WO2002089990A1 - Resin electrode and electrostatic dust collector using the same - Google Patents

Resin electrode and electrostatic dust collector using the same Download PDF

Info

Publication number
WO2002089990A1
WO2002089990A1 PCT/JP2002/004389 JP0204389W WO02089990A1 WO 2002089990 A1 WO2002089990 A1 WO 2002089990A1 JP 0204389 W JP0204389 W JP 0204389W WO 02089990 A1 WO02089990 A1 WO 02089990A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resin
carbon black
dust collecting
discharge
Prior art date
Application number
PCT/JP2002/004389
Other languages
French (fr)
Japanese (ja)
Inventor
Yuzo Mifune
Sohei Fukada
Original Assignee
Midori Anzen Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co., Ltd. filed Critical Midori Anzen Co., Ltd.
Priority to KR1020037007435A priority Critical patent/KR100868464B1/en
Publication of WO2002089990A1 publication Critical patent/WO2002089990A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/64Use of special materials other than liquids synthetic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/04Ionising electrode being a wire

Definitions

  • the present invention relates to an ionizer section of an electrostatic precipitator, a resin electrode used as a counter electrode of a corona discharge electrode such as a copying machine, a static eliminator, an ozone generator, and a collector section of an electrostatic precipitator.
  • the present invention relates to a dust electrode, and an electrostatic dust collector using an ionizer unit counter electrode and a collector unit dust collecting electrode.
  • an electrostatic precipitator applies a charge to dust particles in an airflow by corona discharge, etc., and collects and removes the charged particles by electrostatic force while passing through the electric field.
  • Various types are used, from large industrial devices to small household devices.
  • a metal material such as aluminum or stainless steel is usually used for a counter electrode of an ionizer section that applies electric charges to dust particles and a dust collection electrode that collects charged particles.
  • such an electrode is configured such that a counter electrode facing a corner discharge electrode is arranged via a spacer in an ionizer section, and a collector section is similarly connected to a high voltage side for applying a positive or negative potential.
  • the electrodes and the ground electrodes facing the electrodes are alternately arranged in parallel via spacers.
  • the electrodes are not formed into a laminated structure but are integrally formed by sheet metal stamping or the like. Can not form a large area electrode Absent.
  • Examples of the conductive resin include, for example, carbon black as the base resin.
  • Carbon fiber Carbon fiber, conductive whiskers, and stainless steel fibers.
  • Such a conductive resin mixed with a water-absorbing polymer has the advantage that the resin surface can always have uniform conductivity, it is easy to conduct, and the amount of carbon fiber kneaded into the resin can be reduced. is there.
  • the present invention has sufficient conductivity as an electrode and has excellent discharge characteristics and dust collection characteristics. It is an object of the present invention to provide a resin electrode and an electrostatic dust collector using the same.
  • the first aspect of the present invention relates to a resin electrode used as a counter electrode of a discharge electrode, wherein the resin electrode is made of a conductive resin obtained by blending conductive carbon black with polyolefin or polyester resin. is there.
  • the conductive carbon black can be dispersed evenly by using polyolefin or polyester resin as the base resin.
  • the resin surface is microscopically uniform, uniform discharge characteristics can be obtained, and dust collection characteristics can be improved.
  • the conductive carbon black has a nitrogen specific surface area of 500 m 2 Zg or more, and a DBP oil absorption of 200 cm 3 / ⁇ 00. g or more.
  • a third aspect of the present invention in the first or second aspect, in the resin electrode, wherein the volume resistivity of not more than the order of 1 0 7 ⁇ cm.
  • a predetermined volume resistivity can be obtained by uniform dispersion of the conductive carbon black.
  • the resin electrode is used as a counter electrode of the discharge electrode.
  • good dust collection characteristics can be obtained by using the resin electrode as the counter electrode of the positively connected discharge electrode.
  • the counter electrode of the corona discharge electrode, the collector dust collecting electrode of the electrostatic dust collector, and the ionizer-collector integrated electrostatic dust collector The resin electrode is used as one of an electrode having a function of an ionizer unit counter electrode and a collector unit dust collecting electrode of the apparatus.
  • a sixth aspect of the present invention is an electrostatic precipitator, wherein the resin electrode according to any one of the first to fifth aspects is used as a counter electrode of an ionizer section.
  • dust collection characteristics can be improved by using a resin electrode having uniform discharge characteristics as the counter electrode.
  • the resin electrode according to any one of the first to fifth aspects wherein the counter electrode of the ionizer section and the dust collecting electrode of the collector section are integrally formed. In the dust device.
  • the manufacturing cost can be significantly reduced, and the dust collecting efficiency can be improved by increasing the dust collecting area.
  • the strength of the electrode can be improved to prevent deformation and the like.
  • the conductive carbon black can be uniformly dispersed without being unevenly distributed. Since it is extremely uniform, good discharge characteristics and dust collection characteristics can be obtained.
  • examples of the polyolefin resin include polypropylene (PP) and polyethylene (PE).
  • polyester resin examples include polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • the conductive carbon black is uniformly dispersed, and the strength of the resin itself is less reduced.
  • the conductive carbon black is not particularly limited as long as it is uniformly dispersed in these resins and exhibits good conductivity, but the nitrogen specific surface area is 50 Om 2 Zg or more, and DBP it is preferred oil absorption amount is 2 0 0 cm 3/1 0 0 g or more. This is presumed to provide good dispersibility and conductivity.
  • Examples of such conductive carbon black include Ketjen Black (trade name).
  • the particle size of the conductive carbon black is not particularly limited, but is not more than ⁇ order, preferably about nm order. Because of having such a particle size, it can be uniformly dispersed in the resin, and can exhibit uniform discharge and good dust collection characteristics.
  • 'Volume resistance ratio of the thus made of a conductive carbon black added resin resin electrode is preferably not more than 1 0 7 Omega cm order. This is to obtain good discharge characteristics and dust collection characteristics.
  • a resin containing conductive carbon black To form the resin electrode of the present invention, it is necessary to use a resin containing conductive carbon black.
  • a resin containing conductive carbon black To mix the conductive carbon black with the base resin, for example, a mixing roll, a Banbury mixer It can be prepared by melt-mixing in a usual manner using a continuous mixer or the like. In this case, it is preferable to mix the conductive carbon black in an amount of 18% by weight to 30% by weight based on the resin used as the base material. If the amount is less than this, desired conductivity cannot be obtained, and good discharge characteristics and dust collection characteristics cannot be obtained. Also, if the compounding amount is larger than this, the mechanical strength of the conductive resin decreases.
  • a flame retardant when used as an electrode of an electrostatic precipitator, it is common practice to incorporate a flame retardant as a safety measure.However, adding a flame retardant is more mechanical than simply adding conductive carbon black to the resin. The target strength tends to decrease. If the mechanical strength falls below a certain level at this time, repeated use of the electrode due to cleaning, such as cleaning and assembling work associated with electrode contamination in dust collection and breaking the electrode if no special work is performed, is required. The merit of the characteristic electrostatic dust collector will be lost.
  • the resin electrode of the present invention can be manufactured by molding using a resin containing conductive carbon black as described above, but the molding method is not particularly limited. Absent. For example, it may be formed by injection molding, press molding or the like.
  • the resin electrode of the present invention manufactured as described above gives a common potential to the counter electrode of the ionizer section of the electrostatic precipitator and the common electrode to the counter electrode of the ionizer section and the dust collecting electrode of the collector section.
  • the present invention can be applied to an ionizer-collector type electrode and the like.
  • FIG. 1 is a schematic diagram showing an example of an electrostatic precipitator according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing an example of the electrostatic precipitator according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of FIG.
  • FIG. 4 is a plan view showing a test method according to Test Example 1 of the present invention.
  • FIG. 5 is a plan view showing a test method according to Test Example 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing an outline of an example of an electrostatic dust collector using a resin electrode according to Embodiment 1 of the present invention.
  • an ionizer section 10 which is a charging section composed of a discharge electrode 11 and its counter electrode 12, and a discharge electrode 11 are positively connected.
  • a non-collecting electrode 21 connected to a relatively positive potential and a collector portion 20 that is a dust collecting portion composed of a dust collecting electrode 22 connected to a relatively negative potential are connected.
  • the discharge electrode 11 is connected to a negative potential
  • the non-dust collecting electrode 21 is connected to a relatively negative potential
  • the dust collecting electrode 22 is connected to a relatively positive potential. It will be.
  • a plurality of flat counter electrodes 12 are arranged in parallel and are electrically connected to each other, and the discharge electrodes 11 are provided between the counter electrodes 12 so as not to be in contact with each other. Is arranged.
  • a plurality of flat plate-shaped dust collecting electrodes 22 are arranged in parallel on the downstream side of the ionizer section 10, and a flat plate-shaped non-dust collecting electrode is provided between the respective dust collecting electrodes 22.
  • Electrode 21 is arranged. That is, in the collector section 20, the dust collecting electrodes 22 and the non-dust collecting electrodes 21 are alternately arranged in parallel.
  • the dust collecting electrode 22 and the non-dust collecting electrode 21 should not be in direct contact.
  • the ionizer 10 and the collector 20 are formed by a combination of the discharge electrode 11, the counter electrode 12, the non-dust collecting electrode 21 and the dust collecting electrode 22, and the counter electrode 1 2 and the dust collecting electrode 2 2 volume resistivity formed by 1 0 7 Omega cm or less of the conductive resin material, a non-dust collecting electrode 2 1 a volume resistivity of 1 0 l fl ⁇ 1 0 1 3 Q cm It is preferable to use a semiconductive resin material.
  • the ionizer unit 10 and the collector unit 20 configured as described above, even if the conductive dust is mixed in the dust particles charged by the ionizer unit 10, the electric charge of the non-dust collection electrode 21 is transferred. Is limited by the resistance of the semiconductive resin material, so that spark generation between the non-dust collecting electrode 21 and the dust collecting electrode 22 can be prevented.
  • the electrostatic precipitator By forming the counter electrode 12 of such an electrostatic precipitator 1 from a polyolefin or polyester resin mixed with conductive carbon black, the electrostatic precipitator has excellent discharge characteristics and excellent dust collection characteristics. Dust collector 1 can be used.
  • the dust collecting electrode 22 may also be made of polyolefin or polyester resin mixed with conductive carbon black.
  • the discharge electrode 11 a known wire type or needle type is used as an electrostatic precipitator, and the semiconductive resin material forming the non-precipitate electrode 21 is not particularly limited. Examples thereof include a resin electrode in which a conductive material is mixed in an ABS resin, and a resin electrode in which a water-absorbing resin is further mixed.
  • the electrostatic dust collecting device 1 is provided with suction means, air blowing means, etc. for passing air. It is used together with air purification equipment, air conditioning equipment, air conditioning equipment, etc. It is used by being incorporated.
  • FIG. 2 is an exploded perspective view of an example of an electrostatic dust collector using a resin electrode according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic view thereof.
  • the electrostatic precipitator 1A includes an ionizer section 1OA, which is a charging section including a discharge electrode 11A and a counter electrode 12A, and a discharge electrode 1A. Is connected to the positive side, the dust collection electrode 21 A connected to the relatively positive side potential and the dust collection electrode 22 A connected to the relatively negative side potential And a collector section 2 OA.
  • the discharge electrode 11A is connected to the negative side, the position of each electrode may be set in the same manner as in the first embodiment.
  • the counter electrode 12 A of the ionizer section 1 OA and the dust collecting electrode 22 A of the collector section 2 OA have a flat plate shape, and are formed on one side of a frame 35 through which air containing dust particles to be collected passes.
  • the counter electrode 12 A is juxtaposed so as to protrude in the airflow direction.
  • the dust collection electrode 22 A is arranged in a direction orthogonal to the parallel direction of the counter electrode 12 A. They are juxtaposed and integrally formed.
  • the dust collecting area can be increased, and the collection efficiency of the charged particles can be improved. Wear.
  • the strength can be increased, and deformation such as warpage and radius deformation of each electrode is prevented.
  • the space between the counter electrode 12 A and the dust collecting electrode 22 A is not required, so that the electrostatic dust collecting device 1 A can be downsized.
  • the non-collecting electrode 21 A of the collector unit 2 OA can pass through the collecting electrode 22 A, and the dust collecting electrode 22 A and the non-dust collecting electrode 21 A do not contact at equal intervals. It has an opening 25 formed. By inserting the dust collecting electrodes 22 A at equal intervals through the openings 25 of the non-dust collecting electrodes 21 A, the gap between the non-dust collecting electrodes 21 A and the dust collecting electrodes 22 A is increased. A collector portion 2OA capable of applying a uniform electric field is formed.
  • the discharge electrode 11 A constituting the ionizer section 1 OA is located at a position facing the counter electrode 12 A of the fitting section 13 fitted to the frame section 35, and the counter electrode 12 A is interposed therebetween. It is provided so that it can be inserted. That is, when the fitting part 13 is fitted to the frame part 35, The counter electrode 12 A is inserted and fixed at a uniform interval between the discharge electrodes 11 A provided in the fitting portion 13.
  • the counter electrode 12 A and the dust collecting electrode 22 A which are the body of such an electrostatic precipitator 1 A, from a polyolefin or polyester resin blended with conductive carbon black, the discharge characteristics are improved. And the electrostatic dust collector 1A having excellent dust collection characteristics.
  • a 10 OmmX26mmX0.8 mm (thickness) resin electrode was formed using a conductive resin in which 30% by weight of Ketjen Black (CB) was mixed as a conductive carbon black with a polypropylene resin.
  • the volume resistivity was between 10 ° and 1 ⁇ cm.
  • a resin electrode of 10 Omm X 26 mm X 0.8 mm (thickness) was formed by using a conductive resin in which polybutylene terephthalate (PBT) was blended with 20% by weight of a conductive carbon black, that is, a conductive carbon black.
  • Volume resistivity was 10 3 ⁇ cm
  • a resin electrode of 10 OmmX26mmX0.8 mm (thickness) was formed using a conductive resin in which 18% by weight of Ketjen Black (CB) was blended as conductive carbon black with polypropylene resin.
  • the volume resistivity was 10 5 ⁇ cm.
  • a 10 OmmX 26mm X 0.8mm (thickness) resin electrode was formed using a conductive resin in which 20% by weight of carbon fiber (CF) and 7% by weight of a water-absorbing resin were mixed with an ABS resin.
  • the volume resistivity was 1 O 1 ⁇ 10 2 ⁇ cm.
  • Discharge characteristics were measured using the resin electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 as counter electrodes.
  • the discharge characteristics were measured by placing resin electrodes as counter electrodes 12B in parallel at intervals of 14 mm and placing a very fine discharge electrode 11B made of metal (tungsten) wire at the center. This was performed by measuring the applied voltage at the standard operating point (20 / zm) several times.
  • the evaluation criterion satisfy the following expression (1). If the discharge characteristics are out of the standard range, a so-called reverse ionization phenomenon occurs such as the discharge electrode 11 A, which is a metal wire, vibrating or dust particles are hardly charged. It did not function as a dust device.
  • the applied voltage at the counter electrode consisting of a resin electrode.
  • the surfaces of the resin electrodes of Examples 1, 3 and Comparative Example 1 were observed by SEM. As a result, the surface of the resin electrode of Example 1 was smooth, the conduction state of the surface was confirmed, and carbon black particles could not be observed.However, with the resin electrode of Comparative Example 1, carbon fibers could be observed. The location where carbon fiber exists and the location where it does not It was clearly observed that the conducting part and the non-conducting part could be distinguished.
  • Example 3 the surface smoothness and conduction state were the same as in Example 1. Similarly, no carbon black particles could be observed, and no difference in surface observation from Example 1 was observed.
  • the performance evaluation included dust collection efficiency at 15 ° C and 27% RH, SEM observation of surface condition, and discharge efficiency as a molded product when each counter electrode 12 B was incorporated into an electrostatic dust collector. The measurement was performed. The results are shown in Table 2 below.
  • the dust collection efficiency was measured as shown in FIG. 2 in which the counter electrode 12 B of Example 1 was provided in the throttle section 41 provided substantially in the middle of the duct 40 as shown in FIG.
  • An electrostatic precipitator 1B having the same configuration as that of the electrostatic precipitator 1B is provided, and the particulate matter is sent from one side by the blowing means 50, and the particles and particles before and after passing through the electrostatic precipitator 1B are provided. The amount of the substance was measured.
  • the particle amount (number of particles) before and after passing is measured by the particle sampling port 4 3 and the particle sampling port 4 4 of the duct 40 before and after the dust collection. ).
  • the particle diameter of the particulate matter generated by the particle generator 42 is 0.3 to 0.5 im, and the amount of particles before dust collection is 150 to 300 particles / L (liter). there were. From these measurement results, the dust collection efficiency was calculated by the following equation (2). The results are shown in Table 2 below.
  • the conductive carbon black is not unevenly distributed by constituting the resin electrode with the conductive resin obtained by mixing the conductive resin black with the polyolefin or the polyester resin as the base resin. Since it is uniformly dispersed and shows conductivity, it is possible to realize a stable and uniform discharge without being affected by environmental conditions, and to improve the dust collection efficiency with an electrostatic precipitator that uses this as a counter electrode. Can be done.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

A resin electrode for use as an electrode being opposed to a discharge electrode, which comprises an electroconductive resin comprising a polyolefin or polyester resin and an electroconductive carbon black incorporated therein; and an electrostatic dust collector using the resin electrode. The resin electrode has satisfactory electric conductivity as an electrode and also is excellent in discharge characteristics and dust collection characteristics.

Description

明 細 書 樹脂電極及びそれを用いた静電式集塵装置 技術分野  Description Resin electrode and electrostatic precipitator using the same
本発明は、 静電式集塵装置のアイオナイザ部、 複写機、 静電気除去装置、 ォ ゾン発生装置などのコロナ放電電極の対向電極に用いられる樹脂電極、 静電式集 塵装置のコレクタ部の集塵電極、 並びにアイオナイザ部対向電極及びコレクタ部 集塵電極を用いた静電式集塵装置に関する。 背景技術  The present invention relates to an ionizer section of an electrostatic precipitator, a resin electrode used as a counter electrode of a corona discharge electrode such as a copying machine, a static eliminator, an ozone generator, and a collector section of an electrostatic precipitator. The present invention relates to a dust electrode, and an electrostatic dust collector using an ionizer unit counter electrode and a collector unit dust collecting electrode. Background art
例えば、 静電式集塵装置は、 気流中の塵埃粒子に対してコロナ放電などによ り電荷を与え、 この荷電粒子が電界中を通過する間に静電気力により荷電粒子を 捕集して除去するもので、 産業用の大型装置から家庭用の小型装置まで種々のタ イブが用いられている。  For example, an electrostatic precipitator applies a charge to dust particles in an airflow by corona discharge, etc., and collects and removes the charged particles by electrostatic force while passing through the electric field. Various types are used, from large industrial devices to small household devices.
このような静電式集塵装置では、 塵埃粒子に電荷を与えるアイォナイザ部の対 向電極、 荷電粒子を捕集する集塵電極には、 通常アルミニウムやステンレスなど の金属材料が用いられている。  In such an electrostatic precipitator, a metal material such as aluminum or stainless steel is usually used for a counter electrode of an ionizer section that applies electric charges to dust particles and a dust collection electrode that collects charged particles.
かかる電極の構成は、 一般的にはアイォナイザ部ではコ口ナ放電電極に対向す る対向電極をスぺーサーを介して配列し、 コレクタ部も同様にプラス又はマイナ スの電位を印加する高圧側電極と、 それに対向する接地電極とを交互にスぺーサ 一を介して平行に配列した構造となっている。  In general, such an electrode is configured such that a counter electrode facing a corner discharge electrode is arranged via a spacer in an ionizer section, and a collector section is similarly connected to a high voltage side for applying a positive or negative potential. The electrodes and the ground electrodes facing the electrodes are alternately arranged in parallel via spacers.
しかしながら、 電極に金属板を用いた場合には、 導電率の点では良いが、 電極 自体の重さが重くなつてしまうという問題がある。  However, when a metal plate is used for the electrode, there is a problem that the electrode itself becomes heavy, although the conductivity is good.
また、 電極に金属板を用いる場合は、 複数枚の金属板をスぺ一サーを介して積 層して形成する必要があり、 組み立て工程が煩雑であるという問題がある。 このため、 電極の組み立て工程を簡略化するために、 電極を積層構造とせず、 板金プレス加工等により一体成形する電極も考えられるが、 極板間ピッチ以上に 極板の奥行きを長くすることができず、 大きな面積の電極を形成することができ ない。 また、 例えば、 屈曲させた折り曲げ部など、 粒子が荷電されずに通過して しまう領域が生じ、 集塵性能が低下してしまうという問題がある。 In addition, when a metal plate is used for the electrode, it is necessary to form a plurality of metal plates by lamination through a spacer, and there is a problem that the assembly process is complicated. For this reason, in order to simplify the process of assembling the electrodes, it is conceivable that the electrodes are not formed into a laminated structure but are integrally formed by sheet metal stamping or the like. Can not form a large area electrode Absent. In addition, for example, there is a region in which particles pass without being charged, such as a bent portion, and there is a problem that dust collection performance is reduced.
さらに、 金属板からなる電極では、 複雑な形状の電極を作成するのが困難であ り、 高コストとなってしまうという問題がある。  Furthermore, it is difficult to form electrodes having a complicated shape with electrodes made of a metal plate, resulting in a problem of high cost.
このような問題を解決するために、 導電性を有する樹脂で電極を形成する技術, が開発された。  In order to solve such a problem, a technique for forming electrodes with a conductive resin has been developed.
導電性を有する樹脂としては、 基材となる樹脂に、 例えば、 カーボンブラック Examples of the conductive resin include, for example, carbon black as the base resin.
、 カーボンファイバー、 導電性ゥイスカー及びステンレス繊維などの導電材を適 量配合することで得ることができる。 , Carbon fiber, conductive whiskers, and stainless steel fibers.
しかしながら、 従来、 一般的には、 導電材としてカーボンブラックを配合する 場合、 大量に配合しないと対向電極として必要な低い抵抗値を得ることができず However, conventionally, when carbon black is compounded as a conductive material, it is generally impossible to obtain a low resistance required as a counter electrode unless it is added in a large amount.
、 樹脂強度が大幅に低下してしまうとされている。 そして、 一般的には、 A B S 樹脂に導電材としてカーボンファイバーを配合した樹脂電極が使用されている。 カーボンフアイバーは繊維状であるため、 粒子状の力一ボンブラックに比べて 少ない量でも必要な抵抗値が得られるという利点があるが、 十分な集塵性能が得 られないという問題がある。 It is said that the resin strength is greatly reduced. In general, a resin electrode in which carbon fiber is blended as a conductive material with an ABS resin is used. Since carbon fiber is fibrous, it has the advantage that the required resistance value can be obtained with a smaller amount than the particulate carbon black, but there is a problem that sufficient dust collection performance cannot be obtained.
そこで、 このような問題を解決するため、 カーボンファイバーが配合された A Therefore, in order to solve such problems, carbon fiber blended A
B S樹脂からなる樹脂電極にさらに吸水性ポリマーを混入したものが提案されて レヽる (特開平 0 8— 2 2 7 7 8 9号公報) 。 A proposal has been made in which a water-absorbing polymer is further mixed into a resin electrode made of a BS resin (Japanese Patent Application Laid-Open No. 08-227879).
このような吸水性ポリマーを混入させた導電樹脂では、 樹脂表面に常に均一な 導電性を持たせることができ、 導通し易く、 樹脂に練り込むカーボンファイバー の量も少なくすることができるという利点がある。  Such a conductive resin mixed with a water-absorbing polymer has the advantage that the resin surface can always have uniform conductivity, it is easy to conduct, and the amount of carbon fiber kneaded into the resin can be reduced. is there.
しかしながら、 吸水性ポリマーを混入した樹脂電極は、 高温湿度 (1 5 °C ' 3 However, resin electrodes mixed with a water-absorbing polymer are subject to high temperature and humidity (15 ° C'3
0 %よりも上) では集塵効率及び放電特性等の特性及び性能の良い樹脂電極が得 られるが、 低温湿度 (1 5 °C . 3 0 %以下) では特性及び性能が低下してしまう という問題がある。 発明の開示 (Above 0%), a resin electrode with good characteristics and performance such as dust collection efficiency and discharge characteristics can be obtained, but the characteristics and performance deteriorate at low temperature humidity (15 ° C.30% or less). There's a problem. Disclosure of the invention
本発明は、 電極として十分な導電性を有し且つ放電特性及び集塵特性の優れた 樹脂電極及びそれを用いた静電式集塵装置を提供することを目的とする。 The present invention has sufficient conductivity as an electrode and has excellent discharge characteristics and dust collection characteristics. It is an object of the present invention to provide a resin electrode and an electrostatic dust collector using the same.
前記目的を達成するために研究を重ねた結果、 カーボンファイバ一を導電材と して用いた場合、 導電材同士が接触していないと導通しないため、 導電材同士が 電気的に接触するように、 樹脂中でファイバーがランダムに配置されるようにし ないと導電性を持たせることができないが、 この結果、 樹脂表面はミクロ的に不 均一であるため、 均一な放電ができず、 集塵効率が低下するということを知見し た。 また、 カーボンブラックは、 従来、 樹脂電極として一般的に使用されている A B S樹脂に対しては分散性が好ましくなく且つ強度低下を起こす傾向があり、 実使用レベルでの導電性、 強度及び成形性を得られないとされていたが、 所定の 導電性カーボンブラックは、 ポリプロピレンなどの特定の樹脂に対しては均一に 分散され且つ表面状態がミクロ的にみても偏在せずに均一になり易くなるため、 良好な放電特性及び集塵特性が得られることを知見し、 本発明を完成させた。 かかる本発明の第 1の態様は、 放電電極の対向電極に用いられる樹脂電極であ つて、 ポリオレフイン又はポリエステル樹脂に導電性カーボンブラックを配合し た導電性樹脂からなることを特徴とする樹脂電極にある。  As a result of repeated research to achieve the above objective, when carbon fiber is used as a conductive material, conduction does not occur unless the conductive materials are in contact with each other, so that the conductive materials are electrically contacted. However, conductivity cannot be provided unless the fibers are randomly arranged in the resin, but as a result, the resin surface is not uniform microscopically, so that uniform discharge cannot be achieved and dust collection efficiency Was found to decrease. In addition, carbon black has a poor dispersibility and a tendency to cause a decrease in strength with respect to an ABS resin generally used as a conventional resin electrode. However, certain conductive carbon black is uniformly dispersed in a specific resin such as polypropylene, and the surface state tends to be uniform without uneven distribution even when viewed from a microscopic viewpoint. Therefore, they found that good discharge characteristics and dust collection characteristics were obtained, and completed the present invention. The first aspect of the present invention relates to a resin electrode used as a counter electrode of a discharge electrode, wherein the resin electrode is made of a conductive resin obtained by blending conductive carbon black with polyolefin or polyester resin. is there.
かかる第 1の態様では、 基材となる樹脂にポリオレフイン又はポリエステル樹 脂を用いることによって導電性カーボンブラックを均等に分散させることができ る。 また、 樹脂表面はミクロ的にも均一であるため、 均一な放電特性を得ること ができ、 集塵特性も向上する。  In the first embodiment, the conductive carbon black can be dispersed evenly by using polyolefin or polyester resin as the base resin. In addition, since the resin surface is microscopically uniform, uniform discharge characteristics can be obtained, and dust collection characteristics can be improved.
本発明の第 2の態様は、 第 1の態様において、 前記導電性カーボンブラックが 、 窒素比表面積が 5 0 0 m2 Z g以上であり、 D B P吸油量が 2 0 0 c m 3 / \ 0 0 g以上であることを特徴とする樹脂電極にある。 According to a second aspect of the present invention, in the first aspect, the conductive carbon black has a nitrogen specific surface area of 500 m 2 Zg or more, and a DBP oil absorption of 200 cm 3 / \ 00. g or more.
力かる第 2の態様では、 ポリオレフイン又はポリエステル樹脂に良好に分散し 、 均一な放電が可能となる。  In the vigorous second aspect, uniform dispersion is possible with good dispersion in the polyolefin or polyester resin.
本発明の第 3の態様は、 第 1又は 2の態様において、 体積抵抗率が 1 0 7 Ω c mのオーダー以下であることを特徴とする樹脂電極にある。 A third aspect of the present invention, in the first or second aspect, in the resin electrode, wherein the volume resistivity of not more than the order of 1 0 7 Ω cm.
かかる第 3の態様では、 導電性カーボンブラックの均一な分散により、 所定の 体積抵抗率が得られる。  In the third aspect, a predetermined volume resistivity can be obtained by uniform dispersion of the conductive carbon black.
本発明の第 4の態様は、 第 1〜 3の何れかの態様において、 プラスに接続され た放電電極の対向電極として用いられることを特徴とする樹脂電極にある。 かかる第 4の態様では、 樹脂電極をプラスに接続された放電電極の対向電極と して使用することによって、 良好な集塵特性を得ることができる。 According to a fourth aspect of the present invention, in any one of the first to third aspects, The resin electrode is used as a counter electrode of the discharge electrode. In the fourth aspect, good dust collection characteristics can be obtained by using the resin electrode as the counter electrode of the positively connected discharge electrode.
本発明の第 5の態様は、 第 1〜4の何れかの態様において、 コロナ放電電極の 対向電極、 静電式集塵装置のコレクタ部集塵電極およびアイオナイザ一コレクタ 一体型静電式集塵装置のアイォナイザ部対向電極とコレクタ部集塵電極の機能を 有する電極の何れかに用いられることを特徴とする樹脂電極にある。  According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the counter electrode of the corona discharge electrode, the collector dust collecting electrode of the electrostatic dust collector, and the ionizer-collector integrated electrostatic dust collector The resin electrode is used as one of an electrode having a function of an ionizer unit counter electrode and a collector unit dust collecting electrode of the apparatus.
かかる第 5の態様では、 これらの電極に本発明の樹脂電極を用いることにより 、 阜好な集塵特性を得ることができる。  In the fifth aspect, by using the resin electrode of the present invention for these electrodes, excellent dust collection characteristics can be obtained.
本発明の第 6の態様は、 第 1〜5の何れかの態様の樹脂電極をアイオナイザ部 の対向電極として用いたことを特徴とする静電式集塵装置にある。  A sixth aspect of the present invention is an electrostatic precipitator, wherein the resin electrode according to any one of the first to fifth aspects is used as a counter electrode of an ionizer section.
かかる第 6の態様では、 放電特性の均一な樹脂電極を対向電極として用いるこ とで、 集塵特性を向上することができる。  In the sixth aspect, dust collection characteristics can be improved by using a resin electrode having uniform discharge characteristics as the counter electrode.
本発明の第 7の態様は、 第 1〜5の何れかの態様の樹脂電極で、 アイオナイザ 部の対向電極及びコレクタ部の集塵電極を一体的に形成したことを特徴とする静 電式集塵装置にある。  According to a seventh aspect of the present invention, there is provided the resin electrode according to any one of the first to fifth aspects, wherein the counter electrode of the ionizer section and the dust collecting electrode of the collector section are integrally formed. In the dust device.
かかる第 7の態様では、 対向電極と集塵電極とを一体的に形成 ることによつ て製造コストを大幅に低減し且つ集塵面積を増大させて集塵効率を向上すること ができると共に電極の強度を向上して変形等を防止することができる。  In the seventh aspect, by integrally forming the counter electrode and the dust collecting electrode, the manufacturing cost can be significantly reduced, and the dust collecting efficiency can be improved by increasing the dust collecting area. The strength of the electrode can be improved to prevent deformation and the like.
本発明では、 所定の導電性カーボンブラックを、 ポリオレフイン又はポリエス テル樹脂に配合することにより、 導電性カーボンブラックを偏在させずに均一に 分散することができ、 この結果、 樹脂表面がミクロ的にも著しく均一となるため 、 良好な放電特性及び集塵特性を得ることができる。  In the present invention, by blending a predetermined conductive carbon black with a polyolefin or a polyester resin, the conductive carbon black can be uniformly dispersed without being unevenly distributed. Since it is extremely uniform, good discharge characteristics and dust collection characteristics can be obtained.
ここでポリオレフイン樹脂としては、 例えば、 ポリプロピレン (P P ) 、 ポリ エチレン (P E ) 等を挙げることができる。  Here, examples of the polyolefin resin include polypropylene (PP) and polyethylene (PE).
また、 ポリエステル樹脂としては、 例えば、 ポリブチレンテレフタレート (P B T) 、 ポリエチレンテレフタレート (P E T) 等を挙げることができる。 このような樹脂は、 A B S樹脂とは異なり、 導電性カーボンブラックが均一に 分散され、 また、 樹脂自体の強度低下も少ない。 一方、 導電性カーボンブラックは、 これらの樹脂に均一に分散されて良好な導 電性を示すものであれば特に限定されないが、 窒素比表面積が 5 0 O m 2 Z g以 上であり、 D B P吸油量が 2 0 0 c m 3 / 1 0 0 g以上であることが好ましい。 これにより、 良好な分散性及び導電性が得られると推定される。 Examples of the polyester resin include polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). In such a resin, unlike the ABS resin, the conductive carbon black is uniformly dispersed, and the strength of the resin itself is less reduced. On the other hand, the conductive carbon black is not particularly limited as long as it is uniformly dispersed in these resins and exhibits good conductivity, but the nitrogen specific surface area is 50 Om 2 Zg or more, and DBP it is preferred oil absorption amount is 2 0 0 cm 3/1 0 0 g or more. This is presumed to provide good dispersibility and conductivity.
このような導電性カーボンブラックとしては、 例えば、 ケッチェンブラック ( 商品名) を挙げることができる。  Examples of such conductive carbon black include Ketjen Black (trade name).
また、 このような導電性カーボンブラックの粒径も特に限定されないが、 μ πι オーダ以下、 好ましくは n mオーダ程度である。 このような粒径を有するため、 樹脂に均一に分散することができ、 均一な放電と良好な集塵特性を発揮すること ができる。  The particle size of the conductive carbon black is not particularly limited, but is not more than μπι order, preferably about nm order. Because of having such a particle size, it can be uniformly dispersed in the resin, and can exhibit uniform discharge and good dust collection characteristics.
' このように導電性カーボンブラックを添加した樹脂からなる樹脂電極の体積抵 抗率は、 1 0 7 Ω c mのオーダー以下であることが望ましい。 良好な放電特性及 び集塵特性を得るためである。 'Volume resistance ratio of the thus made of a conductive carbon black added resin resin electrode is preferably not more than 1 0 7 Omega cm order. This is to obtain good discharge characteristics and dust collection characteristics.
本発明の樹脂電極を成形するには、 導電性カーボンブラックを配合した樹脂を 用いる必要があるが、 導電性カーボンブラックを基材となる樹脂に配合するには 、 例えば、 ミキシングロール、 バンバリ一ミキサー、 連続ミキサーなどを用いて 通常の方法により溶融混合することよって調製することができる。 この場合、 導 電性カーボンブラックを基材となる樹脂に対して 1 8重量%〜 3 0重量%配合す るのが好ましい。 これより配合量が少ないと所望の導電性が得られず、 ひいては 、 良好な放電特性及び集塵特性が得られない。 また、 これより配合量が多くなる と導電性樹脂の機械的強度が低下してしまうためである。 特に静電式集塵装置の 電極として用いる場合、 安全対策として難燃剤を配合することが一般的に行なわ れるが、 難燃剤を配合することで単に樹脂に導電性カーボンブラックを配合した 場合より機械的強度が低下する傾向となる。 このときにある強度以下に機械的強 度が低下すると、 集塵での電極汚れに伴う洗浄及び組み付け作業で、 特殊な作業 をしなければ電極が壊れてしまうなど、 洗浄による電極の繰返し使用を特徴とす る静電式集塵装置のメリットが失われることとなる。  To form the resin electrode of the present invention, it is necessary to use a resin containing conductive carbon black. To mix the conductive carbon black with the base resin, for example, a mixing roll, a Banbury mixer It can be prepared by melt-mixing in a usual manner using a continuous mixer or the like. In this case, it is preferable to mix the conductive carbon black in an amount of 18% by weight to 30% by weight based on the resin used as the base material. If the amount is less than this, desired conductivity cannot be obtained, and good discharge characteristics and dust collection characteristics cannot be obtained. Also, if the compounding amount is larger than this, the mechanical strength of the conductive resin decreases. In particular, when used as an electrode of an electrostatic precipitator, it is common practice to incorporate a flame retardant as a safety measure.However, adding a flame retardant is more mechanical than simply adding conductive carbon black to the resin. The target strength tends to decrease. If the mechanical strength falls below a certain level at this time, repeated use of the electrode due to cleaning, such as cleaning and assembling work associated with electrode contamination in dust collection and breaking the electrode if no special work is performed, is required. The merit of the characteristic electrostatic dust collector will be lost.
本発明の樹脂電極は、 上述したように導電性カーボンブラックを配合した樹脂 を用いて成形することにより製造することができるが、 成形方法は特に限定され ない。 例えば、 射出成形、 プレス成形などにより成形すればよい。 また、 このよ うに製造された本発明の樹脂電極は、 静電式集塵装置のアイオナイザ部の対向電 極や、 アイオナイザ部の対向電極とコレクタ部の集塵電極とに共通の電位を与え るアイォナイザ一コレクター体型の電極などに適用することができる。 図面の簡単な説明 The resin electrode of the present invention can be manufactured by molding using a resin containing conductive carbon black as described above, but the molding method is not particularly limited. Absent. For example, it may be formed by injection molding, press molding or the like. In addition, the resin electrode of the present invention manufactured as described above gives a common potential to the counter electrode of the ionizer section of the electrostatic precipitator and the common electrode to the counter electrode of the ionizer section and the dust collecting electrode of the collector section. The present invention can be applied to an ionizer-collector type electrode and the like. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態 1に係る静電式集塵装置の一例を示す模式図であ る。 · 第 2図は、 本発明の実施形態 2に係る静電式集塵装置の 例を示す分解斜視図 である。  FIG. 1 is a schematic diagram showing an example of an electrostatic precipitator according to Embodiment 1 of the present invention. · FIG. 2 is an exploded perspective view showing an example of the electrostatic precipitator according to Embodiment 2 of the present invention.
第 3図は、 第 2図の模式図である。  FIG. 3 is a schematic diagram of FIG.
第 4図は、 本発明の試験例 1に係る試験方法を示す平面図である。  FIG. 4 is a plan view showing a test method according to Test Example 1 of the present invention.
第 5図は、 本発明の試験例 2に係る試験方法を示す平面図である。 本発明を実施するための最良の形態  FIG. 5 is a plan view showing a test method according to Test Example 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の構成を詳細に説明する。  Hereinafter, the configuration of the present invention will be described in detail.
(実施形態 1 )  (Embodiment 1)
第 1図は、 本発明の実施形態 1に係る樹脂電極を用いた静電式集塵装置の一例 の概略を示す模式図である。  FIG. 1 is a schematic diagram showing an outline of an example of an electrostatic dust collector using a resin electrode according to Embodiment 1 of the present invention.
第 1図に示すように、 静電式集塵装置 1は、 放電電極 1 1及ぴその対向電極 1 2からなる荷電部であるアイオナイザ部 1 0と、 放電電極 1 1がプラスに接続さ れる場合は、 相対的にプラス側の電位に接続される非集塵電極 2 1及び相対的に マイナス側の電位に接続される集塵電極 2 2からなる集塵部であるコレクタ部 2 0とを有する。 なお、 放電電極 1 1がマイナスに接続される場合は、 非集塵電極 2 1は相対的にマイナス側の電位に接続し、 集塵電極 2 2は相対的にプラス側の 電位に接続されることとなる。  As shown in FIG. 1, in the electrostatic precipitator 1, an ionizer section 10, which is a charging section composed of a discharge electrode 11 and its counter electrode 12, and a discharge electrode 11 are positively connected. In such a case, a non-collecting electrode 21 connected to a relatively positive potential and a collector portion 20 that is a dust collecting portion composed of a dust collecting electrode 22 connected to a relatively negative potential are connected. Have. When the discharge electrode 11 is connected to a negative potential, the non-dust collecting electrode 21 is connected to a relatively negative potential, and the dust collecting electrode 22 is connected to a relatively positive potential. It will be.
アイオナイザ部 1 0は、 複数の平板状の対向電極 1 2が並設されて相互に導通 しており、 各对向電極 1 2の間には、 対向電極 1 2接触しないように放電電極 1 1が配置されている。 一方、 コレクタ部 2 0は、 アイオナイザ部 1 0の下流側に複数の平板状の集塵 電極 2 2が並設されており、 各集塵電極 2 2の間にはそれぞれ平板状の非集塵電 極 2 1が配置されている。 すなわち、 コレクタ部 2 0は、 集塵電極 2 2と非集塵 電極 2 1とが交互に並設されている。 In the ionizer section 10, a plurality of flat counter electrodes 12 are arranged in parallel and are electrically connected to each other, and the discharge electrodes 11 are provided between the counter electrodes 12 so as not to be in contact with each other. Is arranged. On the other hand, in the collector section 20, a plurality of flat plate-shaped dust collecting electrodes 22 are arranged in parallel on the downstream side of the ionizer section 10, and a flat plate-shaped non-dust collecting electrode is provided between the respective dust collecting electrodes 22. Electrode 21 is arranged. That is, in the collector section 20, the dust collecting electrodes 22 and the non-dust collecting electrodes 21 are alternately arranged in parallel.
また、 集塵電極 2 2と非集塵電極 2 1とは直接接触してはならない。 また非集 塵電極 2 1は給電部以外では、 枠体やケースなどに接触しないようにするのが望 ましい。 これは、 静電式集塵装置 1の枠体やケースなどの絶縁物の表面を通じて 間接的に接地され、 電位降下が起きてしまうためである。  Also, the dust collecting electrode 22 and the non-dust collecting electrode 21 should not be in direct contact. In addition, it is desirable that the non-dust collecting electrode 21 should not be in contact with a frame or a case other than the power supply part. This is because the electrostatic precipitator 1 is indirectly grounded through the surface of an insulator such as a frame or a case, and a potential drop occurs.
このように本実施形態では、 アイオナイザ部 1 0及びコレクタ部 2 0は、 放電 電極 1 1、 対向電極 1 2、 非集塵電極 2 1及び集塵電極 2 2の組み合わせにより 形成し、 対向電極 1 2及び集塵電極 2 2は体積抵抗率が 1 07 Ω c m以下の導電 性樹脂材料で形成し、 非集塵電極 2 1は体積抵抗率が 1 0 l fl〜1 0 1 3 Q c mの半 導電性樹脂材料で形成するのが好ましい。 As described above, in the present embodiment, the ionizer 10 and the collector 20 are formed by a combination of the discharge electrode 11, the counter electrode 12, the non-dust collecting electrode 21 and the dust collecting electrode 22, and the counter electrode 1 2 and the dust collecting electrode 2 2 volume resistivity formed by 1 0 7 Omega cm or less of the conductive resin material, a non-dust collecting electrode 2 1 a volume resistivity of 1 0 l fl ~1 0 1 3 Q cm It is preferable to use a semiconductive resin material.
このように構成したアイオナイザ部 1 0及びコレクタ部 2 0では、 アイォナイ ザ部 1 0により荷電された塵埃粒子の中に導電性粉塵が混在していても、 非集塵 電極 2 1の電荷の移動が半導電性樹脂材料の抵抗で制限されるため、 非集塵電極 2 1と集塵電極 2 2との間でのスパーク発生が防止できる。  In the ionizer unit 10 and the collector unit 20 configured as described above, even if the conductive dust is mixed in the dust particles charged by the ionizer unit 10, the electric charge of the non-dust collection electrode 21 is transferred. Is limited by the resistance of the semiconductive resin material, so that spark generation between the non-dust collecting electrode 21 and the dust collecting electrode 22 can be prevented.
このような静電式集塵装置 1の対向電極 1 2を、 導電性カーボンブラックを配 合したポリオレフイン又はポリエステル樹脂で構成することにより、 放電特性が 良好で、 集塵特性に優れた静電式集塵装置 1とすることができる。  By forming the counter electrode 12 of such an electrostatic precipitator 1 from a polyolefin or polyester resin mixed with conductive carbon black, the electrostatic precipitator has excellent discharge characteristics and excellent dust collection characteristics. Dust collector 1 can be used.
勿論、 集塵電極 2 2も同様に導電性カーボンブラックを配合したポリオレフィ ン又はポリエステル榭脂で構成してもよい。  Needless to say, the dust collecting electrode 22 may also be made of polyolefin or polyester resin mixed with conductive carbon black.
一方、 放電電極 1 1は静電式集塵装置としては周知の線式や針式などを用い、 非集塵電極 2 1を形成する半導電性樹脂材料としては、 特に限定されないが、 例 えば、 A B S樹脂に導電材を配合したものや更に吸水性樹脂を配合した樹脂製電 極などを挙げることができる。  On the other hand, as the discharge electrode 11, a known wire type or needle type is used as an electrostatic precipitator, and the semiconductive resin material forming the non-precipitate electrode 21 is not particularly limited. Examples thereof include a resin electrode in which a conductive material is mixed in an ABS resin, and a resin electrode in which a water-absorbing resin is further mixed.
なお、 本莠施形態では、 静電式集塵装置 1として集塵部と荷電部とだけを示し たが、 この静電式集塵装置 1は、 空気を通風させる吸い込み手段や送風手段等と 共に使用されるものであり、 空気清浄装置、 冷暖房装置、 空気調和装置などに組 み込まれて使用される。 In this embodiment, only the dust collecting unit and the charging unit are shown as the electrostatic dust collecting device 1. However, the electrostatic dust collecting device 1 is provided with suction means, air blowing means, etc. for passing air. It is used together with air purification equipment, air conditioning equipment, air conditioning equipment, etc. It is used by being incorporated.
(実施形態 2 )  (Embodiment 2)
第 2図は、 本発明の実施形態 2に係る樹脂電極を用いた静電式集塵装置の一例 の分解斜視図、 第 3図はその模式図である。  FIG. 2 is an exploded perspective view of an example of an electrostatic dust collector using a resin electrode according to Embodiment 2 of the present invention, and FIG. 3 is a schematic view thereof.
第 2図及び第 3図に示すように、 静電式集塵装置 1 Aは、 放電電極 1 1 Aとそ の対向電極 1 2 Aとからなる荷電部であるアイオナイザ部 1 O Aと、 放電電極が プラスに接続される場合は、 相対的にプラス側の電位に接続される非集塵電極 2 1 Aと相対的にマイナス側の電位に接続される集塵電極 2 2 Aとからなる集塵部 であるコレクタ部 2 O Aとを有する。 なお、 放電電極 1 1 Aがマイナスに接続さ れる場合は、 前述の実施形態 1と同様に各電極の 位を設定すればよい。  As shown in FIGS. 2 and 3, the electrostatic precipitator 1A includes an ionizer section 1OA, which is a charging section including a discharge electrode 11A and a counter electrode 12A, and a discharge electrode 1A. Is connected to the positive side, the dust collection electrode 21 A connected to the relatively positive side potential and the dust collection electrode 22 A connected to the relatively negative side potential And a collector section 2 OA. When the discharge electrode 11A is connected to the negative side, the position of each electrode may be set in the same manner as in the first embodiment.
アイオナイザ部 1 O Aの対向電極 1 2 Aとコレクタ部 2 O Aの集塵電極 2 2 A とは、 平板形状を有し、 集塵する塵埃粒子を含む空気を通過させる枠部 3 5の一 方面に対向電極 1 2 Aが気流方向に突出するように並設され、 枠部 3 5の反対側 の面には、 集塵電極 2 2 Aが対向電極 1 2 Aの並列方向とは直交する方向に並設 されて一体的に形成されている。  The counter electrode 12 A of the ionizer section 1 OA and the dust collecting electrode 22 A of the collector section 2 OA have a flat plate shape, and are formed on one side of a frame 35 through which air containing dust particles to be collected passes. The counter electrode 12 A is juxtaposed so as to protrude in the airflow direction.On the surface opposite to the frame 35, the dust collection electrode 22 A is arranged in a direction orthogonal to the parallel direction of the counter electrode 12 A. They are juxtaposed and integrally formed.
このように対向電極 1 2 Aと集塵電極 2 2 Aとを一体的に形成することによつ て、 集塵面積を増大することができ、 荷電粒子の捕集効率を向上させることがで きる。 また、 対向電極 1 2 Aと集塵電極 2 2 Aとを互いに直交する方向に並設す ることによつて強度を増大することができ、 各電極の反りや橈み変形等の変形を 防止することができると共に、 対向電極 1 2 Aと集塵電極 2 2 A間の空間が不要 になるので、 静電式集塵装置 1 Aのコンパクト化にも貢献できる。  By integrally forming the counter electrode 12A and the dust collecting electrode 22A in this way, the dust collecting area can be increased, and the collection efficiency of the charged particles can be improved. Wear. In addition, by arranging the counter electrode 12A and the dust collecting electrode 22A in a direction perpendicular to each other, the strength can be increased, and deformation such as warpage and radius deformation of each electrode is prevented. In addition to this, the space between the counter electrode 12 A and the dust collecting electrode 22 A is not required, so that the electrostatic dust collecting device 1 A can be downsized.
コレクタ部 2 O Aの非集塵電極 2 1 Aは、 集塵電極 2 2 Aを揷通可能で且つ集 塵電極 2 2 Aと非集塵電極 2 1 Aとが均等な間隔で接触しないように形成された 開口部 2 5を有する。 この非集塵電極 2 1 Aの開口部 2 5に集塵電極 2 2 Aを均 等な間隔となるように挿通することで、 非集塵電極 2 1 Aと集塵電極 2 2 A間に 均一な電界を印加することができるコレクタ部 2 O Aが形成されている。  The non-collecting electrode 21 A of the collector unit 2 OA can pass through the collecting electrode 22 A, and the dust collecting electrode 22 A and the non-dust collecting electrode 21 A do not contact at equal intervals. It has an opening 25 formed. By inserting the dust collecting electrodes 22 A at equal intervals through the openings 25 of the non-dust collecting electrodes 21 A, the gap between the non-dust collecting electrodes 21 A and the dust collecting electrodes 22 A is increased. A collector portion 2OA capable of applying a uniform electric field is formed.
一方、 アイオナイザ部 1 O Aを構成する放電電極 1 1 Aは、 枠部 3 5に嵌合す る嵌合部 1 3の対向電極 1 2 Aに対向する位置に、 その間に対向電極 1 2 Aを挿 通できるように設けられている。 すなわち、 嵌合部 1 3を枠部 3 5に嵌合すると 、 対向電極 1 2 Aは嵌合部 1 3に設けられた放電電極 1 1 Aの間に均等な間隔で 挿通されて固定される。 On the other hand, the discharge electrode 11 A constituting the ionizer section 1 OA is located at a position facing the counter electrode 12 A of the fitting section 13 fitted to the frame section 35, and the counter electrode 12 A is interposed therebetween. It is provided so that it can be inserted. That is, when the fitting part 13 is fitted to the frame part 35, The counter electrode 12 A is inserted and fixed at a uniform interval between the discharge electrodes 11 A provided in the fitting portion 13.
このような静電式集塵装置 1 Aの 体となった対向電極 1 2 A及び集塵電極 2 2 Aを、 導電性カーボンブラックを配合したポリオレフイン又はポリエステル樹 脂で構成することにより、 放電特性が良好で、 集塵特性に優れた静電式集塵装置 1 Aとすることができる。  By forming the counter electrode 12 A and the dust collecting electrode 22 A, which are the body of such an electrostatic precipitator 1 A, from a polyolefin or polyester resin blended with conductive carbon black, the discharge characteristics are improved. And the electrostatic dust collector 1A having excellent dust collection characteristics.
(実施例 1 )  (Example 1)
ポリプロピレン樹脂に、 導電性カーボンブラックとしてケッチェンブラック ( CB) を 30重量%配合した導電性樹脂を用いて 10 OmmX 26mmX 0. 8 mm (厚さ) の樹脂電極を成形した。 体積抵抗率は 10° 〜丄り1 Ω c mであつ た。 A 10 OmmX26mmX0.8 mm (thickness) resin electrode was formed using a conductive resin in which 30% by weight of Ketjen Black (CB) was mixed as a conductive carbon black with a polypropylene resin. The volume resistivity was between 10 ° and 1 Ωcm.
(実施例 2)  (Example 2)
ポリブチレンテレフタレート (PBT) に、 導電性カーボンブラックとしてケ ツチヱンブラック (CB) を 20重量%配合した導電性樹脂を用いて 10 Omm X 26mmX 0. 8mm (厚さ) の樹脂電極を成形した。 体積抵抗率は 103 Ω c mでめった A resin electrode of 10 Omm X 26 mm X 0.8 mm (thickness) was formed by using a conductive resin in which polybutylene terephthalate (PBT) was blended with 20% by weight of a conductive carbon black, that is, a conductive carbon black. Volume resistivity was 10 3 Ω cm
(実施例 3 ) '  (Example 3) ''
ポリプロピレン樹脂に、 導電性カーボンブラックとしてケッチェンブラック ( CB) を 18重量%配合した導電性樹脂を用いて 10 OmmX 26mmX 0. 8 mm (厚さ) の樹脂電極を成形した。 体積抵抗率は 105 Ω cmであった。 A resin electrode of 10 OmmX26mmX0.8 mm (thickness) was formed using a conductive resin in which 18% by weight of Ketjen Black (CB) was blended as conductive carbon black with polypropylene resin. The volume resistivity was 10 5 Ωcm.
(比較例 1 )  (Comparative Example 1)
ポリブチレンテレフタレート (PBT) に、 カーボンファイバー (CF) を 2 0重量。 /0配合した導電性樹脂を用いて 10 OmmX 26mmX 3. Omm (厚き ) の樹脂電極を成形した。 体積抵抗率は 103 Ω cmであった。 20 weight of carbon fiber (CF) in polybutylene terephthalate (PBT). A resin electrode of 10 OmmX 26mmX 3. Omm (thick) was formed using the conductive resin blended with the / 0 . The volume resistivity was 10 3 Ωcm.
(比較例 2 )  (Comparative Example 2)
ABS樹脂に、 カーボンファイバー (CF) 20重量%と、 吸水性樹脂 7重量 %とを配合した導電性樹脂を用いて 10 OmmX 26mm X 0. 8mm (厚さ) の樹脂電極を成形した。 体積抵抗率は 1 O1 〜102 Ω cmであった。 A 10 OmmX 26mm X 0.8mm (thickness) resin electrode was formed using a conductive resin in which 20% by weight of carbon fiber (CF) and 7% by weight of a water-absorbing resin were mixed with an ABS resin. The volume resistivity was 1 O 1 ~10 2 Ω cm.
(比較例 3) ポリプロピレン樹脂に、 導電性カーボンブラックとしてケッチェンブラック ((Comparative Example 3) Ketjen Black as conductive carbon black on polypropylene resin
CB) を 1 5重量。 /0配合した導電性樹脂を用いて 10 OmmX 26mmX 0. 8 mm (厚さ) の樹脂電極を成形した。 体積抵抗率は 108 Ω cmであった。 CB) 15 weight. A resin electrode of 10 OmmX 26 mmX 0.8 mm (thickness) was molded using the conductive resin blended with the O / 0 . The volume resistivity was 10 8 Ωcm.
(試験例 1 )  (Test Example 1)
実施例 1〜 3と比較例 1〜 3との樹脂電極を対向電極として放電特性の測定を 行った。  Discharge characteristics were measured using the resin electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 as counter electrodes.
放電特性の測定は、 第 4図に示すように、 樹脂電極を対向電極 1 2Bとして 1 4 mm間隔で平行に設置し、 中心に金属 (タングステン) 線からなる極細の放電 電極 1 1 Bを設置してプラス放電させ、 標準動作点 (20 /zm) での印加電圧を 複数回測定することにより行つた。  As shown in Fig. 4, the discharge characteristics were measured by placing resin electrodes as counter electrodes 12B in parallel at intervals of 14 mm and placing a very fine discharge electrode 11B made of metal (tungsten) wire at the center. This was performed by measuring the applied voltage at the standard operating point (20 / zm) several times.
このときの印加電圧が金属製の対向電極での印加電圧測定値に対する比率によ つて放電特性を評価した。 この結果をバラツキ分を含んだ値として下記表 1に示 す。  The discharge characteristics were evaluated by the ratio of the applied voltage at this time to the measured value of the applied voltage at the metal counter electrode. The results are shown in Table 1 below as values that include variations.
評価の基準としては下記式 (1) を満たしているのが好ましく、 これを合格基 準とした。 なお、 この基準外の放電特性を示す場合は、 金属線である放電電極 1 1 Aが振動したり、 塵埃粒子が殆ど荷電されていないなどの所謂逆電離現象が発 生し、 静電式集塵装置としては機能を為さなかった。  It is preferable that the evaluation criterion satisfy the following expression (1). If the discharge characteristics are out of the standard range, a so-called reverse ionization phenomenon occurs such as the discharge electrode 11 A, which is a metal wire, vibrating or dust particles are hardly charged. It did not function as a dust device.
【数 1】  [Equation 1]
樹脂電極からなる対向電極での印加電圧. The applied voltage at the counter electrode consisting of a resin electrode.
00±0. 05 (1) 属電極カ^^る対向電極での印加電圧 00 ± 0. 05 (1) Applied voltage at counter electrode
【表 1】 【table 1】
Figure imgf000012_0001
Figure imgf000012_0001
表 1から分かるように、 実施例 1、 2及ぴ 3のポリオレフイン樹脂又はポリェ ステル樹脂に導電性カーボンブラックを配合した対向電極 1 2 Bでは、 どちらも 基準内の安定した放電特性となることが分かった。 また、 比較例 1のポリエステ ル樹脂にカーボンファイバーを配合した対向電極では、 逆電離現象を起こしてし まった。  As can be seen from Table 1, with the counter electrode 12B of Examples 1, 2 and 3 in which conductive carbon black was blended with the polyolefin resin or polyester resin, both of them had stable discharge characteristics within the standard. Do you get it. In the counter electrode of Comparative Example 1 in which the polyester resin was blended with carbon fiber, the reverse ionization phenomenon occurred.
また、 実施例 1の電極にて放電特性測定試験と同条件で連続放電を行なった結 果、 3 0 0 0時間連続させても放電特性に変化はなく、 それ以上継続させても問 題は発生していない (現在継続中) 。 また、 プラス放電ではコロナ放電によるォ ゾンの発生も少ないので、 静電式集塵装置としては好都合である。  In addition, as a result of performing continuous discharge with the electrode of Example 1 under the same conditions as the discharge characteristic measurement test, there was no change in the discharge characteristics even if the discharge was continued for 300 hours, Not occurring (currently ongoing). Positive discharge also produces less ozone due to corona discharge, which is convenient for an electrostatic precipitator.
(試験例 2 )  (Test Example 2)
実施例 1、 3及び比較例 1の樹脂電極の表面を S EMで観察した。 この結果、 実施例 1の樹脂電極の表面は滑らかであり、 表面の導通状態が確認でき、 カーボ ンブラックの粒子は観察できなかったが、 比較例 1の樹脂電極では、 カーボンフ アイバーが観察でき、 カーボンファイバーが存在する箇所と存在しない箇所とが 明確に観察され、 導通している部分と導通していない部分が判別できた。 The surfaces of the resin electrodes of Examples 1, 3 and Comparative Example 1 were observed by SEM. As a result, the surface of the resin electrode of Example 1 was smooth, the conduction state of the surface was confirmed, and carbon black particles could not be observed.However, with the resin electrode of Comparative Example 1, carbon fibers could be observed. The location where carbon fiber exists and the location where it does not It was clearly observed that the conducting part and the non-conducting part could be distinguished.
実施例 3は、 表面の滑らかさや導通状態は実施例 1と同様であり、 同じくカー ボンブラックの粒子は観察できないと同時に、 実施例 1との表面観察上の違いは 見られなかった。  In Example 3, the surface smoothness and conduction state were the same as in Example 1. Similarly, no carbon black particles could be observed, and no difference in surface observation from Example 1 was observed.
(試験例 3 )  (Test Example 3)
実施例 1、 実施例 3、 比較例 2及び比較例 3の樹脂電極で形成した対向電極 1 2 Bの性能評価を行った。  The performance of the counter electrode 12B formed of the resin electrode of Example 1, Example 3, Comparative Example 2, and Comparative Example 3 was evaluated.
性能評価は、 1 5 °C湿度 2 7 % R Hでの集塵効率、 表面状態の S E M観測、 各 対向電極 1 2 Bを静電式集塵装置に組み込んだ際の成型品としての放電効率の測 定を行った。 この結果を下記表 2に示す。  The performance evaluation included dust collection efficiency at 15 ° C and 27% RH, SEM observation of surface condition, and discharge efficiency as a molded product when each counter electrode 12 B was incorporated into an electrostatic dust collector. The measurement was performed. The results are shown in Table 2 below.
なお、 集塵効率の測定は、 第 5図に示すように、 ダクト 4 0の略中間に設けら れた絞り部 4 1に実施例 1の対向電極 1 2 Bを設けた第 2図に示すものと同じ構 成の静電式集塵装置 1 Bを設けて、 その一方から粒子物質を送風手段 5 0により 送り、 静電式集塵装置 1 Bの通過前と通過後との粒,子物質の量を測定した。  The dust collection efficiency was measured as shown in FIG. 2 in which the counter electrode 12 B of Example 1 was provided in the throttle section 41 provided substantially in the middle of the duct 40 as shown in FIG. An electrostatic precipitator 1B having the same configuration as that of the electrostatic precipitator 1B is provided, and the particulate matter is sent from one side by the blowing means 50, and the particles and particles before and after passing through the electrostatic precipitator 1B are provided. The amount of the substance was measured.
詳しくは、 ダクト 4 0の送風手段 5 0側には、 粒子発生器 4 2により D O P ( フタル酸ジォクチル) からなる集塵用粒子を発生させ、 送風手段 5 0により風量 1 . 3 m 3 Zni i nで静電式集塵装置 1 Bを通過させる。 Specifically, on the side of the duct 40 on the side of the blowing means 50, particles for collecting dust composed of DOP (dioctyl phthalate) are generated by the particle generator 42, and the air volume is 1.3 m 3 Zni in by the blowing means 50. Through the electrostatic precipitator 1B.
このときの通過前及び通過後の粒子量 (粒子数) をダクト 4 0の集塵前粒子採 取口 4 3と集塵後粒子採取口 4 4とで粒子量測定器 4 5 (パーティクルカウンタ 一) によって測定した。  At this time, the particle amount (number of particles) before and after passing is measured by the particle sampling port 4 3 and the particle sampling port 4 4 of the duct 40 before and after the dust collection. ).
なお、 粒子発生器 4 2により発生された粒子物質の粒子径は 0 . 3〜0 . 5 i mであり、 集塵前粒子量は 1 5 0 0〜3 0 0 0個/ L (リットル) であった。 こ のような測定結果から集塵効率を下記式 (2 ) により算出した。 この結果を下記 表 2に示す。  The particle diameter of the particulate matter generated by the particle generator 42 is 0.3 to 0.5 im, and the amount of particles before dust collection is 150 to 300 particles / L (liter). there were. From these measurement results, the dust collection efficiency was calculated by the following equation (2). The results are shown in Table 2 below.
【数 2】  [Equation 2]
隹鹿^ *frネ *、  隹 p 鹿 ^^ fr *,
集塵効率 (%) xl 0 0 ( 2 )Dust collection efficiency (%) xl 00 (2)
Figure imgf000013_0001
集塵前粒子量 【表 2】
Figure imgf000013_0001
Particle amount before dust collection [Table 2]
Figure imgf000014_0001
表 2から分かるように、 実施例 1及び 3の樹脂電極は環境状態に左右されず安 定し、 かつ、 高い集塵性能を示したが、 比較例 2の樹脂電極は低温湿度では集塵 効率が低下して、 測定毎に数値が測定誤差範囲以上にばらつくような不安定な状 況であった。
Figure imgf000014_0001
As can be seen from Table 2, the resin electrodes of Examples 1 and 3 were stable irrespective of the environmental conditions and exhibited high dust collection performance, whereas the resin electrodes of Comparative Example 2 exhibited low dust collection efficiency at low temperature and humidity. Was unstable, and the numerical value fluctuated beyond the measurement error range for each measurement.
また、 比較例 3の樹脂電極は集塵性能が著しく低くなつた。 これは、 絶対的な 導電材の配合量が不足しているために集塵性能が所望の値 (例えば、 8 0 %) に 達しなかったものと思われる。 . 産業上の利用可能性  In addition, the dust collecting performance of the resin electrode of Comparative Example 3 was extremely low. It is considered that the dust collection performance did not reach the desired value (for example, 80%) because the absolute amount of the conductive material was insufficient. . Industrial Applicability
以上説明したように、 本発明では、 基材となる樹脂にポリオレフイン又はポリ エステル樹脂に導電性カーボンブラックを配合した導電性樹脂で樹脂電極を構成 することにより、 導電性カーボンブラックが偏在することなく均一に分散されて 導電性を示すので、 環境状態に左右されることなく安定して、 均一な放電が実現 できこれを対向電極とした静電式集塵装置では、 集塵効率を向上することができ る。  As described above, in the present invention, the conductive carbon black is not unevenly distributed by constituting the resin electrode with the conductive resin obtained by mixing the conductive resin black with the polyolefin or the polyester resin as the base resin. Since it is uniformly dispersed and shows conductivity, it is possible to realize a stable and uniform discharge without being affected by environmental conditions, and to improve the dust collection efficiency with an electrostatic precipitator that uses this as a counter electrode. Can be done.

Claims

請 求 の 範 囲 The scope of the claims
1 . 放電電極の対向電極に用いられる樹脂電極であって、 ポリオレフイン又 はポリエステル樹脂に導電性カーボンブラックを配合した導電性樹脂からなるこ とを特徴とする樹脂電極。 1. A resin electrode used as a counter electrode of a discharge electrode, comprising a conductive resin obtained by blending conductive carbon black with polyolefin or polyester resin.
2 . 請求の範囲 1において、 前記導電性カーボンブラックが、 窒素比表面積 が 5 0 O m2 / g以上であり、 D B P吸油量が 2 0 0 c m 3 1 0 0 g以上であ ることを特徴とする樹脂電極。 2. The conductive carbon black according to claim 1, wherein the conductive carbon black has a nitrogen specific surface area of 50 Om 2 / g or more and a DBP oil absorption of 200 cm 3 100 g or more. Resin electrode.
3 . 請求の範囲 1又は 2において、 体積抵抗率が 1 0 7 Ω c mのオーダー以 下であることを特徴とする樹脂電極。 3. In the range 1 or 2 according to the resin electrode, wherein the volume resistivity of the order or less of a 1 0 7 Omega cm.
4 . 請求の範囲 1〜3の何れかにおいて、 プラスに接続された放電電極の対 向電極として用いられることを特徴とする樹脂電極。 4. The resin electrode according to any one of claims 1 to 3, wherein the resin electrode is used as a counter electrode of a positively connected discharge electrode.
5 . 請求の範囲 1〜4の何れかにおいて、 コロナ放電電極の対向電極、 静電 式集塵装置のコレクタ部集塵電極およびアイォナイザ—コレクタ一体型静電式集 塵装置のアイオナイザ部対向電極とコレクタ部集塵電極の機能を有する電極の何 れかに用いられることを特徴とする樹脂電極。 5. The method according to any one of claims 1 to 4, wherein the counter electrode of the corona discharge electrode, the collector dust collecting electrode of the electrostatic precipitator and the ionizer counter opposing electrode of the ionizer-collector integrated electrostatic precipitator. A resin electrode used as one of the electrodes having the function of a collector dust collecting electrode.
6 . 請求の範囲 1〜5の何れかの樹脂電極をアイオナイザ部の対向電極とし て用いたことを特徴とする静電式集塵装置。 6. An electrostatic precipitator, wherein the resin electrode according to any one of claims 1 to 5 is used as a counter electrode of an ionizer section.
7 . 請求の範囲 1〜5の何れかの樹脂電極で、 アイオナイザ部の対向電極及 びコレクタ部の集塵電極を一体的に形成したことを特徴とする静電式集塵装置。 7. An electrostatic precipitator, wherein the resin electrode according to any one of claims 1 to 5, wherein a counter electrode of the ionizer section and a precipitating electrode of the collector section are integrally formed.
PCT/JP2002/004389 2001-05-02 2002-05-02 Resin electrode and electrostatic dust collector using the same WO2002089990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020037007435A KR100868464B1 (en) 2001-05-02 2002-05-02 Resin electrode and electrostatic dust collector using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-135473 2001-05-02
JP2001135473 2001-05-02

Publications (1)

Publication Number Publication Date
WO2002089990A1 true WO2002089990A1 (en) 2002-11-14

Family

ID=18982932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004389 WO2002089990A1 (en) 2001-05-02 2002-05-02 Resin electrode and electrostatic dust collector using the same

Country Status (4)

Country Link
JP (1) JP3729403B2 (en)
KR (1) KR100868464B1 (en)
CN (1) CN1261227C (en)
WO (1) WO2002089990A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067618A1 (en) * 2017-06-20 2018-12-21 Mgi Coutier METHOD FOR MANUFACTURING ELECTRO-FILTER AND ELECTRO-FILTER THEREFOR
WO2020083252A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Air dust removal system and method
CN115646654A (en) * 2022-10-25 2023-01-31 国能(山东)能源环境有限公司 Flame-retardant and conductive silicone rubber anode film for wet electric dust removal and preparation method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138034A (en) * 2003-11-07 2005-06-02 Mitsubishi Electric Corp Air cleaning apparatus and air conditioning machine fitted with air cleaning apparatus
JP4553125B2 (en) * 2003-12-25 2010-09-29 ミドリ安全株式会社 Charging device, collection device and electrostatic dust collection device
JP2009509755A (en) * 2005-09-29 2009-03-12 サーノフ コーポレーション Ballast circuit for electrostatic particle collection system
US8795601B2 (en) 2005-12-29 2014-08-05 Environmental Management Confederation, Inc. Filter media for active field polarized media air cleaner
US8814994B2 (en) 2005-12-29 2014-08-26 Environmental Management Confederation, Inc. Active field polarized media air cleaner
US9789494B2 (en) 2005-12-29 2017-10-17 Environmental Management Confederation, Inc. Active field polarized media air cleaner
US7708813B2 (en) 2005-12-29 2010-05-04 Environmental Management Confederation, Inc. Filter media for active field polarized media air cleaner
WO2007145330A1 (en) 2006-06-15 2007-12-21 Daikin Industries, Ltd. Dust collector
JP2008023444A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Dust collector
JP5527208B2 (en) * 2008-08-21 2014-06-18 パナソニック株式会社 Electric dust collector
CN103567070B (en) * 2012-10-12 2016-06-15 原皓 A kind of device has the wet scrubber of corrosion-resistant dust collector pole
KR101334927B1 (en) * 2013-05-03 2013-11-29 한국기계연구원 High temperature electrostatic precipitator
KR101645847B1 (en) * 2015-01-19 2016-08-04 원효식 Dual channel electric precipitator
KR102541787B1 (en) 2015-04-14 2023-06-08 인바이런멘탈 메니지먼트 컨피더레이션, 인크. Corrugated Filtration Media for Polarizing Air Purifiers
DE112015007142B4 (en) 2015-11-24 2022-08-25 Mitsubishi Electric Corporation Unloading device and air conditioner equipped with it
JP6600555B2 (en) * 2015-12-28 2019-10-30 ミドリ安全株式会社 Electric dust collector
CN106733181B (en) * 2017-02-28 2019-03-15 广东美的环境电器制造有限公司 A kind of electrodecontamination component and air purifier
KR102027975B1 (en) * 2017-09-04 2019-10-02 경북대학교 산학협력단 Electrostatic Carbon Filter, Dust Collecting Device and Dust Collecting Method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567547U (en) * 1979-06-27 1981-01-22
JPS6351963A (en) * 1986-08-21 1988-03-05 Calp Corp Electrode for dust collector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9504205D0 (en) * 1995-11-24 1995-11-24 Pharmacia Biotech Ab A chromatographic separation method and device
JP3360582B2 (en) * 1997-10-15 2002-12-24 ダイキン工業株式会社 Dust collection element for air purifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567547U (en) * 1979-06-27 1981-01-22
JPS6351963A (en) * 1986-08-21 1988-03-05 Calp Corp Electrode for dust collector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067618A1 (en) * 2017-06-20 2018-12-21 Mgi Coutier METHOD FOR MANUFACTURING ELECTRO-FILTER AND ELECTRO-FILTER THEREFOR
US11179730B2 (en) 2017-06-20 2021-11-23 Akwel Method for manufacturing an electro-filter
WO2020083252A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Air dust removal system and method
CN115646654A (en) * 2022-10-25 2023-01-31 国能(山东)能源环境有限公司 Flame-retardant and conductive silicone rubber anode film for wet electric dust removal and preparation method thereof
CN115646654B (en) * 2022-10-25 2023-09-08 国能(山东)能源环境有限公司 Flame-retardant conductive silicon rubber anode film for wet electric precipitation and preparation method thereof

Also Published As

Publication number Publication date
KR20040034583A (en) 2004-04-28
CN1486219A (en) 2004-03-31
CN1261227C (en) 2006-06-28
KR100868464B1 (en) 2008-11-12
JP3729403B2 (en) 2005-12-21
JP2003019444A (en) 2003-01-21

Similar Documents

Publication Publication Date Title
WO2002089990A1 (en) Resin electrode and electrostatic dust collector using the same
WO2013161534A1 (en) Corona discharge device and air conditioner
US20090277332A1 (en) Dust collector
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
KR20140111784A (en) Electric precipitator
JP2007029845A (en) Electric dust-collecting device and air treatment apparatus provided with electric dust-collecting device
JP2010075864A (en) Electric dust precipitator
JP2008062173A (en) Dust collector and air-conditioner
JP4149526B2 (en) Resin electrode
JP4839898B2 (en) Dust collector and air conditioner
JP6834133B2 (en) Air cleaner
JPH11151452A (en) Electric dust collector
JP3674751B2 (en) Electric dust collector
US20220161273A1 (en) Electrostatic charger and electrostatic precipitator
JP2010063964A (en) Dust collecting apparatus
JP2011161355A (en) Dust collecting apparatus
JPH04135661A (en) Electrostatic precipitator
JP3618591B2 (en) Electrostatic dust collector
CN114901397A (en) Electric dust collector
JP2018167189A (en) Electric dust collector
CN210373804U (en) Electrostatic dust removal module and air treatment device
JPH0231155Y2 (en)
CN210373803U (en) Electrostatic dust removal module and air treatment device
KR20180120471A (en) Electric dust collector
JP2008264623A (en) Electrostatic dust collector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 02803166.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1020037007435

Country of ref document: KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1020037007435

Country of ref document: KR