. and a ground electrode for electrifying the suspended fine particles contained in the airflow with ions. The ground electrode includes a flat plate-shaped first electrode portion arranged in a direction along the processing airflow, and a flat plate-shaped first electrode portion arranged in a direction intersecting the processing airflow. A charging device is also provided including a second electrode portion having a shape.

ここで、接地電極は、第1の電極部と第2の電極部とが略垂直になるように、第1の電極部の処理気流の上流側の先端部分と第2の電極部の中央部分とが接続されることにより、形成されている、ものであってよい。その場合、接地電極は、第1の電極部の処理気流に沿う方向の長さをL1とし、第2の電極部の放電電極に向かう方向の長さをL2とした場合に、0.4≦L2/L1≦2である、ものであってよい。 Here, the ground electrode is arranged between the tip portion of the first electrode portion on the upstream side of the processing air flow and the central portion of the second electrode portion so that the first electrode portion and the second electrode portion are substantially perpendicular to each other. and may be formed by connecting the . In that case, the ground electrode has a length of 0.4 ≦ L2/L1≦2.

また、放電電極は、接地電極の処理気流の最上流側の端部よりも処理気流の下流側に配置されている、ものであってよい。 Further, the discharge electrode may be disposed downstream of the processing airflow relative to the most upstream end of the processing airflow of the ground electrode.

また、放電電極は、隣接する2つの接地電極間の中央に、何れかの接地電極までの距離が20mm以上100mm以下となるように、配置されている、ものであってよい。 Also, the discharge electrode may be arranged in the center between two adjacent ground electrodes so that the distance to either ground electrode is 20 mm or more and 100 mm or less.

また、複数の繊維状導電体は、炭素繊維であってよい。 Also, the plurality of fibrous conductors may be carbon fibers.

更に、帯電装置は、放電電極と接地電極との間に高電圧を印加する高電圧電源を更に備えた、ものであってよい。その場合、高電圧電源は、放電電極と接地電極との間に、正極性又は負極性の直流高電圧を印加する、ものであってもよいし、放電電極と接地電極との間に、正極性又は負極性のパルス型又は交番型の高電圧を印加する、ものであってもよいし、放電電極と接地電極との間に、予め定められた間隔で、通常印加する高電圧とは逆極性の高電圧を印加する、ものであってもよい。 Furthermore, the charging device may further include a high voltage power source that applies a high voltage between the discharge electrode and the ground electrode. In that case, the high-voltage power supply may apply a positive or negative DC high voltage between the discharge electrode and the ground electrode, or apply a positive or negative DC high voltage between the discharge electrode and the ground electrode. A pulse type or alternating type high voltage of polarity or negative polarity may be applied, or a high voltage opposite to the high voltage normally applied at a predetermined interval between the discharge electrode and the ground electrode. It may be one that applies a high voltage of polarity.

更にまた、本発明は、上記の何れかの帯電装置と、帯電装置により帯電された浮遊微粒子を付着させることにより集塵する集塵部とを備えた集塵装置も提供する。 Furthermore, the present invention also provides a dust collector comprising any one of the charging devices described above and a dust collecting section that collects dust by adhering airborne fine particles charged by the charging device.

ここで、集塵部は、集塵フィルタにより構成されている、ものであってもよいし、熱交換器により構成されている、ものであってもよい。 Here, the dust collection part may be configured by a dust collection filter, or may be configured by a heat exchanger.

本発明によれば、接地電極の処理気流の最上流側の端部よりも処理気流の上流側に放電電極を配置するよう構成された場合に比較して、処理気流中に含まれる浮遊微粒子を帯電させるための広い空間を確保できるようになる。 According to the present invention, compared to the case where the discharge electrode is arranged upstream of the processing airflow from the end of the ground electrode on the most upstream side of the processing airflow, suspended particles contained in the processing airflow are reduced. It becomes possible to secure a large space for electrification.

また、本発明によれば、放電電極により発生され拡散されたイオンを引き寄せる接地電極として、処理気流に沿う方向に平板状の接地電極を配置するよう構成された場合に比較して、処理気流中に含まれる浮遊微粒子を帯電させる装置をコンパクトにすることができる。 In addition, according to the present invention, as compared with the case where a flat plate-shaped ground electrode is arranged in the direction along the processing airflow as the grounding electrode that attracts the ions generated and diffused by the discharge electrode, It is possible to make the device for charging the suspended fine particles contained in the compact.

本発明の第1の実施の形態における電気集塵機の全体構成を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the whole electric dust collector structure in the 1st Embodiment of this invention. 本発明の第1の実施の形態で放電電極により放電が発生している際のイオンの流れを示した斜視図である。FIG. 4 is a perspective view showing the flow of ions when discharge is generated by the discharge electrode in the first embodiment of the present invention; 本発明の第1の実施の形態で放電電極により放電が発生している際のイオンの流れを示した上面図である。FIG. 4 is a top view showing the flow of ions when a discharge is generated by the discharge electrode in the first embodiment of the present invention; (a)は実施例1の帯電部の構成を示した斜視図であり、(b)は比較例1の帯電部の構成を示した斜視図である。8A is a perspective view showing the structure of a charging unit of Example 1, and FIG. 7B is a perspective view showing the structure of a charging unit of Comparative example 1. FIG. 実施例1の帯電部と比較例1の帯電部とでのイオン拡散方向の違いを示したグラフである。5 is a graph showing the difference in ion diffusion direction between the charging portion of Example 1 and the charging portion of Comparative Example 1. FIG. 実施例1の帯電部と比較例1の帯電部とでの集塵性能を得るためのオゾン濃度に関する性能の違いを示したグラフである。5 is a graph showing the difference in performance with respect to ozone concentration for obtaining dust collection performance between the charging portion of Example 1 and the charging portion of Comparative Example 1. FIG. (a)は実施例1の帯電部の構成を示した斜視図であり、(b)は比較例2の帯電部の構成を示した斜視図である。8A is a perspective view showing the structure of a charging unit of Example 1, and FIG. 7B is a perspective view showing the structure of a charging unit of Comparative example 2. FIG. 実施例1の帯電部と比較例2の帯電部とでの集塵性能を得るための放電電圧に関する性能の違いを示したグラフである。5 is a graph showing the difference in performance regarding discharge voltage for obtaining dust collection performance between the charging portion of Example 1 and the charging portion of Comparative Example 2. FIG. 実施例1の帯電部における放電ギャップと集塵性能及びオゾン発生特性との関係を示したグラフである。5 is a graph showing the relationship between the discharge gap, the dust collection performance, and the ozone generation performance in the charging section of Example 1. FIG. 放電ギャップとスパーク耐性との関係を示したグラフである。4 is a graph showing the relationship between discharge gap and spark resistance. (a)は実施例1の帯電部の構成を示した斜視図であり、(b)は比較例3の帯電部の構成を示した斜視図である。8A is a perspective view showing the configuration of a charging unit of Example 1, and FIG. 7B is a perspective view showing the configuration of a charging unit of Comparative Example 3. FIG. 実施例1の帯電部と比較例3の帯電部とでの集塵性能を得るための放電電圧に関する性能の違いを示したグラフである。5 is a graph showing the difference in performance with respect to discharge voltage for obtaining dust collection performance between the charging portion of Example 1 and the charging portion of Comparative Example 3. FIG. 本発明の第1の実施の形態の変形例を示した上面図である。It is a top view showing a modification of a 1st embodiment of the present invention. 本発明の第2の実施の形態における電気集塵機の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the electrostatic precipitator in the 2nd Embodiment of this invention. 本発明の第2の実施の形態で放電電極により放電が発生している際のイオンの流れを示した斜視図である。FIG. 8 is a perspective view showing the flow of ions when discharge is generated by the discharge electrode in the second embodiment of the present invention; 本発明の第2の実施の形態で放電電極により放電が発生している際のイオンの流れを示した上面図である。FIG. 10 is a top view showing the flow of ions when a discharge is generated by the discharge electrode in the second embodiment of the present invention; 実施例1乃至実施例3の効果について示した図である。FIG. 5 is a diagram showing the effects of Examples 1 to 3; 実施例4乃至実施例6の効果について示した図である。FIG. 11 is a diagram showing the effects of Examples 4 to 6; 実施例6の帯電部の実施例4の帯電部に対する効果の違いを具体的に示した図である。FIG. 10 is a diagram specifically showing the difference in effect between the charging unit of Example 6 and the charging unit of Example 4; (a),(b)は、本発明の第2の実施の形態におけるT字型の接地電極の脚部の幅と頂辺部の幅との比の望ましい範囲について説明するための図である。(a) and (b) are diagrams for explaining the desirable range of the ratio between the width of the leg portion and the width of the top portion of the T-shaped ground electrode according to the second embodiment of the present invention. . (a),(b)は、本発明の第2の実施の形態におけるT字型の接地電極の脚部の幅と頂辺部の幅との比の望ましい範囲について説明するための図である。(a) and (b) are diagrams for explaining the desirable range of the ratio between the width of the leg portion and the width of the top portion of the T-shaped ground electrode according to the second embodiment of the present invention. .

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[本実施の形態の背景及び概要]
空気清浄機や空気調和機等の電気製品には、放電を用いて浮遊微粒子を帯電させ集塵する電気集塵機が備えられているものがある。このような電気集塵機は、放電により浮遊微粒子を帯電させる帯電部と、帯電させた浮遊微粒子を集塵する集塵部とを備えている。帯電部においては、高圧電極(放電電極)と、対向する接地電極との間に数kVの高電圧を印加して放電を発生させ、放電により発生するイオンにより浮遊微粒子を帯電させる。
[Background and outline of the present embodiment]
Some electrical appliances such as air cleaners and air conditioners are equipped with an electrostatic precipitator that collects airborne particles by charging them with electrical discharge. Such an electrostatic precipitator includes a charging section that charges floating particles by discharge, and a dust collecting section that collects the charged suspended particles. In the charging section, a high voltage of several kV is applied between a high-voltage electrode (discharge electrode) and an opposing ground electrode to generate discharge, and ions generated by the discharge charge the suspended fine particles.

放電電極がワイヤ状又は針状である帯電部では、高い集塵効率を得るために放電電流を大きくする必要があり、放電に伴って発生するオゾン(O)の量が増加する。オゾンは独特の刺激臭気を持つため、室内に放出する場合、オゾン濃度は環境基準値(50ppb)以下とする必要がある。また放電電極がワイヤ状である場合、運転を続ける間に電極が汚染され、それによりワイヤが振動し、不快音の発生やスパーク異常の発生が引き起こされることもある。 In a charging section having a wire-shaped or needle-shaped discharge electrode, it is necessary to increase the discharge current in order to obtain high dust collection efficiency, and the amount of ozone (O 3 ) generated with the discharge increases. Since ozone has a peculiar irritating odor, the ozone concentration must be below the environmental standard value (50 ppb) when released indoors. Further, when the discharge electrode is wire-shaped, the electrode may become contaminated during continuous operation, causing the wire to vibrate, causing unpleasant noise and abnormal sparking.

放電電極が繊維状導電体で構成された帯電部もあり、それにおいてはオゾン発生量は低く抑えられるが、放電自体が帯電部周囲の状態に影響を受け易く、性能が安定しないという課題がある。また、このような帯電部では、拡散荷電を主とした荷電方式であるため拡散空間を広くとる必要があり、帯電ユニットをコンパクトにするのが難しい。 There is also a charging unit in which the discharge electrode is composed of a fibrous conductor, and in this case, the amount of ozone generated can be kept low, but the discharge itself is easily affected by the surrounding conditions of the charging unit, and there is a problem that the performance is unstable. . Moreover, in such a charging unit, since the charging method is mainly based on diffusion charging, it is necessary to secure a wide diffusion space, which makes it difficult to make the charging unit compact.

そこで、本実施の形態は、高い集塵効率が得られ、かつ、オゾン発生、ワイヤ振動、スパーク発生、放電不安定性といった課題が解決される、繊維状導電体を放電電極に用いた帯電装置、及び、その帯電装置を用いた電気集塵機を提供する。また、これらに加えて、帯電ユニットの薄型化構成においても本課題を解決し、帯電部周囲に影響を及ぼすチャージアップの抑制の両立も可能な、繊維状導電体の放電電極とT字型プレートの接地電極とを用いた帯電装置、及び、その帯電装置を用いた電気集塵機も提供する。以下では、前者を第1の実施の形態として、後者を第2の実施の形態として説明する。 Therefore, the present embodiment provides a charging device using a fibrous conductor as a discharge electrode, which can obtain high dust collection efficiency and solve problems such as ozone generation, wire vibration, spark generation, and discharge instability. And, an electrostatic precipitator using the charging device is provided. In addition to these, the discharge electrode and the T-shaped plate made of fibrous conductors can solve this problem even in a thin structure of the charging unit, and can simultaneously suppress the charge-up that affects the surroundings of the charging unit. and an electrostatic precipitator using the charging device. Hereinafter, the former will be described as a first embodiment, and the latter as a second embodiment.

[第1の実施の形態における電気集塵機の構成]
図1は、本実施の形態における電気集塵機1の全体構成を示す斜視図である。
[Configuration of electrostatic precipitator in first embodiment]
FIG. 1 is a perspective view showing the overall configuration of an electrostatic precipitator 1 according to this embodiment.

図示するように、電気集塵機1は、帯電部10、集塵部30、ファン40、これらを収納する筐体50、及び、帯電部10と集塵部30とに高電圧を供給する高電圧電源60を備える。ここでは、筐体50を破線で示し、筐体50の内部に設けられた帯電部10及び集塵部30の構成が見えるようにしている。この電気集塵機1は、帯電部10と集塵部30と機能が分離した二段電気集塵方式である。ここで、帯電部10と集塵部30とは、脱着可能なユニットの形態として構成されていても構わない。本実施の形態では、帯電装置の一例として、帯電部10を設けている。 As shown in the figure, the electric dust collector 1 includes a charging section 10, a dust collecting section 30, a fan 40, a housing 50 that houses them, and a high voltage power supply that supplies a high voltage to the charging section 10 and the dust collecting section 30. 60. Here, the housing 50 is indicated by a dashed line so that the configuration of the charging section 10 and the dust collection section 30 provided inside the housing 50 can be seen. This electrostatic precipitator 1 is of a two-stage electrostatic precipitator system in which the functions of the charging section 10 and the dust collecting section 30 are separated. Here, the charging section 10 and the dust collecting section 30 may be configured in the form of a detachable unit. In this embodiment, a charging unit 10 is provided as an example of a charging device.

ここで、空気の流れ(通風)の方向(通風方向)は、矢印で示すように、帯電部10から集塵部30に向かう方向に設定されている。通風は、集塵部30の通風方向の下流側(風下側)に設けられたファン40により行われる。 Here, the direction of air flow (ventilation) is set in the direction from the charging section 10 to the dust collecting section 30 as indicated by the arrow. Ventilation is performed by a fan 40 provided on the downstream side (leeward side) of the dust collecting section 30 in the ventilation direction.

帯電部10は、放電を発生する複数の放電電極11と、接地(GND)される複数の接地電極12と、高電圧電源60から供給された高電圧を複数の放電電極11に給電するための給電部材13とを備える。放電電極11は、高電圧を印加される電極であるので、高圧電極と呼ばれることもある。また、接地電極12は、放電電極11に対向するように設けられるため、対向電極と呼ばれることもある。図には、複数の放電電極11の一例として放電電極11a~11fを示し、複数の接地電極12の一例として接地電極12a~12cを示し、複数の給電部材13の一例として給電部材13a,13bを示しているが、放電電極11、接地電極12、給電部材13の数はこれに限られるものではない。 The charging unit 10 includes a plurality of discharge electrodes 11 that generate discharge, a plurality of ground electrodes 12 that are grounded (GND), and a high voltage supplied from a high voltage power supply 60 to the plurality of discharge electrodes 11 . and a power supply member 13 . Since the discharge electrode 11 is an electrode to which a high voltage is applied, it is sometimes called a high voltage electrode. Also, since the ground electrode 12 is provided so as to face the discharge electrode 11, it is sometimes called a counter electrode. The figure shows discharge electrodes 11a to 11f as examples of the plurality of discharge electrodes 11, shows ground electrodes 12a to 12c as examples of the plurality of ground electrodes 12, and shows power supply members 13a and 13b as examples of the plurality of power supply members 13. Although shown, the numbers of discharge electrodes 11, ground electrodes 12, and power supply members 13 are not limited to these.

ところで、本実施の形態において、放電電極11は、複数の繊維状導電体により形成される。複数の繊維状導電体は、例えば、繊維径が約7μmの炭素繊維6000本を束ねたものであってよい。そして、この炭素繊維の束の後端をかしめ部14でかしめ、先端をブラシ状に広げて放電電極11とするとよい。その際、繊維状導電体のかしめ部14から突出した部分の長さは、例えば5mmであってよく、繊維状導電体の先端からかしめ部14の後端(給電部材13側の端部)までの長さは、例えば9mmであってよい。図では、放電電極11a~11fが、それぞれ、複数の繊維状導電体をかしめ部14a~14fでかしめることにより構成されている。 By the way, in this embodiment, the discharge electrode 11 is formed of a plurality of fibrous conductors. The plurality of fibrous conductors may be, for example, a bundle of 6000 carbon fibers with a fiber diameter of about 7 μm. Then, the rear end of the bundle of carbon fibers is crimped with a crimping portion 14, and the tip is widened like a brush to form the discharge electrode 11. FIG. At this time, the length of the portion of the fibrous conductor protruding from the crimped portion 14 may be, for example, 5 mm, and the length from the tip of the fibrous conductor to the rear end of the crimped portion 14 (the end on the power supply member 13 side) may be, for example, 9 mm. In the figure, each of the discharge electrodes 11a to 11f is configured by crimping a plurality of fibrous conductors with crimping portions 14a to 14f.

また、本実施の形態において、放電電極11は、処理気流の上流に向けて配置される。例えば、放電電極11を95mmの間隔で3個取り付けた給電部材13が、放電電極11の炭素繊維の先端が処理気流と平行でかつ処理気流の上流を向くように2列配置される。図では、放電電極11a~11cを取り付けた給電部材13aと、放電電極11d~11fを取り付けた給電部材13bとが、各放電電極11の炭素繊維の先端が処理気流と平行でかつ処理気流の上流を向くように配置されている。 Further, in the present embodiment, the discharge electrode 11 is arranged toward the upstream of the treatment airflow. For example, the power supply members 13 each having three discharge electrodes 11 attached at intervals of 95 mm are arranged in two rows such that the tip of the carbon fiber of the discharge electrodes 11 is parallel to the processing gas stream and faces upstream of the processing gas stream. In the figure, the power supply member 13a to which the discharge electrodes 11a to 11c are attached and the power supply member 13b to which the discharge electrodes 11d to 11f are attached are arranged so that the tips of the carbon fibers of the respective discharge electrodes 11 are parallel to the processing gas stream and upstream of the processing gas stream. are placed facing the

更に、本実施の形態では、放電電極11の両側に接地電極12が配置される。つまり、放電電極11で放電により生じるイオンが、処理気流の上流側に向かって、かつ、処理気流を横断するように拡散する位置に接地電極12が配置される。換言すれば、接地電極12は、放電電極11により発生され拡散されたイオンを処理気流に交わる方向に引き寄せる位置に配置される。例えば、放電電極11から、処理気流に直交する方向に60mmの位置に、幅10mmの接地電極12が、放電電極11のかしめ部14の後端と接地電極12の後端(処理気流の下流側の端部)とが揃うように配置される。図では、接地電極12aが、放電電極11a~11cを取り付けた給電部材13aから処理気流に直交する方向における左側の位置に配置され、接地電極12bが、放電電極11d~11fを取り付けた給電部材13bから処理気流に直交する方向における右側の位置に配置されている。また、接地電極12cが、給電部材13aから処理気流に直交する方向における右側の位置で、かつ、給電部材13bから処理気流に直交する方向における左側の位置に配置されている。 Furthermore, in this embodiment, ground electrodes 12 are arranged on both sides of the discharge electrode 11 . That is, the ground electrode 12 is arranged at a position where the ions generated by the discharge at the discharge electrode 11 diffuse toward the upstream side of the processing airflow and cross the processing airflow. In other words, the ground electrode 12 is arranged at a position that attracts the ions generated and diffused by the discharge electrode 11 in the direction intersecting the process gas flow. For example, at a position 60 mm away from the discharge electrode 11 in the direction orthogonal to the processing airflow, the ground electrode 12 having a width of 10 mm is positioned at the rear end of the caulked portion 14 of the discharge electrode 11 and the rear end of the ground electrode 12 (on the downstream side of the processing airflow). ) are aligned with each other. In the drawing, the ground electrode 12a is located on the left side of the power supply member 13a to which the discharge electrodes 11a to 11c are attached in the direction orthogonal to the processing airflow, and the ground electrode 12b is located on the left side of the power supply member 13b to which the discharge electrodes 11d to 11f are attached. is located on the right side in the direction perpendicular to the processing airflow. The ground electrode 12c is arranged on the right side of the power supply member 13a in the direction orthogonal to the processing airflow and on the left side of the power supply member 13b in the direction orthogonal to the processing airflow.

接地電極12は、導電性を有する平板状の部材(平板状の導電性部材)で構成されている。そして、接地電極12は、平板状の部材の平面が通風方向に沿う方向に設けられている。図1では、接地電極12の平面は、通風方向と一致させている(接地電極12の平面と通風方向とのなす角度が0°)が、必ずしも一致しなくてよい。 The ground electrode 12 is composed of a plate-like member having conductivity (plate-like conductive member). Further, the ground electrode 12 is provided in a direction in which the flat surface of the flat plate-like member is along the airflow direction. In FIG. 1, the plane of the ground electrode 12 coincides with the airflow direction (the angle between the plane of the ground electrode 12 and the airflow direction is 0°), but the plane does not necessarily have to coincide with the airflow direction.

集塵部30は、交互に積層された、表面が絶縁性材料の膜で被覆された板状の高圧電極31と、導電性を有する板状の対向電極32とを備える。尚、対向電極32は、荷電された粒子の電荷を逃がす形態であればよく、導電性を有する樹脂膜等で被覆されたものであっても構わない。高圧電極31と対向電極32の間が通風方向となる。対向電極32は、接地(GND)されることがあるため接地電極と呼ばれることもある。 The dust collection unit 30 includes plate-like high-voltage electrodes 31 whose surfaces are coated with films of an insulating material and plate-like counter electrodes 32 having conductivity, which are alternately laminated. The counter electrode 32 may be of any form as long as it allows the charge of the charged particles to escape, and may be covered with a conductive resin film or the like. The airflow direction is between the high-voltage electrode 31 and the counter electrode 32 . The counter electrode 32 is sometimes called a ground electrode because it may be grounded (GND).

尚、高圧電極31の表面を覆う絶縁性材料の膜には、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)等を用い得る。 It should be noted that polyethylene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or the like can be used for the insulating material film covering the surface of the high-voltage electrode 31 .

筐体50は、通風方向の上流側(風上側)の帯電部10側に入口部51が設けられ、風下側の集塵部30側に出口部52が設けられている。尚、入口部51には、メッシュ(網)、格子等が設けられていてもよい。入口部51に設けられるメッシュ(網)、格子等は、ユーザの帯電部10への接触を防ぎつつ、通風に対する抵抗が小さいように設けられることがよい。また、入口部51には、形状の大きな粒子の侵入を抑制するプレフィルタが設けられてもよい。 The housing 50 is provided with an inlet portion 51 on the charging section 10 side on the upstream side (windward side) in the ventilation direction, and an outlet section 52 on the dust collecting section 30 side on the leeward side. Incidentally, the entrance portion 51 may be provided with a mesh (net), a lattice, or the like. The mesh (net), grid, or the like provided in the entrance portion 51 is preferably provided so as to prevent the user from contacting the charging portion 10 and have low resistance to drafts. In addition, the inlet portion 51 may be provided with a pre-filter that suppresses entry of large-shaped particles.

尚、筐体50は、例えば、ABS(アクリロニトリル、ブタジエン、スチレン共重合体)等の樹脂材料で構成されている。 The housing 50 is made of a resin material such as ABS (acrylonitrile-butadiene-styrene copolymer).

ファン40は、筐体50に設けられた風下側の出口部52に設けられている。空気の流れ(通風)は、筐体50の帯電部10側の入口部51から入り、帯電部10、集塵部30を経由して、筐体50のファン40が設けられた出口部52から出る。 The fan 40 is provided at an outlet portion 52 on the leeward side provided in the housing 50 . Air flow (ventilation) enters from the inlet 51 of the housing 50 on the side of the charging unit 10, passes through the charging unit 10 and the dust collection unit 30, and exits from the outlet 52 of the housing 50 provided with the fan 40. Get out.

尚、通風が阻害されない限り、電気集塵機1は、どのような向きに置かれても構わない。 Incidentally, the electric dust collector 1 may be placed in any direction as long as ventilation is not hindered.

高電圧電源60は、放電電極11と接地電極12との間に、直流(DC)の高電圧を印加することで、放電電極11と接地電極12との間にコロナ放電(放電)を発生させる。そして、発生したコロナ放電により発生したイオンが浮遊微粒子に付着することで、浮遊微粒子を帯電(荷電)させる。尚、このように放電電極11と接地電極12との間に高電圧を印加する高電圧電源60は、帯電部10の一部として捉えることもできる。 The high-voltage power supply 60 applies a direct current (DC) high voltage between the discharge electrode 11 and the ground electrode 12 to generate a corona discharge (discharge) between the discharge electrode 11 and the ground electrode 12. . Then, the ions generated by the generated corona discharge adhere to the suspended particles, thereby electrifying the suspended particles. The high-voltage power supply 60 that applies a high voltage between the discharge electrode 11 and the ground electrode 12 in this manner can also be regarded as part of the charging section 10 .

また、高電圧電源60は、高圧電極31と対向電極32との間にも、直流(DC)の高電圧を印加する。すると、帯電部10で帯電した浮遊微粒子が、静電気力により対向電極32の表面に付着する。これにより、浮遊微粒子が集塵される。尚、このように高圧電極31と対向電極32との間に高電圧を印加する高電圧電源60は、集塵部30の一部として捉えることもできる。 The high-voltage power supply 60 also applies a direct current (DC) high voltage between the high-voltage electrode 31 and the counter electrode 32 . Then, the suspended fine particles charged by the charging section 10 adhere to the surface of the counter electrode 32 due to electrostatic force. Floating fine particles are thereby collected. The high-voltage power supply 60 that applies a high voltage between the high-voltage electrode 31 and the counter electrode 32 in this manner can also be regarded as a part of the dust collection section 30 .

[第1の実施の形態における帯電部の効果]
図2及び図3は、放電電極11により放電が発生している際のイオンの流れを示した図である。このうち、図2は、図1のA部を拡大した斜視図であり、図3は、図1のA部を上方から見たときの上面図である。尚、図2及び図3では、放電電極11からプラスイオンが発生しているので、高電圧電源60(図1参照)の極性を正極性としている。
[Effect of Charging Unit in First Embodiment]
2 and 3 are diagrams showing the flow of ions when a discharge is generated by the discharge electrode 11. FIG. 2 is an enlarged perspective view of the A portion of FIG. 1, and FIG. 3 is a top view of the A portion of FIG. 1 viewed from above. 2 and 3, since positive ions are generated from the discharge electrode 11, the polarity of the high voltage power source 60 (see FIG. 1) is positive.

図示するように、本実施の形態では、放電電極11において、繊維状導電体が開展し(ブラシ状に広がり)、その先端で放電が発生する。ここで、繊維状導電体の先端での放電量は極小であるため、オゾンの発生量は非常に低くなる。また、繊維状導電体が開展することにより、放電で発生したイオンは処理気流を横断するように拡散するので、浮遊微粒子の帯電効率が向上して高い集塵性能が得られる。 As shown in the figure, in the present embodiment, the fibrous conductor spreads (spreads like a brush) in the discharge electrode 11, and discharge occurs at the tip of the fibrous conductor. Here, since the amount of discharge at the tip of the fibrous conductor is extremely small, the amount of ozone generated is very low. In addition, the spread of the fibrous conductor allows the ions generated by the discharge to diffuse across the processing airflow, thereby improving the charging efficiency of suspended particles and achieving high dust collection performance.

また、本実施の形態では、繊維状導電体の微細な先端部分で放電するため、放電電極11から大きな距離を空けて接地電極12を配置しても放電が可能となる。つまり、放電ギャップ(放電電極11と接地電極12との間隔)を大きくすることができる。これにより、コロナ放電の電流(放電電流)が制限され、コロナ放電からアーク放電(スパーク放電)に移行することが抑制される。 In addition, in the present embodiment, since discharge is performed at the fine end portion of the fibrous conductor, discharge is possible even if the ground electrode 12 is arranged at a large distance from the discharge electrode 11 . That is, the discharge gap (interval between discharge electrode 11 and ground electrode 12) can be increased. As a result, the corona discharge current (discharge current) is limited, and the transition from corona discharge to arc discharge (spark discharge) is suppressed.

更に、本実施の形態では、接地電極12が接地されることにより電位が規定されるため、電位が安定する。これにより、放電特性が周囲環境の影響を受け難くなるため、安定放電が得易く、製品に電気集塵機1を搭載する際の設置自由度が高くなる。 Furthermore, in the present embodiment, the potential is regulated by grounding the ground electrode 12, so that the potential is stabilized. As a result, since the discharge characteristics are less likely to be affected by the surrounding environment, stable discharge can be easily obtained, and the degree of freedom of installation when the electrostatic precipitator 1 is mounted on a product is increased.

尚、図では、放電電極11の全部が、接地電極12の処理気流の最上流側の端部よりも処理気流の下流側に配置されているが、これには限らない。放電電極11の一部が、接地電極12の処理気流の最上流側の端部よりも処理気流の下流側に配置されていればよい。 In the figure, all of the discharge electrodes 11 are arranged downstream of the most upstream end of the processing airflow of the ground electrode 12, but the present invention is not limited to this. A portion of the discharge electrode 11 may be arranged downstream of the end of the ground electrode 12 on the most upstream side of the processing airflow.

以下、図1乃至図3に示した帯電部10を実施例1とし、既存技術における帯電部を比較例1乃至比較例3として、実施例1の帯電部10の比較例1乃至比較例3の帯電部に対する効果を詳細に説明する。 Hereinafter, the charging unit 10 shown in FIG. 1 to FIG. The effect on the charging portion will be described in detail.

まず、実施例1で処理気流の上流かつ処理気流を横断する方向へイオンが拡散することによる比較例1に対する効果について説明する。 First, the effect of diffusion of ions in the upstream direction of the processing airflow and in the direction crossing the processing airflow in Example 1 compared to Comparative Example 1 will be described.

図4は、実施例1の帯電部10の構成と比較例1の帯電部110の構成との違いを示した図である。 FIG. 4 is a diagram showing the difference between the configuration of the charging unit 10 of Example 1 and the configuration of the charging unit 110 of Comparative example 1. As shown in FIG.

このうち、図4(a)は、図1のA部を拡大した斜視図である。図示するように、実施例1の帯電部10は、複数の繊維状導電体をかしめ部14でかしめて処理気流の上流側に向けられた放電電極11と、接地電極12と、給電部材13とを備える。また、図4(b)は、比較例1において図1のA部に相当する部分を拡大した斜視図である。図示するように、比較例1の帯電部110は、ワイヤ状の放電電極111と、接地電極112とを備える。 Among them, FIG. 4(a) is an enlarged perspective view of the A portion of FIG. As shown in the figure, the charging unit 10 of the first embodiment comprises a plurality of fibrous conductors crimped by a crimping portion 14, and includes a discharge electrode 11, a ground electrode 12, and a power supply member 13 directed upstream of the processing gas stream. Prepare. 4(b) is an enlarged perspective view of a portion corresponding to part A in FIG. 1 in Comparative Example 1. As shown in FIG. As illustrated, the charging section 110 of Comparative Example 1 includes a wire-shaped discharge electrode 111 and a ground electrode 112 .

図5は、実施例1の帯電部10と比較例1の帯電部110とでのイオン拡散方向の違いを示したグラフである。このグラフから、実施例1の帯電部10で生成されるイオンは、処理気流の上流側に供給され、処理気流の下流側には供給されないことが分かる。一方、比較例1の帯電部110で生成されるイオンは、処理気流の下流側に供給され、処理気流の上流側には供給されないことが分かる。 FIG. 5 is a graph showing the difference in ion diffusion direction between the charging unit 10 of Example 1 and the charging unit 110 of Comparative example 1. In FIG. From this graph, it can be seen that the ions generated by the charging unit 10 of Example 1 are supplied to the upstream side of the processing airflow and are not supplied to the downstream side of the processing airflow. On the other hand, it can be seen that the ions generated by the charging unit 110 of Comparative Example 1 are supplied to the downstream side of the processing airflow and are not supplied to the upstream side of the processing airflow.

従って、実施例1の帯電部10は、電界荷電と拡散荷電の複合荷電方式であるため、放電電極11から上流側の領域を用いて浮遊微粒子を帯電させることになる。その結果、下流側に集塵部30を備える電気集塵機1(図1参照)においても広い帯電空間を確保できるため、高い帯電効率が得易くなる。一方、比較例1の帯電部110では、電界荷電方式であるため、帯電空間内の狭い領域で浮遊微粒子の帯電が起こる。その結果、高い集塵性能を得るには放電電流を大きくせざるを得ず、オゾン発生量も多くなる。 Therefore, since the charging unit 10 of Example 1 employs a composite charging system of electric field charging and diffusion charging, the floating fine particles are charged using the region on the upstream side from the discharge electrode 11 . As a result, a wide charging space can be ensured even in the electrostatic precipitator 1 (see FIG. 1) having the dust collecting section 30 on the downstream side, and high charging efficiency can be easily obtained. On the other hand, in the charging section 110 of Comparative Example 1, since it is of the electric field charging method, the suspended fine particles are charged in a narrow area within the charging space. As a result, in order to obtain high dust collection performance, the discharge current must be increased, and the amount of ozone generated increases.

図6は、実施例1の帯電部10と比較例1の帯電部110とでの集塵性能を得るためのオゾン濃度に関する性能の違いを示したグラフである。このグラフから、実施例1の帯電部10では、小さい放電電流で高い集塵性能が得られること、即ち、オゾン発生量を低く抑えつつ高い集塵性能が得られることが分かる。一方、比較例1の帯電部110では、オゾン濃度が5ppbを超える程度に放電電流を大きくしなければ十分な集塵効率が得られないことが分かる。 FIG. 6 is a graph showing the difference in performance regarding the ozone concentration for obtaining the dust collection performance between the charging unit 10 of Example 1 and the charging unit 110 of Comparative example 1. In FIG. From this graph, it can be seen that the charging unit 10 of Example 1 can achieve high dust collection performance with a small discharge current, that is, high dust collection performance can be obtained while suppressing the amount of ozone generated. On the other hand, in the charging unit 110 of Comparative Example 1, sufficient dust collection efficiency cannot be obtained unless the discharge current is increased to such an extent that the ozone concentration exceeds 5 ppb.

次に、実施例1で処理気流の上流かつ処理気流を横断する方向へイオンが拡散することによる比較例2に対する効果について説明する。 Next, the effect of ions diffusing in the direction upstream and crossing the processing airflow in Example 1 compared to Comparative Example 2 will be described.

図7は、実施例1の帯電部10の構成と比較例2の帯電部210の構成との違いを示した図である。 FIG. 7 is a diagram showing the difference between the configuration of the charging unit 10 of Example 1 and the configuration of the charging unit 210 of Comparative example 2. As shown in FIG.

このうち、図7(a)は、図1のA部を拡大した斜視図である。図示するように、実施例1の帯電部10は、複数の繊維状導電体をかしめ部14でかしめて処理気流の上流側に向けられた放電電極11と、接地電極12と、給電部材13とを備える。また、図7(b)は、比較例2において図1のA部に相当する部分を拡大した斜視図である。図示するように、比較例2の帯電部210は、複数の繊維状導電体をかしめ部214でかしめて処理気流の下流側に向けられた放電電極211と、接地電極212とを備える。 Among them, FIG. 7(a) is an enlarged perspective view of the A portion of FIG. As shown in the figure, the charging unit 10 of the first embodiment comprises a plurality of fibrous conductors crimped by a crimping portion 14, and includes a discharge electrode 11, a ground electrode 12, and a power supply member 13 directed upstream of the processing gas stream. Prepare. 7(b) is an enlarged perspective view of a portion corresponding to part A in FIG. 1 in Comparative Example 2. As shown in FIG. As shown in the drawing, the charging section 210 of Comparative Example 2 includes a discharge electrode 211 and a ground electrode 212 , which are directed downstream of the processing airflow by crimping a plurality of fibrous conductors with a crimping section 214 .

実施例1の帯電部10で生成されるイオンは、処理気流の上流側に供給される。一方、比較例2の帯電部210で生成されるイオンは、処理気流の下流側に供給される。従って、実施例1の帯電部10は、放電電極11から上流側の領域を用いて浮遊微粒子を帯電させることになる。その結果、下流側に集塵部30を備える電気集塵機1(図1参照)においても広い帯電空間を確保できるため、高い帯電効率が得易くなる。一方、比較例2の帯電部210では、帯電空間内の狭い領域で浮遊微粒子の帯電が起こる。その結果、高い集塵性能を得るには放電電流を大きくせざるを得ず、オゾン発生量も多くなる。 The ions generated by the charging unit 10 of Example 1 are supplied to the upstream side of the processing airflow. On the other hand, the ions generated by the charging unit 210 of Comparative Example 2 are supplied to the downstream side of the processing airflow. Therefore, the charging unit 10 of Example 1 uses the region on the upstream side from the discharge electrode 11 to charge the suspended particles. As a result, a wide charging space can be ensured even in the electrostatic precipitator 1 (see FIG. 1) having the dust collecting section 30 on the downstream side, and high charging efficiency can be easily obtained. On the other hand, in the charging unit 210 of Comparative Example 2, charging of suspended particles occurs in a narrow area within the charging space. As a result, in order to obtain high dust collection performance, the discharge current must be increased, and the amount of ozone generated increases.

図8は、実施例1の帯電部10と比較例2の帯電部210とでの集塵性能を得るための放電電圧に関する性能の違いを示したグラフである。このグラフから、同じ集塵性能を得るために、実施例1の帯電部10よりも、比較例2の帯電部210の方が、大きな放電電圧を必要とすることが分かる。 FIG. 8 is a graph showing the difference in performance with respect to discharge voltage for obtaining dust collection performance between the charging unit 10 of Example 1 and the charging unit 210 of Comparative example 2. In FIG. From this graph, it can be seen that the charging section 210 of Comparative Example 2 requires a higher discharge voltage than the charging section 10 of Example 1 in order to obtain the same dust collection performance.

次に、実施例1で放電ギャップを大きくできることによる比較例1に対する効果について説明する。 Next, the effect of increasing the discharge gap in Example 1 over Comparative Example 1 will be described.

図9は、実施例1の帯電部10における放電ギャップと集塵性能及びオゾン発生特性との関係を示したグラフである。このグラフから、実施例1の帯電部10では、放電電極11と接地電極12との距離、つまり放電ギャップを大きくすると、集塵性能は高くなるが、放電ギャップが所定値を超えると、集塵性能はやや低下することが分かる。また、放電ギャップを大きくするほど、オゾン発生量は低くなることが分かる。具体的には、放電ギャップを20mm以上100mm以下とすれば、集塵効果が高く、オゾン発生量が低くなる。 FIG. 9 is a graph showing the relationship between the discharge gap, the dust collection performance, and the ozone generation performance in the charging section 10 of Example 1. As shown in FIG. From this graph, it can be seen that in the charging unit 10 of Example 1, the dust collection performance increases as the distance between the discharge electrode 11 and the ground electrode 12, that is, the discharge gap, increases. It can be seen that the performance is slightly degraded. Also, it can be seen that the larger the discharge gap, the lower the amount of ozone generated. Specifically, if the discharge gap is 20 mm or more and 100 mm or less, the dust collecting effect is high and the amount of ozone generated is low.

図10は、放電ギャップとスパーク耐性との関係を示したグラフである。グラフ中、▲印は、実施例1の放電電極11でスパークが発生した際の放電ギャップ及びスパークオーバー電圧の実測値をプロットしたものであり、□印は、比較例1の放電電極111でスパークが発生した際の放電ギャップ及びスパークオーバー電圧の実測値をプロットしたものである。また、右上がりの直線は、これらの実測値から計算された放電ギャップとスパークオーバー電圧との関係を表すものである。 FIG. 10 is a graph showing the relationship between discharge gap and spark resistance. In the graph, the ▴ mark plots the measured values of the discharge gap and the spark over voltage when the spark is generated in the discharge electrode 11 of Example 1, and the □ mark is the spark in the discharge electrode 111 of Comparative Example 1. 1 is a plot of the measured values of the discharge gap and the sparkover voltage when A straight line rising to the right represents the relationship between the discharge gap and the sparkover voltage calculated from these measured values.

実施例1では、前述したように、放電ギャップを60mmとしている。一方、比較例1では、放電ギャップを10mmとすることを想定している。そして、グラフには、実施例1のように放電ギャップが60mmである場合にスパークを発生させる電圧Vは、比較例1のように放電ギャップが10mmである場合にスパークを発生させる電圧Vの約4.87倍であることが示されている。即ち、実施例1のように放電電極11と接地電極12の間の距離を大きくできる場合には、スパーク発生等の異常が起きなくなることが示されている。 In Example 1, as described above, the discharge gap is set to 60 mm. On the other hand, in Comparative Example 1, the discharge gap is assumed to be 10 mm. In the graph, the voltage V0 for generating a spark when the discharge gap is 60 mm as in Example 1 is the voltage V1 for generating a spark when the discharge gap is 10 mm as in Comparative Example 1. is about 4.87 times. That is, it is shown that when the distance between the discharge electrode 11 and the ground electrode 12 can be increased as in the first embodiment, abnormalities such as spark generation do not occur.

次いで、実施例1の周囲環境の影響を受けずに安定放電が得られる効果について、比較例3と比べて説明する。 Next, the effect of obtaining stable discharge without being affected by the ambient environment in Example 1 will be described in comparison with Comparative Example 3. FIG.

図11は、実施例1の帯電部10の構成と比較例3の帯電部310の構成との違いを示した図である。 FIG. 11 is a diagram showing the difference between the configuration of the charging unit 10 of Example 1 and the configuration of the charging unit 310 of Comparative example 3. As shown in FIG.

このうち、図11(a)は、図1のA部を拡大した斜視図である。図示するように、実施例1の帯電部10は、複数の繊維状導電体をかしめ部14でかしめて処理気流の上流側に向けられた放電電極11と、接地電極12と、給電部材13とを備える。また、図11(b)は、比較例3において図1のA部に相当する部分を拡大した斜視図である。図示するように、比較例3の帯電部310は、複数の繊維状導電体をかしめ部314でかしめて処理気流の上流側に向けられた放電電極311と、給電部材313とを備える。 Among them, FIG. 11(a) is an enlarged perspective view of a portion A in FIG. As shown in the figure, the charging unit 10 of the first embodiment comprises a plurality of fibrous conductors crimped by a crimping portion 14, and includes a discharge electrode 11, a ground electrode 12, and a power supply member 13 directed upstream of the processing gas stream. Prepare. 11(b) is an enlarged perspective view of a portion corresponding to the portion A in FIG. 1 in Comparative Example 3. As shown in FIG. As shown in the drawing, the charging unit 310 of Comparative Example 3 includes a discharge electrode 311 directed upstream of the processing airflow by crimping a plurality of fibrous conductors with a crimping portion 314 , and a power supply member 313 .

実施例1の帯電部10では、接地電極12を設けることにより、放電電極11と接地電極12の間の電位が規定される。比較例3のように接地電極12を持たない方式に比べ、放電特性が周囲環境の影響を受けないため、安定した放電を得易い。従って、製品に電気集塵機1を搭載する際の設置自由度が高くなる。 In the charging unit 10 of Example 1, the potential between the discharge electrode 11 and the ground electrode 12 is defined by providing the ground electrode 12 . Compared to the system without the ground electrode 12 as in Comparative Example 3, since the discharge characteristics are not affected by the surrounding environment, it is easy to obtain stable discharge. Therefore, the degree of freedom of installation is increased when the electrostatic precipitator 1 is mounted on a product.

図12は、実施例1の帯電部10と比較例3の帯電部310とでの集塵性能を得るための放電電圧に関する性能の違いを示したグラフである。このグラフから、同じ集塵性能を得るために、実施例1の帯電部10よりも、比較例3の帯電部310の方が、大きな放電電圧を必要とすることが分かる。 FIG. 12 is a graph showing the difference in performance with respect to discharge voltage for obtaining dust collection performance between the charging unit 10 of Example 1 and the charging unit 310 of Comparative example 3. In FIG. From this graph, it can be seen that the charging section 310 of Comparative Example 3 requires a higher discharge voltage than the charging section 10 of Example 1 in order to obtain the same dust collection performance.

[第1の実施の形態の変形例1]
図13は、図1のA部を上方から見たときの上面図において、本実施の形態の変形例を示した図である。
[Modification 1 of the first embodiment]
FIG. 13 is a top view of part A of FIG. 1 as viewed from above, showing a modification of the present embodiment.

実施例1では、放電電極11を処理気流の上流側に向けた状態で、接地電極12を処理気流と平行に配置したが、この限りではない。変形例1では、図示するように、接地電極12を処理気流に直交する方向に配置している。このような構成でも、放電により発生したイオンは、処理気流を横断するように拡散するので、実施例1と同様の効果が得られる。 In the first embodiment, the ground electrode 12 is arranged in parallel with the processing airflow while the discharge electrode 11 faces the upstream side of the processing airflow, but this is not the only option. In Modification 1, as shown in the figure, the ground electrode 12 is arranged in a direction perpendicular to the processing airflow. Even with such a configuration, the ions generated by the discharge diffuse across the processing airflow, so that the same effect as in the first embodiment can be obtained.

尚、図では、放電電極11の全部が、接地電極12の処理気流の最上流側の端部(上流側の端面)よりも処理気流の下流側に配置されているが、これには限らない。放電電極11の一部が、接地電極12の処理気流の最上流側の端部(上流側の端面)よりも処理気流の下流側に配置されていればよい。 In the figure, all of the discharge electrodes 11 are arranged downstream of the processing airflow from the most upstream end (upstream end face) of the ground electrode 12, but the present invention is not limited to this. . A part of the discharge electrode 11 may be arranged downstream of the most upstream end (upstream end surface) of the ground electrode 12 in the processing airflow.

即ち、本実施の形態において、放電電極11は、処理気流内で接地電極12間に配設され、少なくとも、その複数の繊維状導電体の全部又は一部が、接地電極12の処理気流の最上流側の端部よりも処理気流の下流側に配置されていればよい。 That is, in the present embodiment, the discharge electrode 11 is arranged between the ground electrodes 12 in the processing airflow, and at least all or part of the plurality of fibrous conductors are positioned at the maximum of the processing airflow of the ground electrode 12 . It suffices if it is arranged on the downstream side of the processing airflow relative to the upstream end.

[第1の実施の形態の変形例2]
実施例1では、放電電極11を処理気流の上流に向けて配置したが、この限りではない。変形例2では、放電電極11を処理気流の上流及び下流に向けて配置する。この場合、放電電極11は、図7(a)に示した放電電極11と図7(b)に示した放電電極211とを合わせた形状になる。但し、放電電極11は、その少なくとも一部を処理気流の上流に向けて配置していればよい。即ち、放電電極11は、処理気流の上流方向に向けられた部分を含んでいればよく、処理気流の下流方向に向けられた部分を更に含んでいてもよい。
[Modification 2 of the first embodiment]
In Example 1, the discharge electrode 11 is arranged facing upstream of the treatment airflow, but this is not the only option. In Modified Example 2, the discharge electrodes 11 are arranged facing upstream and downstream of the treatment airflow. In this case, the discharge electrode 11 has a shape combining the discharge electrode 11 shown in FIG. 7A and the discharge electrode 211 shown in FIG. 7B. However, the discharge electrode 11 may be arranged so that at least a portion thereof faces the upstream of the processing airflow. That is, the discharge electrode 11 only needs to include a portion facing the upstream direction of the processing airflow, and may further include a portion facing the downstream direction of the processing airflow.

[第1の実施の形態の変形例3]
実施例1では、集塵部30として、高圧電極31と対向電極32とを備え、高電圧電源60により直流(DC)の高電圧が印加されると、帯電部10で帯電した浮遊微粒子が、静電気力により対向電極32の表面に付着することで、浮遊微粒子を集塵するものを採用したが、この限りではない。変形例3では、集塵部30として、図1に示した電極タイプの集塵フィルタではなく、繊維フィルタでエレクトレット加工された集塵フィルタを用いる。前者の集塵フィルタは電圧を印加するタイプの集塵フィルタであるが、後者の集塵フィルタは電圧を印加しないタイプの集塵フィルタである。或いは、集塵部30として、熱交換器を用いてもよい。熱交換器を用いる場合は、例えば、空気調和機の空気吸入口に帯電部10を配置し、帯電部10から排出された空気を、GND接続(接地)された熱交換器に通すことで、浮遊微粒子を取り除けばよい。このような集塵部30を用いる場合、電気集塵機1は、集塵装置と捉えることができる。
[Modification 3 of the first embodiment]
In Example 1, the dust collection unit 30 includes a high-voltage electrode 31 and a counter electrode 32, and when a high voltage of direct current (DC) is applied by the high-voltage power supply 60, airborne particles charged by the charging unit 10 are Although the airborne particles are collected by adhering to the surface of the counter electrode 32 by electrostatic force, the present invention is not limited to this. In Modified Example 3, instead of the electrode-type dust collection filter shown in FIG. The former dust collection filter is a type of dust collection filter to which a voltage is applied, while the latter dust collection filter is a type of dust collection filter to which no voltage is applied. Alternatively, a heat exchanger may be used as the dust collector 30 . When using a heat exchanger, for example, the charging unit 10 is arranged at the air inlet of the air conditioner, and the air discharged from the charging unit 10 is passed through the GND-connected (grounded) heat exchanger. Floating fine particles should be removed. When such a dust collector 30 is used, the electric dust collector 1 can be regarded as a dust collector.

[第1の実施の形態の変形例4]
実施例1では、高電圧電源60として、放電電極11と接地電極12との間に直流(DC)の高電圧を印加するものを用いることしか述べなかったが、変形例4では、高電圧電源60として、次の何れかの高電圧を印加するものを用いる。
[Modification 4 of the first embodiment]
In the first embodiment, only the high voltage power supply 60 that applies a direct current (DC) high voltage between the discharge electrode 11 and the ground electrode 12 is used. As 60, one that applies any of the following high voltages is used.

第一に、正極性の直流高電圧を印加するものである。これにより、放電電極11及び接地電極12に埃が付着し難くなるので、電極が高寿命化される可能性が高まる。 First, a positive DC high voltage is applied. As a result, dust is less likely to adhere to the discharge electrode 11 and the ground electrode 12, increasing the possibility of prolonging the life of the electrodes.

第二に、負極性の直流高電圧を印加するものである。一般的に、コロナ放電では正極性に比べて負極性ではオゾン発生量が顕著に増大するが、本実施の形態では、オゾン発生が負極性でも抑えられるため、負極性も正極性と同じように使うことができる。 Secondly, a negative DC high voltage is applied. In general, in corona discharge, the amount of ozone generated in the negative polarity is significantly increased compared to the positive polarity. can be used.

第三に、正極性又は負極性のパルス型又は交番型の高電圧を印加するものである。これにより、正極性の直流高電圧を印加する場合の効果、及び、負極性の直流高電圧を印加する場合の効果の両方が得られる。また、パルス型の高電圧を印加する場合は、省電力となる。 Thirdly, a positive or negative pulse type or alternating type high voltage is applied. As a result, both the effect of applying a positive DC high voltage and the effect of applying a negative DC high voltage can be obtained. Moreover, when a pulse-type high voltage is applied, power is saved.

第四に、予め定められた間隔で、通常印加する高電圧とは逆極性の高電圧を印加するものである。帯電部10は、浮遊微粒子を帯電させる際に、それ以外の周辺部分(筐体50等)も帯電させてしまうことがある。このような帯電部10の周辺部分(筐体50等)のチャージアップは、上記のような高電圧を印加することにより緩和される。 Fourthly, at predetermined intervals, a high voltage having a polarity opposite to that of the normally applied high voltage is applied. When charging the suspended particles, the charging unit 10 may also charge other peripheral portions (such as the housing 50). Such charge-up of the peripheral portions (casing 50, etc.) of the charging section 10 is alleviated by applying the high voltage as described above.

[第2の実施の形態における電気集塵機の構成]
図14は、本実施の形態における電気集塵機2の全体構成を示す斜視図である。
[Configuration of electrostatic precipitator in second embodiment]
FIG. 14 is a perspective view showing the overall configuration of the electrostatic precipitator 2 in this embodiment.

図示するように、電気集塵機2は、帯電部20、集塵部30、ファン40、これらを収納する筐体50、及び、帯電部20と集塵部30とに高電圧を供給する高電圧電源60を備える。ここでは、筐体50を破線で示し、筐体50の内部に設けられた帯電部20及び集塵部30の構成が見えるようにしている。この電気集塵機2は、帯電部20と集塵部30と機能が分離した二段電気集塵方式である。ここで、帯電部20と集塵部30とは、脱着可能なユニットの形態として構成されていても構わない。本実施の形態では、帯電装置の一例として、帯電部20を設けている。 As illustrated, the electric dust collector 2 includes a charging unit 20, a dust collecting unit 30, a fan 40, a housing 50 that houses them, and a high voltage power supply that supplies high voltage to the charging unit 20 and the dust collecting unit 30. 60. Here, the housing 50 is indicated by a dashed line so that the configuration of the charging section 20 and the dust collecting section 30 provided inside the housing 50 can be seen. This electrostatic precipitator 2 is of a two-stage electrostatic precipitator system in which the charging section 20 and the dust collecting section 30 are separated in function. Here, the charging section 20 and the dust collection section 30 may be configured in the form of a detachable unit. In this embodiment, a charging unit 20 is provided as an example of a charging device.

ここで、空気の流れ(通風)の方向(通風方向)は、矢印で示すように、帯電部20から集塵部30に向かう方向に設定されている。通風は、集塵部30の通風方向の下流側(風下側)に設けられたファン40により行われる。 Here, the direction of air flow (ventilation) is set in the direction from the charging section 20 to the dust collection section 30 as indicated by the arrow. Ventilation is performed by a fan 40 provided on the downstream side (leeward side) of the dust collecting section 30 in the ventilation direction.

帯電部20は、放電を発生する複数の放電電極21と、接地(GND)される複数の接地電極22と、高電圧電源60から供給された高電圧を複数の放電電極21に給電するための給電部材23とを備える。放電電極21は、高電圧を印加される電極であるので、高圧電極と呼ばれることもある。また、接地電極22は、放電電極21に対向するように設けられるため、対向電極と呼ばれることもある。図には、複数の放電電極21の一例として放電電極21a~21fを示し、複数の接地電極22の一例として接地電極22a~22cを示し、複数の給電部材23の一例として給電部材23a,23bを示しているが、放電電極21、接地電極22、給電部材23の数はこれに限られるものではない。 The charging unit 20 includes a plurality of discharge electrodes 21 that generate discharge, a plurality of grounded electrodes 22 that are grounded (GND), and a high voltage supplied from a high voltage power supply 60 to the plurality of discharge electrodes 21 . and a power supply member 23 . Since the discharge electrode 21 is an electrode to which a high voltage is applied, it is sometimes called a high voltage electrode. Also, since the ground electrode 22 is provided so as to face the discharge electrode 21, it is sometimes called a counter electrode. The figure shows discharge electrodes 21a to 21f as an example of the plurality of discharge electrodes 21, shows ground electrodes 22a to 22c as an example of the plurality of ground electrodes 22, and shows power supply members 23a and 23b as an example of the plurality of power supply members 23. Although shown, the numbers of discharge electrodes 21, ground electrodes 22, and power supply members 23 are not limited to these.

ところで、本実施の形態において、放電電極21は、複数の繊維状導電体により形成される。複数の繊維状導電体は、例えば、繊維径が約7μmの炭素繊維6000本を束ねたものであってよい。そして、この炭素繊維の束の後端をかしめ部24でかしめ、先端をブラシ状に広げて放電電極21とするとよい。その際、繊維状導電体のかしめ部24から突出した部分の長さは、例えば5mmであってよく、繊維状導電体の先端からかしめ部24の後端(給電部材23側の端部)までの長さは、例えば9mmであってよい。図では、放電電極21a~21fが、それぞれ、複数の繊維状導電体をかしめ部24a~24fでかしめることにより構成されている。 By the way, in this embodiment, the discharge electrode 21 is formed of a plurality of fibrous conductors. The plurality of fibrous conductors may be, for example, a bundle of 6000 carbon fibers with a fiber diameter of about 7 μm. Then, the rear end of the bundle of carbon fibers is crimped with a crimping portion 24 and the tip is widened like a brush to form the discharge electrode 21 . In this case, the length of the portion of the fibrous conductor that protrudes from the crimped portion 24 may be, for example, 5 mm, and the length from the tip of the fibrous conductor to the rear end of the crimped portion 24 (the end on the power supply member 23 side). may be, for example, 9 mm. In the figure, each of the discharge electrodes 21a-21f is configured by crimping a plurality of fibrous conductors with crimping portions 24a-24f.

また、本実施の形態において、放電電極21は、処理気流の上流に向けて配置される。例えば、放電電極21を95mmの間隔で3個取り付けた給電部材23が、放電電極21の炭素繊維の先端が処理気流と平行でかつ処理気流の上流を向くように2列配置される。図では、放電電極21a~21cを取り付けた給電部材23aと、放電電極21d~21fを取り付けた給電部材23bとが、各放電電極21の炭素繊維の先端が処理気流と平行でかつ処理気流の上流を向くように配置されている。 Further, in the present embodiment, the discharge electrode 21 is arranged toward the upstream of the treatment airflow. For example, the power supply members 23 each having three discharge electrodes 21 attached at intervals of 95 mm are arranged in two rows such that the tip of the carbon fiber of the discharge electrodes 21 is parallel to the processing gas stream and faces upstream of the processing gas stream. In the figure, the power supply member 23a to which the discharge electrodes 21a to 21c are attached and the power supply member 23b to which the discharge electrodes 21d to 21f are attached are arranged such that the tip of the carbon fiber of each of the discharge electrodes 21 is parallel to the treatment airflow and upstream of the treatment airflow. are placed facing the

更に、本実施の形態では、放電電極21の両側に接地電極22が配置される。ここで、接地電極22は、脚部25と頂辺部26とからなるT字型の接地電極とする。つまり、放電電極21で放電により生じるイオンが、処理気流の上流側に向かって、かつ、処理気流を横断するように拡散する位置にT字型の接地電極22が配置される。換言すれば、T字型の接地電極22は、放電電極21により発生され拡散されたイオンを処理気流に交わる方向に引き寄せる位置に配置される。例えば、放電電極21から、処理気流に直交する方向に60mmの位置に、脚部25の幅10mm、頂辺部26の幅10mmの接地電極22が、放電電極21のかしめ部24の後端と接地電極22の脚部25の後端(処理気流の下流側の端部)とが揃うように配置される。図では、脚部25aと頂辺部26aとからなる接地電極22aが、放電電極21a~21cを取り付けた給電部材23aから処理気流に直交する方向における左側の位置に配置され、脚部25bと頂辺部26bとからなる接地電極22bが、放電電極21d~21fを取り付けた給電部材23bから処理気流に直交する方向における右側の位置に配置されている。また、脚部25cと頂辺部26cとからなる接地電極22cが、給電部材23aから処理気流に直交する方向における右側の位置で、かつ、給電部材23bから処理気流に直交する方向における左側の位置に配置されている。 Furthermore, in this embodiment, ground electrodes 22 are arranged on both sides of the discharge electrode 21 . Here, the ground electrode 22 is a T-shaped ground electrode composed of a leg portion 25 and a top portion 26 . That is, the T-shaped ground electrode 22 is arranged at a position where the ions generated by the discharge at the discharge electrode 21 diffuse toward the upstream side of the processing airflow and cross the processing airflow. In other words, the T-shaped ground electrode 22 is placed at a position that attracts the ions generated and diffused by the discharge electrode 21 in a direction that intersects the process airflow. For example, at a position 60 mm away from the discharge electrode 21 in the direction orthogonal to the processing airflow, the ground electrode 22 having a leg portion 25 of 10 mm width and a top side portion 26 of 10 mm width is positioned between the crimped portion 24 of the discharge electrode 21 and the rear end thereof. It is arranged so that the rear end of the leg portion 25 of the ground electrode 22 (end portion on the downstream side of the processing airflow) is aligned. In the drawing, a ground electrode 22a consisting of a leg portion 25a and a top side portion 26a is arranged on the left side of the power supply member 23a to which the discharge electrodes 21a to 21c are attached in the direction perpendicular to the processing air flow. A ground electrode 22b consisting of a side portion 26b is arranged on the right side of the power supply member 23b to which the discharge electrodes 21d to 21f are attached in the direction perpendicular to the processing airflow. Further, the ground electrode 22c composed of the leg portion 25c and the top side portion 26c is positioned on the right side of the power supply member 23a in the direction orthogonal to the processing airflow and on the left side of the power supply member 23b in the direction orthogonal to the processing airflow. are placed in

脚部25及び頂辺部26は、導電性を有する平板状の部材(平板状の導電性部材)で構成されている。そして、脚部25は、平板状の部材の平面が通風方向に沿う方向に設けられており、頂辺部26は、平板状の部材の平面が通風方向に交差する方向に設けられている。図14では、脚部25の平面は、通風方向と一致させている(脚部25の平面と通風方向とのなす角度が0°)が、必ずしも一致しなくてよく、頂辺部26の平面は、通風方向に直交させている(頂辺部26の平面と通風方向とのなす角度が90°)が、必ずしも直交させなくてよい。本実施の形態では、処理気流に沿う方向に配置された平板状の第1の電極部の一例として、脚部25を設けており、処理気流に交差する方向に配置された平板状の第2の電極部の一例として、頂辺部26を設けている。また、第1の電極部と第2の電極部とが略垂直になるように第1の電極部の処理気流の上流側の先端部分と第2の電極部の中央部分とが接続されることにより形成された接地電極の一例として、T字型の接地電極22を用いている。 The leg portion 25 and the top side portion 26 are formed of a conductive plate-like member (plate-like conductive member). The leg portions 25 are provided so that the plane of the flat plate-like member extends along the airflow direction, and the top side portion 26 is provided so that the plane of the flat plate-like member intersects the airflow direction. In FIG. 14, the plane of the leg portion 25 is aligned with the airflow direction (the angle between the plane of the leg portion 25 and the airflow direction is 0°). are perpendicular to the airflow direction (the angle formed by the plane of the top side 26 and the airflow direction is 90°), but they do not necessarily have to be perpendicular. In the present embodiment, the leg portion 25 is provided as an example of the flat plate-shaped first electrode portion arranged in the direction along the processing airflow, and the flat plate-shaped second electrode portion arranged in the direction intersecting the processing airflow is provided. A top side portion 26 is provided as an example of the electrode portion. Further, the tip portion of the first electrode portion on the upstream side of the processing airflow and the central portion of the second electrode portion are connected so that the first electrode portion and the second electrode portion are substantially perpendicular to each other. A T-shaped ground electrode 22 is used as an example of the ground electrode formed by.

尚、上記では、隣接する2つの接地電極22間に放電電極21を配置したが、隣接する2つの接地電極22間の中央に放電電極21を配置してもよい。また、上記では、放電電極21から60mmの位置に接地電極22を配置したが、この限りではない。放電電極21から20mm以上100mm以下の位置に接地電極22を配置してもよい。放電電極21から接地電極22までの距離が20mmを下回るとオゾン発生量が多くなり、放電電極21から接地電極22までの距離が100mmを上回ると集塵効率が低下するからである。 Although the discharge electrode 21 is arranged between the two adjacent ground electrodes 22 in the above description, the discharge electrode 21 may be arranged in the center between the two adjacent ground electrodes 22 . Also, in the above description, the ground electrode 22 is arranged at a position 60 mm from the discharge electrode 21, but this is not the only option. The ground electrode 22 may be arranged at a position of 20 mm or more and 100 mm or less from the discharge electrode 21 . This is because if the distance from the discharge electrode 21 to the ground electrode 22 is less than 20 mm, the amount of ozone generated increases, and if the distance from the discharge electrode 21 to the ground electrode 22 exceeds 100 mm, dust collection efficiency decreases.

集塵部30、ファン40、筐体50、及び、高電圧電源60は、第1の実施の形態で述べたものと同じなので、ここでの説明は省略する。 The dust collector 30, the fan 40, the housing 50, and the high-voltage power supply 60 are the same as those described in the first embodiment, so descriptions thereof will be omitted here.

[第2の実施の形態における帯電部の効果]
図15及び図16は、放電電極21により放電が発生している際のイオンの流れを示した図である。このうち、図15は、図14のB部を拡大した斜視図であり、図16は、図14のB部を上方から見たときの上面図である。
[Effect of Charging Unit in Second Embodiment]
15 and 16 are diagrams showing the flow of ions when discharge is generated by the discharge electrode 21. FIG. 15 is an enlarged perspective view of the portion B of FIG. 14, and FIG. 16 is a top view of the portion B of FIG. 14 viewed from above.

図示するように、本実施の形態では、放電電極21において、繊維状導電体が開展し、その先端で放電が発生する。ここで、繊維状導電体の先端での放電量は極小であるため、オゾンの発生量は非常に低くなる。 As shown in the figure, in the present embodiment, fibrous conductors are developed in the discharge electrode 21, and discharge occurs at the tips thereof. Here, since the amount of discharge at the tip of the fibrous conductor is extremely small, the amount of ozone generated is very low.

また、本実施の形態では、接地電極22を脚部25と頂辺部26とからなるT字形状とすることで、放電電極21とT字形状の接地電極22との間の狭い空間内の電界強度を増し、即ち、イオン密度が増すことにより、狭い空間での拡散荷電効率を向上できる。更に頂辺部26による外周部へのイオンの拡散範囲を制御することが可能となる。これにより、集塵効率の向上と周辺のチャージアップ帯電の低減が両立できる。 Further, in the present embodiment, the ground electrode 22 is formed in a T-shape composed of the leg portion 25 and the top side portion 26, so that the narrow space between the discharge electrode 21 and the T-shaped ground electrode 22 can be By increasing the electric field strength, ie by increasing the ion density, the diffusion charging efficiency in a narrow space can be improved. Furthermore, it becomes possible to control the diffusion range of the ions to the outer peripheral portion by the top portion 26 . As a result, it is possible to achieve both an improvement in dust collection efficiency and a reduction in peripheral charge-up electrification.

更に、本実施の形態では、接地電極22が接地されることにより電位が規定されるため、電位が安定する。これにより、放電特性が周囲環境の影響を受け難くなるため、安定放電が得易く、製品に電気集塵機2を搭載する際の設置自由度が高くなる。 Furthermore, in the present embodiment, the potential is regulated by grounding the ground electrode 22, so the potential is stabilized. As a result, the discharge characteristics are less likely to be affected by the surrounding environment, so stable discharge can be easily obtained, and the degree of freedom of installation when the electrostatic precipitator 2 is mounted on a product is increased.

更にまた、本実施の形態では、繊維状導電体の微細な先端部分で放電するため、放電電極21から大きな距離を空けて接地電極22を配置しても放電が可能となる。つまり、放電ギャップを大きくすることができる。これにより、スパーク放電が発生し難くなる。 Furthermore, in the present embodiment, since the fibrous conductor discharges at the fine tip portion, it is possible to discharge even if the ground electrode 22 is arranged at a large distance from the discharge electrode 21 . That is, the discharge gap can be increased. This makes spark discharge less likely to occur.

以下、図1乃至図3に示した帯電部10を実施例1とし、図13に示した帯電部10を実施例2とし、図14乃至図16に示した帯電部20を実施例3とし、実施例1乃至実施例3の帯電部10(20)で放電電極11(21)を処理気流に直交させた場合の実施例をそれぞれ実施例4乃至実施例6として、実施例1乃至実施例6の効果を詳細に説明する。 Hereinafter, the charging unit 10 shown in FIGS. 1 to 3 is defined as Example 1, the charging unit 10 shown in FIG. 13 is defined as Example 2, and the charging unit 20 shown in FIGS. 14 to 16 is defined as Example 3. Examples 4 to 6 are examples in which the discharge electrodes 11 (21) of the charging units 10 (20) of Examples 1 to 3 are perpendicular to the processing airflow, respectively, and Examples 1 to 6. The effect of is explained in detail.

図17は、実施例1乃至実施例3の効果について示した図である。 17A and 17B are diagrams showing the effects of Examples 1 to 3. FIG.

図中、放電電極設置方向欄に示すように、実施例1乃至実施例3において、放電電極11(21)は、処理気流の上流方向に向けて設置される。この場合、帯電部10(20)で生成されるイオンは、処理気流の上流側に供給される。 In the first to third embodiments, the discharge electrodes 11 (21) are installed in the upstream direction of the treatment airflow, as shown in the discharge electrode installation direction column in the drawing. In this case, the ions generated by the charging section 10 (20) are supplied to the upstream side of the processing airflow.

接地電極欄において、L1は、接地電極12(22)の処理気流に平行な方向の平板状の部材(導電性部材)の幅を示し、L2は、接地電極12(22)の処理気流に直交する方向の平板状の部材(導電性部材)の幅を示す。 In the ground electrode column, L1 indicates the width of the planar member (conductive member) in the direction parallel to the processing airflow of the ground electrode 12 (22), and L2 indicates the width perpendicular to the processing airflow of the ground electrode 12 (22). shows the width of the plate-like member (conductive member) in the direction of

帯電部構成欄には、図1乃至図3及び図13の帯電部10(20)の構成を、処理気流の上流方向を上側にして描いている。即ち、実施例1では、第1の実施の形態で述べた通り、接地電極12が処理気流と平行な方向に配置されている。実施例2では、第1の実施の形態の変形例で述べた通り、接地電極12が処理気流に直交する方向に配置されている。一方、実施例3では、第2の実施の形態で述べた通り、接地電極22が処理気流と平行な方向及び処理気流に直交する方向の両方向に配置されたT字形状となっている。 1 to 3 and 13 are drawn with the upstream direction of the processing airflow facing upward. That is, in Example 1, as described in the first embodiment, the ground electrode 12 is arranged in a direction parallel to the processing airflow. In Example 2, as described in the modified example of the first embodiment, the ground electrode 12 is arranged in a direction perpendicular to the processing airflow. On the other hand, in Example 3, as described in the second embodiment, the ground electrode 22 is T-shaped and arranged in both the direction parallel to the processing airflow and the direction orthogonal to the processing airflow.

集塵効率欄には、処理気流の風速を1m/sとした場合の集塵率を示している。これらの集塵率及びオゾン発生量欄の値から、何れの実施例も、集塵効率を高めることができ、かつ、オゾンの発生量を低く抑えることができることが分かる。また、チャージアップ率欄には、実施例1を「1.0」としたときの筐体のチャージアップ率を示している。これらのチャージアップ率から、実施例3がチャージアップを最も低減できることが分かる。従って、実施例1乃至実施例3の中で実施例3が、最も集塵効率を高めることができ、かつ、チャージアップを低減できる配置である。 The dust collection efficiency column shows the dust collection efficiency when the wind speed of the processing airflow is 1 m/s. From these values in the dust collection rate and ozone generation amount columns, it can be seen that the dust collection efficiency can be enhanced and the ozone generation amount can be kept low in any of the examples. The charge-up rate column shows the charge-up rate of the housing when Example 1 is set to "1.0". From these charge-up rates, it can be seen that Example 3 can reduce the charge-up the most. Therefore, among the first to third embodiments, the third embodiment is the arrangement that can most improve the dust collection efficiency and reduce the charge-up.

図18は、実施例4乃至実施例6の効果について示した図である。 FIG. 18 is a diagram showing the effects of Examples 4 to 6. FIG.

図中、放電電極設置方向欄に示すように、実施例4乃至実施例6において、放電電極11(21)は、処理気流に直交する方向に向けて設置される。この場合、帯電部10(20)で生成されるイオンは、処理気流に直交する方向に主に供給される。 In the fourth to sixth embodiments, the discharge electrodes 11 (21) are installed in the direction orthogonal to the treatment airflow, as shown in the discharge electrode installation direction column in the drawing. In this case, the ions generated by the charging section 10 (20) are mainly supplied in the direction orthogonal to the processing airflow.

接地電極欄において、L1及びL2の意味は、図17と同様である。 In the ground electrode column, the meanings of L1 and L2 are the same as in FIG.

帯電部構成欄には、図1乃至図3及び図13の帯電部10(20)で放電電極11(21)を処理気流に直交させた構成を、処理気流の上流方向を上側にして描いている。即ち、実施例4では、第1の実施の形態で述べたのと同様に、接地電極12が処理気流と平行な方向に配置されている。実施例5では、第1の実施の形態の変形例で述べたのと同様に、接地電極12が処理気流に直交する方向に配置されている。一方、実施例6では、第2の実施の形態で述べたのと同様に、接地電極22が処理気流と平行な方向及び処理気流に直交する方向の両方向に配置されたT字形状となっている。 1 to 3 and 13 in which the discharge electrode 11 (21) is perpendicular to the processing airflow is drawn with the upstream direction of the processing airflow facing upward. there is That is, in Example 4, the ground electrode 12 is arranged in a direction parallel to the processing airflow, as described in the first embodiment. In Example 5, the ground electrode 12 is arranged in a direction orthogonal to the processing airflow, as described in the modified example of the first embodiment. On the other hand, in Example 6, similarly to the second embodiment, the ground electrode 22 has a T-shape arranged in both the direction parallel to the processing airflow and the direction orthogonal to the processing airflow. there is

集塵効率欄には、処理気流の風速を1m/sとした場合の集塵率を示している。これらの集塵率及びオゾン発生量欄の値から、何れの実施例も、集塵効率を高めることができ、かつ、オゾンの発生量を低く抑えることができることが分かる。また、チャージアップ率欄には、実施例4を「1.0」としたときの筐体のチャージアップ率を示している。これらのチャージアップ率から、実施例6がチャージアップを最も低減できることが分かる。従って、実施例4乃至実施例6の中で実施例6が、最も集塵効率を高めることができ、かつ、チャージアップを低減できる配置である。 The dust collection efficiency column shows the dust collection efficiency when the wind speed of the processing airflow is 1 m/s. From these values in the dust collection rate and ozone generation amount columns, it can be seen that the dust collection efficiency can be enhanced and the ozone generation amount can be kept low in any of the examples. In addition, the column of charge-up rate shows the charge-up rate of the housing when Example 4 is set to "1.0". From these charge-up rates, it can be seen that Example 6 can reduce the charge-up the most. Therefore, among the fourth to sixth embodiments, the sixth embodiment is the arrangement that can most improve the dust collection efficiency and reduce the charge-up.

図19は、図18の実施例6の帯電部20の実施例4の帯電部10に対する効果の違いを具体的に示した図である。尚、図19において、上面欄には、図18の実施例4及び実施例6に対する帯電部構成欄の図を上から見た上面図を示し、側面欄には、図18の実施例4及び実施例6に対する帯電部構成欄の図を横から見た側面図を示している。 FIG. 19 is a diagram specifically showing the difference in effect between the charging unit 20 of Example 6 shown in FIG. 18 and the charging unit 10 of Example 4. In FIG. In FIG. 19, the upper column shows a top view of the charging section configuration column for Examples 4 and 6 in FIG. FIG. 21 is a side view of the figure in the charging section configuration column for Example 6 as seen from the side;

図18の性能結果、及び、図19から分かるように、実施例6では、処理気流の上流方向へのイオンの拡散の一部が、T字型の接地電極22の縁部分によって抑制される。これにより、実施例4のように接地電極12を処理気流と平行に配置する場合に比べ、荷電空間が処理気流の上流側には伸展し難くなり、筐体等の周囲へのチャージアップが抑制される。また、放電電極21の先端と一定距離に配置されているT字型の接地電極22の電極面積が実施例4に比べ大きくなり、空間内の電界強度を増すことにより、狭い空間での拡散荷電効率が向上し、即ち、集塵効率を向上させている。 As can be seen from the performance results of FIG. 18 and from FIG. 19 , in Example 6, some of the ion diffusion upstream of the process airflow is suppressed by the edge portion of the T-shaped ground electrode 22 . As a result, compared to the case where the ground electrode 12 is arranged parallel to the processing airflow as in the fourth embodiment, the charging space is less likely to extend upstream of the processing airflow, and charging up to the surroundings of the housing etc. is suppressed. be done. In addition, the electrode area of the T-shaped ground electrode 22 arranged at a certain distance from the tip of the discharge electrode 21 is larger than that of the fourth embodiment, and by increasing the electric field strength in the space, diffusion charging can be performed in a narrow space. Efficiency is improved, ie dust collection efficiency is improved.

尚、実施例6では、側面欄の図から分かるように、放電電極21の先端が接地電極22の最上流側の端部(頂辺部26)よりも処理気流の下流側に設置されているのが望ましい。 In Example 6, as can be seen from the figures in the side column, the tip of the discharge electrode 21 is installed downstream of the end of the ground electrode 22 on the most upstream side (the top side portion 26) of the processing gas flow. is desirable.

[第2の実施の形態における接地電極の脚部の幅と頂辺部の幅との比]
図20(a),(b)及び図21(a),(b)は、本実施の形態におけるT字型の接地電極22の脚部25の幅と頂辺部26の幅との比の望ましい範囲について説明するための図である。
[Ratio between the width of the leg portion and the width of the top portion of the ground electrode in the second embodiment]
20(a), (b) and FIGS. 21(a), (b) show the ratio of the width of the leg portion 25 to the width of the top portion 26 of the T-shaped ground electrode 22 in this embodiment. It is a figure for demonstrating a desirable range.

図20(a),(b)に、図17の実施例3に対する帯電部構成欄の接地電極22、又は、図18の実施例6に対する帯電部構成欄の接地電極22を横から見たときの形状を示す。ここでは、図示するように、脚部25の長さをL1とし、頂辺部26の長さをL2としている。このうち、図20(a)は、脚部25の下端と放電電極21の下端とが処理気流に沿う方向の対応する位置にあり、L1=10mmである場合を示す。また、図20(b)は、脚部25の下端が放電電極21の下端よりも処理気流に沿う方向の上流側にあり、L1<10mmである場合(例えば、L1=5mmである場合)を示す。尚、図では、放電電極21の下端の位置を帯電部20と集塵部30との境界を表す破線で示している。 20(a) and 20(b), when the ground electrode 22 in the charging section configuration column for Example 3 in FIG. 17 or the ground electrode 22 in the charging section configuration column for Example 6 in FIG. 18 is viewed from the side. shows the shape of Here, as illustrated, the length of the leg portion 25 is L1, and the length of the top side portion 26 is L2. Among them, FIG. 20A shows the case where the lower end of the leg portion 25 and the lower end of the discharge electrode 21 are at corresponding positions in the direction along the processing airflow, and L1=10 mm. FIG. 20(b) shows a case where the lower end of the leg portion 25 is upstream of the lower end of the discharge electrode 21 in the direction along the processing airflow and L1<10 mm (for example, L1=5 mm). show. In the drawing, the position of the lower end of the discharge electrode 21 is indicated by a dashed line representing the boundary between the charging section 20 and the dust collecting section 30. As shown in FIG.

図21(a)に、放電ギャップが60mmであり、接地電極22の脚部25の下端及び放電電極21の下端の処理気流に沿う方向における位置が揃っている、という条件の下、L1=10mmで一定とし、L2の長さを変化させた場合の集塵効率及びチャージアップ率の変化をグラフで示す。 In FIG. 21(a), L1=10 mm under the condition that the discharge gap is 60 mm and the lower end of the leg portion 25 of the ground electrode 22 and the lower end of the discharge electrode 21 are aligned in the direction along the processing air flow. , and the change in the dust collection efficiency and the charge-up rate when the length of L2 is changed is shown in a graph.

まず、実線で示した集塵効率の変化を示すグラフから、L2/L1≦1の場合に集塵効率が90%以上となることが分かる。ここで、L2/L1が大きくなった場合に集塵効率が低下する要因としては、頂辺部26の端部と放電電極21の先端との距離が短くなるため、イオンの拡散距離が十分でなくなり、荷電効率が減少することが挙げられる。 First, from the solid line graph showing changes in dust collection efficiency, it can be seen that the dust collection efficiency is 90% or more when L2/L1≦1. Here, the reason why the dust collection efficiency is lowered when L2/L1 is increased is that the distance between the end of the top side portion 26 and the tip of the discharge electrode 21 is shortened, so that the diffusion distance of ions is insufficient. and the charging efficiency decreases.

次に、破線で示したチャージアップ率の変化を示すグラフから、0.4≦L2/L1の場合にチャージアップ率が0.7以下となることが分かる。 Next, from the graph showing changes in the charge-up rate indicated by the dashed line, it can be seen that the charge-up rate is 0.7 or less when 0.4≦L2/L1.

従って、比L2/L1は、0.4≦L2/L1≦1を満たす値とするのが望ましいことが分かる。 Therefore, it can be seen that the ratio L2/L1 is preferably a value that satisfies 0.4≦L2/L1≦1.

図21(b)に、放電ギャップが60mmであり、接地電極22の脚部25の下端が放電電極21の下端よりも処理気流に沿う方向における上流側にある、という条件の下、L1=5mmで一定とし、L2の長さを変化させた場合の集塵効率及びチャージアップ率の変化をグラフで示す。 In FIG. 21(b), L1=5 mm under the condition that the discharge gap is 60 mm and the lower end of the leg portion 25 of the ground electrode 22 is upstream of the lower end of the discharge electrode 21 in the direction along the processing air flow. , and the change in the dust collection efficiency and the charge-up rate when the length of L2 is changed is shown in a graph.

まず、実線で示した集塵効率の変化を示すグラフから、L2/L1≦2の場合に集塵効率が90%以上となることが分かる。 First, from the solid line graph showing changes in dust collection efficiency, it can be seen that the dust collection efficiency is 90% or more when L2/L1≦2.

次に、破線で示したチャージアップ率の変化を示すグラフから、0.4≦L2/L1の場合にチャージアップ率が0.7以下となることが分かる。 Next, from the graph showing changes in the charge-up rate indicated by the dashed line, it can be seen that the charge-up rate is 0.7 or less when 0.4≦L2/L1.

従って、比L2/L1は、0.4≦L2/L1≦2を満たす値とするのが望ましいことが分かる。 Therefore, it can be seen that the ratio L2/L1 is preferably a value that satisfies 0.4≦L2/L1≦2.

[第2の実施の形態の変形例1]
実施例1乃至実施例3では、放電電極11(21)を処理気流の上流に向けて配置し、実施例4乃至実施例6では、放電電極11(21)を処理気流に直交する方向に向けて配置したが、この限りではない。変形例1では、例えば、集塵部30として繊維からなる集塵フィルタを用いる場合に、放電電極11(21)を処理気流の下流に向けて配置する。或いは、変形例1では、例えば、放電電極11(21)を処理気流に沿う方向に対して斜めに向けて配置してもよい。例えば、処理気流の上流方向に対して45°傾けて配置したり、処理気流の下流方向に対して45°傾けて配置したりしてもよい。
[Modification 1 of Second Embodiment]
In Examples 1 to 3, the discharge electrode 11 (21) is arranged facing upstream of the treatment airflow, and in Examples 4 to 6, the discharge electrode 11 (21) is arranged in a direction perpendicular to the treatment airflow. However, it is not limited to this. In Modified Example 1, for example, when a dust collection filter made of fibers is used as the dust collection section 30, the discharge electrode 11 (21) is arranged toward the downstream of the processing airflow. Alternatively, in Modification 1, for example, the discharge electrodes 11 (21) may be arranged obliquely with respect to the direction along the processing airflow. For example, it may be arranged at an angle of 45° with respect to the upstream direction of the processing airflow, or at an angle of 45° with respect to the downstream direction of the processing airflow.

[第2の実施の形態の変形例2]
第2の実施の形態に対しても、第1の実施の形態の変形例3及び変形例4は同様に適用可能である。
[Modification 2 of Second Embodiment]
Modifications 3 and 4 of the first embodiment are similarly applicable to the second embodiment.

1…電気集塵機、10,20…帯電部、11,21…放電電極、12,22…接地電極、13,23…給電部材、14,24…かしめ部、25…脚部、26…頂辺部、30…集塵部、40…ファン、50…筐体、60…高電圧電源 DESCRIPTION OF SYMBOLS 1... Electric dust collector 10, 20... Charging part 11, 21... Discharge electrode 12, 22... Ground electrode 13, 23... Power supply member 14, 24... Crimping part 25... Leg part 26... Top side part , 30... dust collecting part, 40... fan, 50... housing, 60... high voltage power supply

Claims (12)

複数の繊維状導電体により形成され、放電によりイオンを発生させ拡散させる放電電極と、
接地電位に保たれ、前記放電電極により発生され拡散されたイオンを引き寄せて、処理気流中に含まれる浮遊微粒子を当該イオンにより帯電させる接地電極と
を備え、
前記放電電極は、前記処理気流内で前記接地電極間に配設され、少なくとも、当該放電電極の前記複数の繊維状導電体の全部又は一部が、当該接地電極の当該処理気流の最上流側の端部よりも当該処理気流の下流側に配置され
前記接地電極は、前記処理気流に沿う方向に配置された平板状の第1の電極部と、当該処理気流に交差する方向に配置された平板状の第2の電極部とを含むことを特徴とする帯電装置。
a discharge electrode formed of a plurality of fibrous conductors for generating and diffusing ions by discharge;
a ground electrode that is maintained at a ground potential, attracts ions generated and diffused by the discharge electrode, and charges suspended fine particles contained in the processing gas stream with the ions;
The discharge electrodes are disposed between the ground electrodes in the process airflow, and at least all or part of the plurality of fibrous conductors of the discharge electrodes are located on the most upstream side of the process airflow of the ground electrodes. is arranged downstream of the processing airflow from the end of the
The ground electrode includes a flat plate-shaped first electrode section arranged in a direction along the processing airflow, and a flat plate-shaped second electrode section arranged in a direction intersecting the processing airflow. charging device.
前記接地電極は、前記第1の電極部と前記第2の電極部とが略垂直になるように、当該第1の電極部の前記処理気流の上流側の先端部分と当該第2の電極部の中央部分とが接続されることにより、形成されていることを特徴とする請求項1に記載の帯電装置。 The ground electrode is arranged between the tip portion of the first electrode portion on the upstream side of the processing airflow and the second electrode portion so that the first electrode portion and the second electrode portion are substantially perpendicular to each other. 2. The charging device according to claim 1 , wherein the charging device is formed by connecting the central portion of the charging device with the central portion of the charging device. 前記接地電極は、前記第1の電極部の前記処理気流に沿う方向の長さをL1とし、前記第2の電極部の前記放電電極に向かう方向の長さをL2とした場合に、0.4≦L2/L1≦2であることを特徴とする請求項2に記載の帯電装置。 When the length of the first electrode portion in the direction along the processing airflow is L1, and the length of the second electrode portion in the direction toward the discharge electrode is L2, the ground electrode has a value of 0.0. 3. The charging device according to claim 2, wherein 4≤L2/L1≤2. 前記放電電極は、隣接する2つの前記接地電極間の中央に、何れかの当該接地電極までの距離が20mm以上100mm以下となるように、配置されていることを特徴とする請求項1乃至請求項3の何れかに記載の帯電装置。 1. The discharge electrodes are arranged in the center between two adjacent ground electrodes so that the distance to any of the ground electrodes is 20 mm or more and 100 mm or less. 4. The charging device according to any one of items 3 . 前記複数の繊維状導電体は、炭素繊維であることを特徴とする請求項1に記載の帯電装置。 2. The charging device according to claim 1 , wherein said plurality of fibrous conductors are carbon fibers. 前記放電電極と前記接地電極との間に高電圧を印加する高電圧電源を更に備えたことを特徴とする請求項1に記載の帯電装置。 2. The charging device according to claim 1, further comprising a high voltage power source for applying a high voltage between said discharge electrode and said ground electrode. 前記高電圧電源は、前記放電電極と前記接地電極との間に、正極性又は負極性の直流高電圧を印加することを特徴とする請求項6に記載の帯電装置。 7. The charging device according to claim 6 , wherein the high voltage power supply applies a positive or negative DC high voltage between the discharge electrode and the ground electrode. 前記高電圧電源は、前記放電電極と前記接地電極との間に、正極性又は負極性のパルス型又は交番型の高電圧を印加することを特徴とする請求項6に記載の帯電装置。 7. The charging device according to claim 6 , wherein the high-voltage power supply applies a positive or negative pulse-type or alternating-type high voltage between the discharge electrode and the ground electrode. 前記高電圧電源は、前記放電電極と前記接地電極との間に、予め定められた間隔で、通常印加する高電圧とは逆極性の高電圧を印加することを特徴とする請求項6に記載の帯電装置。 7. The high voltage power supply according to claim 6 , wherein the high voltage power supply applies a high voltage opposite in polarity to a normally applied high voltage at a predetermined interval between the discharge electrode and the ground electrode. charging device. 請求項1乃至請求項9の何れかに記載の帯電装置と、
前記帯電装置により帯電された浮遊微粒子を付着させることにより集塵する集塵部と
を備えたことを特徴とする集塵装置。
a charging device according to any one of claims 1 to 9 ;
A dust collector, comprising: a dust collector that collects dust by adhering floating fine particles charged by the charging device.
前記集塵部は、集塵フィルタにより構成されていることを特徴とする請求項10に記載の集塵装置。 11. The dust collector according to claim 10 , wherein the dust collector is configured by a dust filter. 前記集塵部は、熱交換器により構成されていることを特徴とする請求項10に記載の集塵装置。 11. The dust collector according to claim 10 , wherein the dust collector comprises a heat exchanger.
JP2019070672A 2019-04-02 2019-04-02 Charging device and dust collector Active JP7300298B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019070672A JP7300298B2 (en) 2019-04-02 2019-04-02 Charging device and dust collector
KR1020200036648A KR20200117868A (en) 2019-04-02 2020-03-26 Electrostatic charger and Electrostatic precipitator
US17/594,125 US20220161273A1 (en) 2019-04-02 2020-03-30 Electrostatic charger and electrostatic precipitator
PCT/KR2020/004361 WO2020204546A1 (en) 2019-04-02 2020-03-30 Charging device and dust collecting apparatus
EP20783908.5A EP3932563A4 (en) 2019-04-02 2020-03-30 Charging device and dust collecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070672A JP7300298B2 (en) 2019-04-02 2019-04-02 Charging device and dust collector

Publications (2)

Publication Number Publication Date
JP2020168597A JP2020168597A (en) 2020-10-15
JP7300298B2 true JP7300298B2 (en) 2023-06-29

Family

ID=72745517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070672A Active JP7300298B2 (en) 2019-04-02 2019-04-02 Charging device and dust collector

Country Status (2)

Country Link
JP (1) JP7300298B2 (en)
KR (1) KR20200117868A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090203A (en) 2014-11-11 2016-05-23 株式会社東芝 Indoor unit of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393270B2 (en) * 1994-10-17 2003-04-07 増田 佳子 Corona discharge unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090203A (en) 2014-11-11 2016-05-23 株式会社東芝 Indoor unit of air conditioner

Also Published As

Publication number Publication date
JP2020168597A (en) 2020-10-15
KR20200117868A (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP5774212B2 (en) Corona discharge device and air conditioner
JP5304096B2 (en) Charging device and air treatment device
KR20100085092A (en) Air processing device
JP2017013041A (en) Electrostatic precipitator
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
KR20160076452A (en) Electrostatic precipitator
KR102481567B1 (en) Electrostatic precipitator
US20230140445A1 (en) Electrostatic separator
JPH09262500A (en) Electrical precipitator
KR102629969B1 (en) Charging device and dust collecting device
JP2020151634A (en) Dust collection device
EP3932563A1 (en) Charging device and dust collecting apparatus
JPH09262499A (en) Electric al precipitator
US11331678B2 (en) Charging apparatus and precipitator
JP7300298B2 (en) Charging device and dust collector
JPH1028897A (en) Electric precipitator
JPS59209664A (en) Blower
KR20220113718A (en) electric dust collector
WO2014083933A1 (en) Electrical discharge unit and air cleaner
JP3465234B2 (en) Ionization section of electric dust collector
CN218222908U (en) Electrostatic air filter
KR100201651B1 (en) Dust collecting filter in air cleaner
CN210373804U (en) Electrostatic dust removal module and air treatment device
JP2009061444A (en) Electrostatic dust collector and charger
JP2012066210A (en) Electric dust collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7300298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150