JP3727187B2 - Manufacturing method of nitride semiconductor laser device - Google Patents

Manufacturing method of nitride semiconductor laser device Download PDF

Info

Publication number
JP3727187B2
JP3727187B2 JP36174298A JP36174298A JP3727187B2 JP 3727187 B2 JP3727187 B2 JP 3727187B2 JP 36174298 A JP36174298 A JP 36174298A JP 36174298 A JP36174298 A JP 36174298A JP 3727187 B2 JP3727187 B2 JP 3727187B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
plane
laser device
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36174298A
Other languages
Japanese (ja)
Other versions
JP2000082867A (en
Inventor
康宜 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP36174298A priority Critical patent/JP3727187B2/en
Publication of JP2000082867A publication Critical patent/JP2000082867A/en
Application granted granted Critical
Publication of JP3727187B2 publication Critical patent/JP3727187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えばLED(発光ダイオード)、LD(レーザダイオード)等の窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)よりなる素子の製造方法に関する。
【0002】
【従来の技術】
近年、窒化物半導体からなる青色、青緑色の発光ダイオード、レーザダイオードが実用化されたり、実用可能になっている。このような窒化物半導体素子は、現在のところ窒化物半導体と完全に格子整合する基板が未だ開発されていないため、格子定数が異なるサファイアの上に窒化物半導体を強制的に成長させて形成されている。そのためサファイア基板上に成長された窒化物半導体の結晶には、格子整合した基板上に成長された赤色レーザ素子と比べると、非常に多くの結晶欠陥が発生する。
【0003】
本発明者等は、結晶欠陥を大幅に低減できる窒化物半導体の結晶成長方法として、窒化物半導体と異なる異種基板上に窒化ガリウム基板を形成し、その窒化ガリウム基板上に素子構造を形成することにより、波長約400nm、光出力2nWで連続発振約1万時間を達成できる窒化物半導体レーザー素子などを開示している(例えば「InGaN系多重量子井戸構造半導体レーザの現状」、第58回応用物理学会学術講演会、講演番号4aZC−2,1997年10月、”Present Status of InGaN/AlGaN based Laser Diodes”、The Second International Conference on Nitride Semiconductors(ICNS’97)、講演番号S−1、1997年10月などに記載されている。)。
【0004】
上記の結晶成長方法は、サファイア基板上に従来の結晶欠陥が非常に多い窒化ガリウム層を薄く成長させ、その上にSiOよりなる保護膜を部分的に形成し、その保護膜の上からハライド気相成長法(HVPE)、有機金属気相成長法(MOVPE)等の気相成長法により、窒化ガリウムの横方向への成長を利用し、再度窒化ガリウム層を成長させることにより、結晶欠陥の少ない窒化ガリウム基板(膜厚10μm)を形成する技術である。この方法は窒化物半導体を保護膜上で横方向に成長させることから、一般にラテラルオーバーグロウス(lateral over growth:LOG)と呼ばれている。
【0005】
上記技術において、結晶欠陥が少なくなった窒化ガリウム基板を用いることにより素子の性能の向上が見られたものの、上記窒化物半導体素子の基板とされるサファイアは、非常に硬く劈開性がないために、ウエハーをチップ化するのに高度な技術を必要とする。更に、サファイアには劈開性がないために、レーザ素子の形成において基板の劈開性を用いて窒化物半導体の劈開面を共振面としにくく、共振面の形成に時間と手間がかかる。
【0006】
【発明が解決しようとする課題】
そこで、サファイア基板を除去して、窒化ガリウム基板のみを用いることで窒化ガリウムの劈開性を利用した共振面の形成を試みた。この方法は窒化ガリウムに電磁波を照射して、変質させた層を形成することで、サファイア基板を容易に分離し、窒化ガリウム基板のみが得られるというものである。今までは、この方法によって得た窒化ガリウム基板上の窒化物半導体素子を劈開する際、窒化ガリウムのM面を劈開面としていた。M面とは窒化物半導体を六角柱状の六方晶系で近似した場合に、その劈開面に相当する四角形の面であり、
【0007】
【外7】

Figure 0003727187
【0008】
(以下、M面と記載する。)面などの6種類の面方位で示すことができる。窒化物半導体のM面で劈開すると、非常に歩留良く、また鏡面に近い共振面を含む劈開面を得ることができる。
【0009】
【課題を解決するための手段】
本願発明は窒化物半導体基板の上にレーザ素子の構造が積層されてなる窒化物半導体レーザ素子の製造方法であって、第1の窒化物半導体をサファイア基板上にGaNよりなるバッファ層、アンドープGaNよりなる下地層、ストライプ状の第1の保護膜を順に形成した異種基板上に成長させ、該第1の窒化物半導体にストライプ状の段差を形成し、該段差の上面に第2の保護膜を形成する工程と、第2の窒化物半導体を前記第1の窒化物半導体の前記第2の保護膜で覆われていない部位から横方向のみに成長させ、続いて縦方向と横方向に成長させるラテラルオーバーグロウスにより形成する工程と、前記第1の窒化物半導体及び第2の窒化物半導体から前記異種基板を除去して窒化物半導体基板を形成する工程と、前記窒化物半導体基板上にレーザ素子の構造を積層する工程と、前記窒化物半導体のM面と平行になるようにリッジを形成する工程と、前記基板をリッジに対して垂直に劈開して(外1)乃至(外6)面内のいずれかの面方位で割ることにより半導体レーザ素子の光共振面を形成する工程と、を備えたことを特徴とする。また、前記保護膜は、SiOであることが望ましい。
【0010】
【0011】
【0012】
【0013】
【0014】
【0015】
【0016】
前記(外8)乃至(外13)面は同一A面を示すものである。前記窒化物半導体レーザ素子の製造方法によって、劈開面を鏡面に近い共振面とすることができる。
【0017】
【発明の実施の形態】
更に図を用いて説明する。
図1は窒化物半導体の結晶構造を模式的に示すユニットセル図である。
窒化物半導体は正確には菱面体構造であるが、このように六方晶系で近似できる。
GaNにおいては劈開面としてM面とA面とがある。この劈開面を使って窒化物半導体が積層されたウエハーをチップ化すれば、鏡面に近い共振面を得ることができる。
【0018】
図2及び図3は、窒化ガリウム基板上に積層した窒化物半導体レーザの共振方向に垂直な面で切断したときの図である。図2はp電極とn電極が同一面上に、図3は別の面上に形成されている。この切断面を窒化物半導体のA面の劈開性を用いて形成する。その方法は、p側層表面をエッチングしてリッジを形成する際に窒化物半導体のM面と平行(A面と垂直)になるようにリッジを形成し、このリッジに対して垂直に劈開をする。それがすなわちA面の劈開性を用いて共振面を形成したことになる。
【0019】
【実施例】
以下に本発明の実施例を示すが本発明はこれに限定されない。
[実施例1]
図2はレーザ光の共振方向に垂直な方向で素子を切断した際の図を示している。以下、この図を元に実施例1について説明する。
【0020】
まずGaN基板1を得る。
異種基板として、サファイア基板をMOVPE反応容器内にセットし、GaNよりなるバッファ層を200オングストローム、アンドープGaNよりなる下地層を4μm(下地層とは次の窒化物半導体基板を選択成長させるための層)、CVD装置によりSiOよりなる第1の保護膜をストライプ状(ストライプ幅10μm、ストライプ間隔(窓部)2μm)に1μm、MOVPE法でアンドープGaNよりなる窒化物半導体基板を10μm、HVPE法でアンドープGaNよりなるGaN基板を200μm、それぞれの膜厚で積層する。
【0021】
次に図2に示すように積層したGaNにエッチングによりストライプ状の段差を設ける。この段差の上面すべてにSiO等の第2の保護膜31を形成して、続いてGaNを積層する際のGaNの上面への縦方向の成長を抑え、GaNは第2の保護膜31で覆われていない部位からの横方向の成長を始める。GaNの縦方向の成長を抑え、横方向のみに成長させ、続いて縦と横方向に成長させることで、結晶欠陥の極めて少ない、結晶性の良好なGaN基板1を得ることができる。
【0022】
続いてウエハーに、サファイア基板側からGaN成長方向と同方向に電磁波としてKrFエキシマレーザを照射し、約100℃で加熱処理を施すと、下地GaNとサファイア基板との界面近傍で分離でき、第1の保護膜を除去するまで研磨することでGaN基板1のみを得る。
【0023】
次にGaN基板上に窒化物半導体をn側バッファ層、クラック防止層、n側クラッド層、n側光ガイド層、活性層、p側キャップ層、p側光ガイド層、p側クラッド層、p側コンタクト層の順で積層した。
以上のようにしてGaN基板上に積層した窒化物半導体に、p側コンタクト層とp側クラッド層をエッチングして、GaNのM面と平行(A面と垂直)になるようにリッジを形成し、リッジをマスク後、リッジと平行にエッチングしてn側バッファ層の表面を露出させる。また、形成したリッジ表面にp電極を、露出させたn側バッファ層上にn電極を形成し、最後にp電極とn電極との間に絶縁膜を介し、p電極上にpパッド電極、n電極上にnパッド電極を形成して、ウエハーを完成させる。
【0024】
このウエハーをチップ化する際、まずA面で劈開(リッジと垂直に劈開)することで、共振面を作製する。共振面の両方あるいはどちらか一方にSiO2とTiO2よりなる誘電体多層膜を形成し、最後にリッジと平行な方向で、バーを切断してレーザチップとした。このレーザ素子は室温でレーザ発振を示し、閾値電流密度1.5kA/cm2において室温連続発振を示し、20mWの出力において1000時間以上の寿命を示し、M面で共振面を形成したときと同等の結果が得られた。
【0025】
[参考例1]図3は本発明の参考例に係るレーザ素子の構造を示す模式的な断面図であり、図2と同じくレーザ光の共振方向に垂直な方向で素子を切断した際の図を示している。以下この図を元に参考例1について説明する。まず異種基板として、サファイア基板をMOVPE反応容器内にセットし、GaNよりなるバッファ層を200オングストローム、アンドープGaNよりなる下地層を4μm、CVD装置によりSiO2よりなる第1の保護膜をストライプ状(ストライプ幅10μm、ストライプ間隔(窓部)2μm)に1μm、MOVPE法でSiドープGaNよりなる窒化物半導体基板を10μm、HVPE法でSiドープGaNよりなるGaN基板を200μm、それぞれの膜厚で積層し、続いてウエハーを、サファイア基板側から第1の保護膜までを研磨していき、GaN基板1のみを得る。
【0026】
第1の保護膜を除去した後のGaN基板1の表面を第1の主面と第2の主面とし、第1の主面上に、n側光ガイド層と活性層の間にn側キャップ層を成長させる以外は実施例1と同様にして、n側バッファ層、クラック防止層、n側クラッド層、n側光ガイド層、n側キャップ層、活性層、p側キャップ層、p側光ガイド層、p側クラッド層、p側コンタクト層の順で積層する。
【0027】
GaNのM面と平行(A面と垂直)になるようにリッジを形成後、リッジ最表面に絶縁膜、p電極およびpパッド電極を形成した。p側電極形成後、第2の主面上にn電極およびボンディング用電極を形成する。
このウエハーをチップ化する際、実施例1と同様にして、まずA面で劈開(リッジと垂直に劈開)することで、共振面を作製する。共振面の両方あるいはどちらか一方にSiOとTiOよりなる誘電体多層膜を形成し、最後にp電極に平行な方向で、バーを切断してレーザチップとした。
【0028】
このレーザ素子も実施例1と同様に室温で連続発振を示し、閾値電流密度1.5kA/cmにおいて室温連続発振を示し、20mWの出力において1000時間以上の寿命を示し、M面で共振面を形成したときと同等の結果が得られた。
【0029】
【発明の効果】
以上示したように本発明はサファイア基板から分離した窒化ガリウム基板上の窒化物半導体素子を劈開する際、新たに窒化ガリウムのA面を劈開面として劈開することで、鏡面に近い共振面を持つ窒化物半導体レーザが実現可能となった。なお、本発明では窒化ガリウム基板について説明したが、サファイア基板やスピネル基板上に積層し、窒化物半導体を積層した後、そのサファイア基板やスピネル基板を薄く研磨した場合についても適用可能である。
【図面の簡単な説明】
【図1】 窒化物半導体の結晶構造を模式的に示すユニットセル図である。
【図2】 本発明の一実施例に係るレーザ素子の構造を示す概略断面図である。
【図3】 本発明の一参考例に係るレーザ素子の構造を示す概略断面図である。[0001]
[Industrial application fields]
The present invention is, for example, LED (light emitting diode), LD (laser diode) nitride such as semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) than consisting of elements It relates to a manufacturing method.
[0002]
[Prior art]
In recent years, blue and blue-green light emitting diodes and laser diodes made of nitride semiconductors have been put into practical use or become practical. Such a nitride semiconductor device is formed by forcibly growing a nitride semiconductor on sapphire having a different lattice constant because a substrate that is completely lattice-matched with the nitride semiconductor has not yet been developed. ing. For this reason, the crystal of the nitride semiconductor grown on the sapphire substrate has a larger number of crystal defects than the red laser device grown on the lattice-matched substrate.
[0003]
As a method for growing a nitride semiconductor crystal capable of greatly reducing crystal defects, the present inventors form a gallium nitride substrate on a different substrate different from the nitride semiconductor and form an element structure on the gallium nitride substrate. Discloses a nitride semiconductor laser device capable of achieving continuous oscillation of about 10,000 hours at a wavelength of about 400 nm and an optical output of 2 nW (for example, “Current Status of InGaN-based Multiple Quantum Well Structure Semiconductor Laser”, 58th Applied Physics) Academic academic conference, lecture number 4aZC-2, October 1997, "Present Status of InGaN / AlGaN based Laser Diodes", The Second International Conference on Nitride Semiconductor-1's ICC, 1N In October 997, etc.).
[0004]
In the above crystal growth method, a conventional gallium nitride layer having a large number of crystal defects is thinly grown on a sapphire substrate, and a protective film made of SiO 2 is partially formed on the gallium nitride layer, and a halide is formed on the protective film. By growing the gallium nitride layer again by using the lateral growth of gallium nitride by vapor phase growth methods such as vapor phase growth method (HVPE) and metal organic vapor phase growth method (MOVPE), This is a technique for forming a small gallium nitride substrate (film thickness: 10 μm). This method is generally called lateral over growth (LOG) because a nitride semiconductor is grown laterally on the protective film.
[0005]
In the above technique, although the performance of the device has been improved by using a gallium nitride substrate with fewer crystal defects, the sapphire used as the substrate of the nitride semiconductor device is very hard and has no cleaving property. Advanced technology is required to make a wafer into chips. Furthermore, since sapphire does not have a cleavage property, it is difficult to make the cleavage surface of the nitride semiconductor a resonance surface by using the cleavage property of the substrate in forming the laser element, and it takes time and labor to form the resonance surface.
[0006]
[Problems to be solved by the invention]
Therefore, the sapphire substrate was removed and only the gallium nitride substrate was used, so that an attempt was made to form a resonance surface using the cleavage of gallium nitride. In this method, gallium nitride is irradiated with electromagnetic waves to form a modified layer, whereby the sapphire substrate can be easily separated and only the gallium nitride substrate can be obtained. Until now, when the nitride semiconductor device on the gallium nitride substrate obtained by this method is cleaved, the M-plane of gallium nitride has been used as a cleavage plane. The M plane is a quadrangular plane corresponding to the cleavage plane when a nitride semiconductor is approximated by a hexagonal columnar hexagonal system,
[0007]
[Outside 7]
Figure 0003727187
[0008]
(Hereinafter referred to as the M plane) It can be indicated by six types of plane orientations such as a plane. When cleavage is performed on the M-plane of the nitride semiconductor, it is possible to obtain a cleavage plane that has a very good yield and includes a resonance plane close to a mirror plane.
[0009]
[Means for Solving the Problems]
The present invention relates to a method of manufacturing a nitride semiconductor laser device in which a structure of a laser device is laminated on a nitride semiconductor substrate , wherein the first nitride semiconductor is formed on a sapphire substrate with a buffer layer made of GaN, undoped GaN. And a stripe-shaped step is formed on the first nitride semiconductor, and a second protection film is formed on the upper surface of the step. And forming a second nitride semiconductor in a lateral direction only from a portion of the first nitride semiconductor not covered with the second protective film, and subsequently growing in a vertical direction and a horizontal direction. forming a lateral over Grouse to the steps of forming a nitride semiconductor substrate by removing the foreign substrate from the first nitride semiconductor and the second nitride semiconductor, the nitride semiconductor substrate Laminating the structure of the laser element on the substrate, forming a ridge parallel to the M-plane of the nitride semiconductor, and cleaving the substrate perpendicularly to the ridge (outside 1) to (outside 6) forming an optical resonant surface of the semiconductor laser element by dividing by any plane orientation in the plane. Further, the protective film is preferably a SiO 2.
[0010]
[0011]
[0012]
[0013]
[0014]
[0015]
[0016]
The (outer 8) to (outer 13) surfaces indicate the same A surface . By the method for manufacturing the nitride semiconductor laser element, the cleavage plane can be made a resonance plane close to a mirror surface.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Furthermore, it demonstrates using a figure.
FIG. 1 is a unit cell diagram schematically showing a crystal structure of a nitride semiconductor.
Although a nitride semiconductor has a rhombohedral structure precisely, it can be approximated in a hexagonal system in this way.
In GaN, there are an M plane and an A plane as cleavage planes. By using this cleaved surface to chip a wafer on which nitride semiconductors are stacked, a resonant surface close to a mirror surface can be obtained.
[0018]
2 and 3 are views of the nitride semiconductor laser laminated on the gallium nitride substrate, taken along a plane perpendicular to the resonance direction. In FIG. 2, the p electrode and the n electrode are formed on the same surface, and FIG. 3 is formed on another surface. This cut surface is formed by using the cleavage property of the A surface of the nitride semiconductor. In the method, when the ridge is formed by etching the p-side layer surface, the ridge is formed so as to be parallel to the M-plane of the nitride semiconductor (perpendicular to the A-plane), and cleaved perpendicularly to the ridge. To do. That is, the resonance surface is formed by using the cleavage of the A surface.
[0019]
【Example】
Although the Example of this invention is shown below, this invention is not limited to this.
[Example 1]
FIG. 2 shows a diagram when the element is cut in a direction perpendicular to the resonance direction of the laser beam. Hereinafter, Example 1 is demonstrated based on this figure.
[0020]
First, a GaN substrate 1 is obtained.
As a heterogeneous substrate, a sapphire substrate is set in a MOVPE reaction vessel, a buffer layer made of GaN is 200 Å, an underlayer made of undoped GaN is 4 μm (the underlayer is a layer for selectively growing the next nitride semiconductor substrate) ), A first protective film made of SiO 2 in a stripe shape (stripe width 10 μm, stripe interval (window portion) 2 μm) by a CVD apparatus, a nitride semiconductor substrate made of undoped GaN by MOVPE method, 10 μm, and HVPE method A GaN substrate made of undoped GaN is stacked with a thickness of 200 μm.
[0021]
Next, as shown in FIG. 2, striped steps are provided by etching the stacked GaN. A second protective film 31 of SiO 2 or the like is formed on the entire upper surface of the step, and the vertical growth on the upper surface of GaN when subsequently stacking GaN is suppressed. Begin lateral growth from uncovered sites. By suppressing the growth in the vertical direction of GaN, growing only in the horizontal direction, and subsequently growing in the vertical and horizontal directions, the GaN substrate 1 having very few crystal defects and good crystallinity can be obtained.
[0022]
Subsequently, when the wafer is irradiated with a KrF excimer laser as an electromagnetic wave in the same direction as the GaN growth direction from the sapphire substrate side and subjected to heat treatment at about 100 ° C., the wafer can be separated in the vicinity of the interface between the underlying GaN and the sapphire substrate. By polishing until the protective film is removed, only the GaN substrate 1 is obtained.
[0023]
Next, a nitride semiconductor is formed on the GaN substrate with an n-side buffer layer, a crack prevention layer, an n-side cladding layer, an n-side light guide layer, an active layer, a p-side cap layer, a p-side light guide layer, a p-side cladding layer, p The side contact layers were stacked in this order.
In the nitride semiconductor laminated on the GaN substrate as described above, the p-side contact layer and the p-side cladding layer are etched to form a ridge so as to be parallel to the GaN M-plane (perpendicular to the A-plane). After the ridge is masked, etching is performed in parallel with the ridge to expose the surface of the n-side buffer layer. Further, a p-electrode is formed on the formed ridge surface, an n-electrode is formed on the exposed n-side buffer layer, and finally a p-pad electrode is formed on the p-electrode via an insulating film between the p-electrode and the n-electrode. An n pad electrode is formed on the n electrode to complete the wafer.
[0024]
When the wafer is made into chips, first, a resonance surface is produced by cleaving the surface A (cleaving perpendicularly to the ridge). A dielectric multilayer film made of SiO 2 and TiO 2 was formed on both or one of the resonance surfaces, and finally a bar was cut in a direction parallel to the ridge to form a laser chip. This laser element oscillates at room temperature, exhibits continuous oscillation at room temperature at a threshold current density of 1.5 kA / cm 2 , exhibits a lifetime of 1000 hours or more at an output of 20 mW, and is equivalent to when a resonant surface is formed on the M plane. Results were obtained.
[0025]
[Reference Example 1] FIG. 3 is a schematic cross-sectional view showing the structure of a laser device according to a reference example of the present invention, and is a view when the device is cut in a direction perpendicular to the resonance direction of laser light as in FIG. Is shown. Reference Example 1 will be described below with reference to this figure. First, as a heterogeneous substrate, a sapphire substrate is set in a MOVPE reaction vessel, a buffer layer made of GaN is 200 Å, an underlayer made of undoped GaN is 4 μm, and a first protective film made of SiO 2 is striped by a CVD apparatus ( 1 μm in stripe width 10 μm, stripe interval (window portion 2 μm), nitride semiconductor substrate made of Si-doped GaN by MOVPE method, 10 μm, and GaN substrate made of Si-doped GaN by HVPE method, each having a thickness of 200 μm. Subsequently, the wafer is polished from the sapphire substrate side to the first protective film to obtain only the GaN substrate 1.
[0026]
The surface of the GaN substrate 1 after removing the first protective film is defined as a first main surface and a second main surface, and on the first main surface, between the n-side light guide layer and the active layer, the n-side The n-side buffer layer, crack prevention layer, n-side cladding layer, n-side light guide layer, n-side cap layer, active layer, p-side cap layer, p-side are the same as in Example 1 except that the cap layer is grown. The optical guide layer, the p-side cladding layer, and the p-side contact layer are stacked in this order.
[0027]
After forming a ridge so as to be parallel to the GaN M-plane (perpendicular to the A-plane), an insulating film, a p-electrode, and a p-pad electrode were formed on the ridge outermost surface. After forming the p-side electrode, an n-electrode and a bonding electrode are formed on the second main surface.
When this wafer is made into chips, as in Example 1, first, the resonance plane is produced by cleaving on the A plane (cleaving perpendicularly to the ridge). A dielectric multilayer film made of SiO 2 and TiO 2 was formed on both or one of the resonance surfaces, and finally a bar was cut in a direction parallel to the p-electrode to form a laser chip.
[0028]
This laser element also shows continuous oscillation at room temperature as in Example 1, shows continuous oscillation at room temperature at a threshold current density of 1.5 kA / cm 2 , shows a lifetime of 1000 hours or more at an output of 20 mW, and has a resonant surface at the M plane. A result equivalent to that obtained when forming was obtained.
[0029]
【The invention's effect】
As described above, according to the present invention, when a nitride semiconductor element on a gallium nitride substrate separated from a sapphire substrate is cleaved, a new resonance plane near the mirror surface is obtained by cleaving the gallium nitride A-plane as a cleavage plane. Nitride semiconductor lasers have become feasible. Note that although the gallium nitride substrate has been described in the present invention, the present invention can also be applied to a case where the sapphire substrate or the spinel substrate is thinly polished after being stacked on the sapphire substrate or the spinel substrate and the nitride semiconductor is stacked.
[Brief description of the drawings]
FIG. 1 is a unit cell diagram schematically showing a crystal structure of a nitride semiconductor.
FIG. 2 is a schematic cross-sectional view showing the structure of a laser device according to an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing the structure of a laser device according to a reference example of the present invention.

Claims (2)

窒化物半導体基板の上にレーザ素子の構造が積層されてなる窒化物半導体レーザ素子の製造方法であって、
第1の窒化物半導体をサファイア基板上にGaNよりなるバッファ層、アンドープGaNよりなる下地層、ストライプ状の第1の保護膜を順に形成した異種基板上に成長させ、該第1の窒化物半導体にストライプ状の段差を形成し、該段差の上面に第2の保護膜を形成する工程と、
第2の窒化物半導体を前記第1の窒化物半導体の前記第2の保護膜で覆われていない部位から横方向のみに成長させ、続いて縦方向と横方向に成長させるラテラルオーバーグロウスにより形成する工程と、
前記第1の窒化物半導体及び第2の窒化物半導体から前記異種基板を除去して窒化物半導体基板を形成する工程と、
前記窒化物半導体基板上にレーザ素子の構造を積層する工程と、
前記窒化物半導体のM面と平行になるようにリッジを形成する工程と、
前記基板をリッジに対して垂直に劈開して
【外1】
Figure 0003727187
【外2】
Figure 0003727187
【外3】
Figure 0003727187
【外4】
Figure 0003727187
【外5】
Figure 0003727187
【外6】
Figure 0003727187
面内のいずれかの面方位で割ることにより半導体レーザ素子の光共振面を形成する工程と、を備えたことを特徴とする窒化物半導体レーザ素子の製造方法。
A method of manufacturing a nitride semiconductor laser device in which a structure of a laser device is laminated on a nitride semiconductor substrate,
A first nitride semiconductor is grown on a heterogeneous substrate in which a buffer layer made of GaN, an underlayer made of undoped GaN, and a striped first protective film are sequentially formed on a sapphire substrate, and the first nitride semiconductor is grown. Forming a stripe-shaped step on the upper surface and forming a second protective film on the upper surface of the step;
A second nitride semiconductor is formed by lateral overgrowth in which the first nitride semiconductor is grown only in the lateral direction from a portion not covered with the second protective film, and then grown in the longitudinal and lateral directions. And a process of
Forming a nitride semiconductor substrate by removing the foreign substrate from the first nitride semiconductor and the second nitride semiconductor,
Laminating a structure of a laser element on the nitride semiconductor substrate;
Forming a ridge so as to be parallel to the M-plane of the nitride semiconductor;
Cleave the substrate perpendicular to the ridge [Outside 1]
Figure 0003727187
[Outside 2]
Figure 0003727187
[Outside 3]
Figure 0003727187
[Outside 4]
Figure 0003727187
[Outside 5]
Figure 0003727187
[Outside 6]
Figure 0003727187
And a step of forming an optical resonant surface of the semiconductor laser device by dividing by any one of the in-plane orientations. A method for manufacturing a nitride semiconductor laser device, comprising:
前記第1の保護膜及び第2の保護膜は、SiOであることを特徴とする請求項1記載の窒化物半導体レーザ素子の製造方法。The first protective film and second protective film manufacturing method of the nitride semiconductor laser device according to claim 1, characterized in that the SiO 2.
JP36174298A 1998-07-03 1998-12-21 Manufacturing method of nitride semiconductor laser device Expired - Fee Related JP3727187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36174298A JP3727187B2 (en) 1998-07-03 1998-12-21 Manufacturing method of nitride semiconductor laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-188354 1998-07-03
JP18835498 1998-07-03
JP36174298A JP3727187B2 (en) 1998-07-03 1998-12-21 Manufacturing method of nitride semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2000082867A JP2000082867A (en) 2000-03-21
JP3727187B2 true JP3727187B2 (en) 2005-12-14

Family

ID=26504871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36174298A Expired - Fee Related JP3727187B2 (en) 1998-07-03 1998-12-21 Manufacturing method of nitride semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3727187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062959B2 (en) 2007-11-04 2011-11-22 Nichia Corporation Method of manufacturing semiconductor element

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562644B2 (en) * 2000-08-08 2003-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate, method of manufacturing the semiconductor substrate, semiconductor device and pattern forming method
JP4683731B2 (en) * 2001-01-15 2011-05-18 シャープ株式会社 Nitride semiconductor laser device and optical device including the same
WO2002065556A1 (en) * 2001-02-15 2002-08-22 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and production therefor
MY141883A (en) 2001-06-06 2010-07-16 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
PL225235B1 (en) 2001-10-26 2017-03-31 Ammono Spółka Z Ograniczoną Odpowiedzialnością Substrate for epitaxy
AU2002354463A1 (en) 2002-05-17 2003-12-02 Ammono Sp.Zo.O. Bulk single crystal production facility employing supercritical ammonia
KR100494557B1 (en) * 2002-09-05 2005-06-13 한국전자통신연구원 Efficient LED having highly refractive cover layer
JP4540347B2 (en) * 2004-01-05 2010-09-08 シャープ株式会社 Nitride semiconductor laser device and manufacturing method thereof
JP2005322786A (en) * 2004-05-10 2005-11-17 Sharp Corp Nitride semiconductor element and its manufacturing method
WO2007008394A1 (en) * 2005-07-11 2007-01-18 Cree, Inc. Laser diode orientation on mis-cut substrates
JP2006339675A (en) * 2006-09-07 2006-12-14 Sharp Corp Nitride semiconductor laser element and semiconductor optical device
JP4146881B2 (en) * 2007-03-20 2008-09-10 シャープ株式会社 Nitride semiconductor light-emitting device, epi-wafer and method of manufacturing the same
JP2008235790A (en) 2007-03-23 2008-10-02 Mitsubishi Electric Corp Manufacturing method of semiconductor light element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062959B2 (en) 2007-11-04 2011-11-22 Nichia Corporation Method of manufacturing semiconductor element

Also Published As

Publication number Publication date
JP2000082867A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP4060511B2 (en) Method for separating nitride semiconductor device
US7083996B2 (en) Nitride semiconductor device and manufacturing method thereof
KR101375433B1 (en) Method for manufacturing nitride semiconductor laser device and nitride semiconductor laser device
JP3727187B2 (en) Manufacturing method of nitride semiconductor laser device
JP2003017790A (en) Nitride-based semiconductor device and manufacturing method
JP2000106473A (en) Semiconductor device, semiconductor light emitting device and manufacture thereof, and forming method of nitride semiconductor layer
JP4665394B2 (en) Nitride semiconductor laser device
US7183585B2 (en) Semiconductor device and a method for the manufacture thereof
JP4043087B2 (en) Nitride semiconductor device manufacturing method and nitride semiconductor device
JP2003046201A (en) Semiconductor laser element and method of manufacturing the same
JP4873116B2 (en) Nitride semiconductor laser device and manufacturing method thereof
JP2006165407A (en) Nitride semiconductor laser device
JP4097343B2 (en) Manufacturing method of nitride semiconductor laser device
JP2004179350A (en) Nitride semiconductor laser element and manufacturing method therefor
JP2000058972A (en) Nitride semiconductor laser element
JPH1027939A (en) Nitride semiconductor laser element
JP2003273463A (en) Nitride semiconductor laser element and method of manufacturing the same
JP2003045807A (en) Nitride semiconductor substrate and method for manufacturing the same
JP2002359436A (en) Nitride semiconductor laser diode and method for manufacturing the same
JP4224952B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2002280308A (en) Method of growing nitride semiconductor and element using the same
JP2005101536A (en) Nitride semiconductor laser element
JP2002164617A (en) Semiconductor laser device
JP3484842B2 (en) Nitride semiconductor laser device
JP2000068599A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees