JP3726115B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3726115B2
JP3726115B2 JP2002144124A JP2002144124A JP3726115B2 JP 3726115 B2 JP3726115 B2 JP 3726115B2 JP 2002144124 A JP2002144124 A JP 2002144124A JP 2002144124 A JP2002144124 A JP 2002144124A JP 3726115 B2 JP3726115 B2 JP 3726115B2
Authority
JP
Japan
Prior art keywords
solder
semiconductor substrate
solder core
core
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002144124A
Other languages
Japanese (ja)
Other versions
JP2003338515A (en
Inventor
博之 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2002144124A priority Critical patent/JP3726115B2/en
Publication of JP2003338515A publication Critical patent/JP2003338515A/en
Application granted granted Critical
Publication of JP3726115B2 publication Critical patent/JP3726115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型、薄型、軽量、低価格を達成し得る半導体装置の製造方法に関する。さらに詳しくは、微細な電極端子を有しながらリードフレームやインターポーザなどを用いないで、直接マザーボードなどにマウントすることができる構造の半導体装置を安価に得る半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置は、一般的には、たとえば図15に示されるように、半導体チップ21をリードフレームのダイパッド22にダイボンディングし、電極パッド21aとリードフレームのリード23とを金線24によりワイヤボンディングして、樹脂でモールドすることによりパッケージ25を形成することにより製造されている。
【0003】
また、小型、薄型、軽量化を実現させる手段として、図16または図17に示されるように、半導体チップ21周囲の電極パッド21aを半導体チップ21の平面積全体に分散させてハンダボールを形成するチップサイズパッケージが考えられている。すなわち、図16に示される例は、セラミック基板、ポリイミドなどの有機材基板、フィルムテープなどからなるインターポーザー26の一面に配線(図示せず)を形成して半導体チップの電極パッド21aとその配線とを金線24などを用いたワイヤボンディングにより接続し、そのインターポーザー26の裏面にその配線とそれぞれ接続してハンダボールなどからなる外部電極27を形成し、半導体チップ21側を樹脂25により被覆する技術である。なお、図17に示される例は、半導体チップ21の電極パッド21aと配線との接続をワイヤボンディングによらないで、電極パッド(図示せず)にハンダバンプ21bを形成し、そのバンプ21bとインターポーザーの配線とを直接接合するもので、他の構成は図16に示される例と同じである。28は半導体チップを固定する樹脂層である。
【0004】
このようなインターポーザーを介在させることにより、半導体チップの周囲に非常に狭い間隔で設けられている電極パッドを半導体チップの面積全体に分散させて回路基板などに直接接続することを可能としている。すなわち、近年の半導体チップの高集積化および小型化に伴い、その電極パッドは半導体チップの周囲に100〜200μm程度の間隔で設けられている。しかし、半導体装置がマウントされる回路基板の配線は、0.5mm程度の間隔があり、半導体チップの電極パッドにバンプ電極を形成しても直接回路基板にマウントすることができないが、このインターポーザーを介在させることにより、半導体チップの面積全体に電極を分散させることができるため、直接回路基板にマウントすることができる。
【0005】
【発明が解決しようとする課題】
前述のように、チップサイズパッケージは小型化が可能であるが、インターポーザーとそれに接続する接続工程が必要となる。このインターポーザーは、リードフレームを使用する半導体装置に比べて、流通量、すなわち生産量が少なく、また、微細な成型が要求されるものもあるため、一般的にコストが高くなる。また、このインターポーザーと半導体チップとのワイヤボンディングは、ワンバイワンの接続であるため、一括処理をすることができないし、一般的な電解工法によるメッキバンプは一括処理をすることができるものの、特にバリアメタルを形成する工程では、ステッパ装置、レジスト塗布・現像・露光装置など高額な設備が必要となる。そのため、チップサイズパッケージは、小型、薄型、軽量化を実現することができるが、コスト高になるという問題がある。
【0006】
本発明は、このような状況に鑑みてなされたもので、インターポーザーを用いないで、電極間隔を広げ、バリアメタルを無電解メッキ法により形成し、ハンダコア、ハンダバンプ、樹脂封止などの微細成型を簡単に行い、小型、薄型、軽量化を実現しながら、コストを低減することができる半導体装置の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による半導体装置の製造方法は、ウェハ状態の半導体基板に電子回路を形成し、該電子回路の電極端子と接続してバンプ電極を形成する所望の場所まで延在する配線を形成した後、全面に被覆膜を形成し、バンプ電極形成場所の前記配線を露出させた再配置された電極パッドを形成し、該電極パッド上に、ニッケル及び金膜を無電解メッキし、熱処理を行い、バリアメタル層を形成し、該バリアメタル層より大きい開口部を有するマスクを用いて、該バリアメタル層上に、ハンダペーストを印刷し、熱処理をすることにより、ハンダコアを形成し、前記半導体基板の前記ハンダコアを形成した面側に、前記ハンダコアの高さより厚く、フィラー入りエポキシ樹脂を印刷し、脱泡して硬化させ、第1の樹脂層を形成し、第1の樹脂層及び前記ハンダコアを、前記ハンダコアの高さの2/3から1/2となるまで研削して前記ハンダコアを露出させ前記ハンダコアを露出した面と反対の裏面側の前記半導体基板を研磨して薄くし、該研磨した前記半導体基板の前記裏面側に、フィラー入りエポキシ樹脂を印刷し、脱泡して硬化させ、第2の樹脂層を形成した後、前記露出したハンダコア上に、露出する該ハンダコアより大きい開口部を有するマスクを用いて、ハンダペーストを印刷し、熱処理をすることにより、ハンダバンプを形成し、該ハンダバンプを形成した前記第1の樹脂層、前記半導体基板及び前記第2の樹脂層を切断し、個片化することを特徴とする。
【0008】
この方法を用いることにより、半導体基板上で電極パッドの間隔を広げ、バリアメタル層を介在させているため、直接半導体基板上にハンダバンプをハンダペーストの印刷と加熱処理とにより形成することができる。しかも、バリア層の形成を無電解メッキにより形成しているため、バンプ電極を形成する必要な電極パッド部分のみにバリアメタル層を形成することができ、従来のように、全面にスパッタリングなどにより設けた金属膜にマスクを形成し、電解メッキを行い、その後、エッチングするというような煩雑な工程を経ることなく形成することができる。さらに、ハンダコアおよびハンダバンプを印刷と加熱処理により形成するため、製造工程が非常に簡略化される。
【0009】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の半導体装置の製造方法について説明をする。本発明による半導体装置の製造方法は、まず、図1〜3に示されるように、半導体基板1に電子回路を形成し、その電子回路の電極端子2を半導体基板1上で配線4を介して分散することにより再配置された電極パッド4aを形成し、図4に示されるように、その電極パッド4a上に、無電解メッキによりバリアメタル層6を形成し、図5に示されるように、バリアメタル層6上に、ハンダペーストを印刷し熱処理をすることにより、ハンダコア7を形成し、図6に示されるように、半導体基板1のハンダコア7を形成した面側に樹脂を印刷することにより樹脂層8を形成し、図7に示されるように、樹脂層8を研削してハンダコア7を露出させ、図8に示されるように、半導体基板1の裏面側を研磨し、図9に示されるように、半導体基板1の裏面側に裏面樹脂層9を形成し、図10に示されるように、露出したハンダコア7上に、さらにハンダペーストを印刷し熱処理をすることにより、ハンダバンプ10を形成し、図12に示されるように、電子回路の境界部でダイシングをして個片化することにより製造する。
【0010】
この半導体装置の製造方法について、具体例を交えて、さらに詳細に説明する。まず、図1に示されるように、半導体基板(ウェハ)1にトランジスタやダイオードなどの回路素子(図示せず)を形成して電子回路を形成し、その表面に電子回路の電極端子2を形成すると共に、半導体基板1の表面に絶縁膜3を形成して回路素子を保護している。この状態は、通常の半導体チップにする前のウェハの状態である。なお、図1〜10においては、1個の電極端子およびその電極端子に接続して設けるバンプ電極が1個の例で示されているが、多数ある電極端子全てについて同時に同様の方法でバンプ電極の形成が行われる。
【0011】
つぎに、Al-Si(Siが1wt%)などからなる電極材料をスパッタ法などにより1μm程度の厚さに成膜して、図示しないレジスト膜を設けてパターニングすることにより、図2に示されるように、電極端子2と接続してバンプ電極を形成する所望の場所まで延在する配線4を形成する。その後、図3に示されるように、CVD法などによりSiO2またはSi34などからなる被覆層5を全面に設け、前述の配線4の端部であるバンプ電極形成場所のみが露出するようにパターニングする。この際、バンプ電極形成場所として配線4を露出させた再配置の電極パッド4aは、他の再配置の電極パッドとの間隔が0.5mmピッチ程度となり、その大きさが150μmφ程度となるように形成する。
【0012】
つぎに、図4に示されるように、再配置した電極パッド4a上にバリアメタル層6を形成する。具体的にはつぎのように行った。まず、再配置した電極パッド4a表面の親水性改善のため、脱脂処理を行い、ついで、硫酸または硝酸により表面に付着した酸化膜を除去した。その後、その表面にZn膜を置換メッキした。硝酸によりこのZn膜を一旦除去した後、再度Zn膜を置換メッキし、電極パッド4a表面に均一なZn膜を形成した。つぎに、還元反応により、Niを5〜9μm析出させた。さらに、Ni表面の酸化を防止するため、置換メッキ法によりAu膜を0.03μm形成することにより、バリアメタル層6を形成した。なお、このバリアメタル層6の直径は160μmであった。ここで、電極パッド4aは、1回目のZnを置換メッキで形成する際のエッチング量が大きい。具体的には、0.7μm程度エッチングされた。したがって、配線4の厚さを1μm程度以上設けることが必要である。1μm以下の場合は、2回目のZnを形成するまでに電極パッド4aの材料が溶けて無くなる場合が生じ、Niメッキが成長しない場合が生じ、好ましくない。Au膜を形成後、これらの膜の結合を強めるため、230℃、1時間の熱処理を行った。
【0013】
つぎに、図5に示されるように、バリアメタル層6の表面にハンダコア7を印刷法により形成する。この場合のマスクとして、(マスクの開口面積πr2)/(開口部におけるマスク壁面面積2πrt)=r/2tの比率が1/2以上のハンダマスクを使用するのがよかった。これは、(マスクの開口面積)/(マスク壁面面積)が1/2より小さくなると、たとえばマスク開口の直径が350μmφで、マスク厚tを200μmにした場合、マスク壁面との接着力の方が大きく、マスクにハンダペーストが残っており、転写の再現性が劣るためである。具体的には、直径が350μmφの開口で、厚さtが100μmのマスクを用い、Sn-Cu(Cuが2wt%)のハンダペーストを使用して印刷した。そして、酸素濃度が1000ppm以下の不活性ガス雰囲気で、260℃、10秒以上の熱処理をしてリフローした。ハンダマスクの開口の直径が350μmのとき、マスク厚を変化させた結果、厚さtが175μm(すなわちr/2t=0.5)まではハンダが転写されることを確認できた。また、リフロー時の酸素濃度が1000ppm以上の場合、ハンダコア7の高さにバラツキが生じた。バリアメタル層の直径が160μmφ、マスク開口の直径が350μmφ、マスク厚tが100μmのとき、ハンダコア7の高さは190±20μmの範囲で得られた。
【0014】
つぎに、図6に示されるように、半導体ウェハ上のアクティブ面(ハンダコア7を形成した面)側に、たとえばフィラー入りエポキシ樹脂を大気圧下で印刷法により塗布して、樹脂層8を形成する。この際、樹脂層8の厚さを規定するウェハ周囲を除いて開口孔を形成した樹脂印刷マスクをつけて行うが、この樹脂印刷マスクは、ハンダコアの高さと同じ厚さから、それより150μm大きい厚さまでの範囲の厚さとする。印刷後、真空雰囲気下に放置して印刷時に巻き込んだ気泡を脱泡する。その後、高温にして樹脂を硬化させる。具体的には、印刷に用いるマスク厚をハンダコア高さより大きい250μm厚のものを使用し、100Pa・sの5種対の粘度の樹脂を用いて、665Paの減圧下で、20分間放置して脱泡をした。その後、100℃で1時間、150℃で2時間の熱処理をして樹脂を硬化させた。硬化後の樹脂層8の厚さは275±50μmであった。なお、使用する樹脂の粘度は、25、200、300、600Pa・sでも使用できることが確認されている。
【0015】
つぎに、図7に示されるように、半導体基板1のアクティブ面側(表面側)の樹脂層8を研削して、ハンダコア7を露出させる。樹脂の研削量は、樹脂層8の研削面がハンダコア7の高さの2/3〜1/2となるように設定した。具体的には、190μm高のハンダコア7の場合に、樹脂層の厚さ(研削後のハンダコア5の高さ)が95〜125(110±15)μmとなるように研削を行った。このとき、露出したハンダコア7の直径は、200±20μmφの範囲で得られた。
【0016】
つぎに、図8に示されるように、半導体基板1の厚さが150〜350μmになるように、半導体基板1の裏面を研磨する。具体的には、630μm厚の半導体基板1を研磨して、200±15μm厚にした。その後、図9に示されるように、半導体基板1の裏面側にたとえば、フィラー入りエポキシ樹脂を大気圧下で印刷により塗布して裏面樹脂層9を形成する。この印刷の際に用いるマスクは、裏面樹脂層9の厚さが150±100μmの厚さになるように選定する。その後、真空圧下に放置して印刷時に巻き込んだ気泡を脱泡した後に、100℃で1時間、150℃で2時間の熱処理を行い、樹脂を硬化させることにより、裏面樹脂層9を形成する。具体例としては、ウェハ周囲以外を開口した100μm厚のマスクを使用して、30Pa・sの粘度の樹脂を印刷により塗布し、665Pa以下の真空圧下に20分間放置して、脱泡を行い気泡を除去した。その後、100℃で1時間、150℃で2時間の熱処理を行い、樹脂を硬化させた。硬化後の裏面樹脂層9の厚さは、100±40μmの範囲で得られた。
【0017】
つぎに、図10に示されるように、ハンダコア7上にハンダバンプ10を印刷法により形成する。ここで、前述のハンダコア7を形成する場合と同様に、ハンダペーストを印刷する際に用いるマスクは、(マスクの開口面積)/(開口部におけるマスク壁面面積)の比率が1/2以上のハンダマスクを使用するのがよかった。そして、酸素濃度が1000ppm以下の不活性ガス雰囲気で、260℃、10秒間の熱処理をしてリフローをした。具体的には、マスクとして、直径が350μmφの開口で、厚さtが100μmのマスクを用い、Sn-Cu(Cuが2wt%)のハンダペーストを使用して印刷した。ハンダマスクの開口の直径が350μmのとき、マスク厚を変化させた結果、前述の場合と同様に、厚さtが175μmまではハンダが転写されることを確認できたが、200μmの厚さでは、マスクにハンダが残っており、転写の再現性に劣った。また、リフロー時の酸素濃度を1000ppm以上にした場合、ハンダバンプ10の高さにバラツキが生じた。ハンダコア7の直径が200±20μmφ、マスク開口の直径が350μmφ、マスク厚tが100μmのとき、ハンダバンプ10の高さは150±20μmの範囲で得られた。
【0018】
つぎに、図11に123で示されるように、ウェハの裏面、すなわち裏面樹脂層9の露出面に型名などのマーク11を付する。このマーキングは、印刷またはレーザ刻印などの方法により行う。半導体基板1がシリコンであれば、印刷でも、レーザ刻印でも構わないが、半導体基板がGaAsのように、レーザ刻印によりAsなどの毒物が飛散する恐れのある場合には、印刷法によりマーキングを行う。具体例では、半導体基板がSiであるため、レーザによりマーキングを付した。
【0019】
つぎに、図12に示されるように、ウェハに多数形成された同じ電子回路をそれぞれその境界部でダイシングをしてチップ化(個片化)する。具体的には、ウェハの裏面側をダイシングテープ12に貼着し、ダイサー13によりチップ間を切断する。切断した後も、ダイシングテープ12に貼着したまま、次工程のテストを行うことができる。
【0020】
その後、図13に示されるように、ハンダバンプ10にテスターのプローブ14を接触させて、電気試験を行う。このように、梱包直前にテストを行なうことにより、ダイシング時の不良も検出することができ、不良品の流出を完全に防止することができ、信頼性を向上させることができる。また、このように、ダイシングテープ12に貼着したままテストを行うことにより、各チップは電気的には分離されながら、ダイシングテープ12上に整列しているため、図13に示されるように、2個以上のチップを同時にテストすることができる。具体的には、4個のチップを同時にテストすることができた。このように同時に複数個のチップのテストを行うことができるため、テストインデックスを短くすることができ、コストダウンを図ることができた。もちろん、従来通りピックアンドプレスによる1個単位でのテストをすることもできる。
【0021】
最後に、外観検査を行い、図14に示されるように、チップごとに収納できる凹部が形成されたキャリアテープ15の凹部に収納し、キャリアテープを梱包することにより、出荷できる状態になる。
【0022】
本発明によれば、半導体チップの基板表面に設けられる電極端子を再配置して電極パッド間の間隔を広げ、無電解メッキによるバリアメタル層を形成し、その上にハンダコアおよびハンダバンプを印刷と加熱処理により形成しているため、従来のハンダバンプを電解メッキにより設ける方法に比べて、非常に簡単な製造工程でチップサイズ程度の小型で、直接マザーボードなどにマウントすることができる半導体装置を得ることができる。
【0023】
なお、前述の具体例では、電極端子を再配置するための配線4として、Al-Si(Siが1wt%)を用いる例であったが、配線4として、AuまたはCuを用いる場合には、この膜を形成するのに、スパッタ法以外に真空蒸着で成膜してもよい。また、図4のバリアメタル層6の形成工程は以下のように行う。
【0024】
まず、前述の例と同様に、再配置した電極パッド4a表面の親水性改善のため、脱脂処理を行い、ついで、硫酸または硝酸により表面に付着した酸化膜を除去する。その後、電極パッド4aの表面に、Pdを置換メッキにより成膜する。つぎに、還元反応により、Niを5〜9μm析出させる。さらに、置換メッキ法によりAu膜を0.03μm形成することにより、バリアメタル層6を形成する。なお、このバリアメタル層6の直径は160μmであった。ここで、配線4は、半導体基板1表面の凹凸により断線が生じる場合があるので、1μm以上の厚さに形成することが必要である。
【0025】
【発明の効果】
以上のように、本発明によれば、半導体基板表面にウェハのプロセスを用いて、電極端子の再配置を行って電極パッドの間隔を広げているため、インターポーザを用いることなく、直接マザーボードなどにマウントすることができるチップサイズの非常に小型の半導体装置を得ることができる。しかも、半導体基板表面にハンダコアやハンダバンプを形成する前にバリアメタル層を無電解メッキにより形成し、さらに、ハンダコアやハンダバンプの形成を、印刷と加熱処理とにより行っているため、非常に簡単な設備で、しかも一括処理により製造することができる。その結果、小型、薄型、軽量の半導体装置を非常に安価に得ることができる。
【図面の簡単な説明】
【図1】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図2】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図3】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図4】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図5】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図6】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図7】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図8】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図9】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図10】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図11】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図12】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図13】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図14】本発明による製造方法の一実施形態の製造工程を示す説明図である。
【図15】従来の半導体装置における構造の一例を示す説明図である。
【図16】従来の半導体装置における構造の一例を示す説明図である。
【図17】従来の半導体装置における構造の一例を示す説明図である。
【符号の説明】
1 半導体基板
2 電極端子
4 配線
4a 電極パッド
6 バリアメタル層
7 ハンダコア
8 樹脂層
9 裏面樹脂層
10 ハンダバンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device that can achieve small size, thinness, light weight, and low cost. More specifically, the present invention relates to a method for manufacturing a semiconductor device, which can inexpensively obtain a semiconductor device having a structure that can be directly mounted on a mother board without using a lead frame or an interposer while having fine electrode terminals.
[0002]
[Prior art]
As shown in FIG. 15, for example, a semiconductor device generally has a semiconductor chip 21 bonded to a die pad 22 of a lead frame, and an electrode pad 21a and a lead 23 of a lead frame are wire bonded by a gold wire 24. The package 25 is manufactured by molding with resin.
[0003]
Further, as means for realizing a small size, a thin shape, and a light weight, as shown in FIG. 16 or FIG. 17, the solder pads are formed by dispersing the electrode pads 21 a around the semiconductor chip 21 over the entire plane area of the semiconductor chip 21. Chip size packages are being considered. That is, in the example shown in FIG. 16, a wiring (not shown) is formed on one surface of an interposer 26 made of a ceramic substrate, an organic material substrate such as polyimide, a film tape, etc. Are connected by wire bonding using a gold wire 24 or the like, and connected to the wiring on the back surface of the interposer 26 to form an external electrode 27 made of a solder ball or the like, and the semiconductor chip 21 side is covered with a resin 25 Technology. In the example shown in FIG. 17, the solder pads 21b are formed on the electrode pads (not shown) without connecting the electrode pads 21a and the wirings of the semiconductor chip 21 by wire bonding, and the bumps 21b and the interposer are formed. The other wiring is the same as the example shown in FIG. A resin layer 28 fixes the semiconductor chip.
[0004]
By interposing such an interposer, the electrode pads provided at very narrow intervals around the semiconductor chip can be dispersed over the entire area of the semiconductor chip and directly connected to a circuit board or the like. That is, with the recent high integration and miniaturization of semiconductor chips, the electrode pads are provided around the semiconductor chip at intervals of about 100 to 200 μm. However, the wiring of the circuit board on which the semiconductor device is mounted has an interval of about 0.5 mm, and even if the bump electrode is formed on the electrode pad of the semiconductor chip, it cannot be mounted directly on the circuit board. By interposing the electrode, the electrode can be dispersed over the entire area of the semiconductor chip, so that it can be directly mounted on the circuit board.
[0005]
[Problems to be solved by the invention]
As described above, the chip size package can be reduced in size, but an interposer and a connection process for connecting to the interposer are required. This interposer is generally less expensive than a semiconductor device that uses a lead frame, because it has a small distribution amount, that is, a production amount, and some of them require fine molding. In addition, the wire bonding between the interposer and the semiconductor chip is a one-by-one connection, so batch processing cannot be performed, and plating bumps by a general electrolytic method can be batch processed. In the process of forming metal, expensive equipment such as a stepper device, a resist coating / developing / exposure device is required. For this reason, the chip size package can be reduced in size, thickness, and weight, but there is a problem that the cost increases.
[0006]
The present invention has been made in view of such a situation, and without using an interposer, the electrode interval is widened, a barrier metal is formed by an electroless plating method, and a fine molding such as a solder core, a solder bump, a resin seal, etc. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can reduce the cost while realizing a small size, a thin shape, and a light weight.
[0007]
[Means for Solving the Problems]
In the method of manufacturing a semiconductor device according to the present invention, an electronic circuit is formed on a semiconductor substrate in a wafer state, connected to an electrode terminal of the electronic circuit, and a wiring extending to a desired location for forming a bump electrode is formed. the entire surface to form a coating film, to form a rearranged electrode pad is exposed the wiring of the bump electrode forming location, on the electrode pad, and an electroless plating of nickel and gold film, a heat treatment is performed forming a barrier metal layer, using a mask having an opening larger than the barrier metal layer, on the barrier metal layer, to print the solder paste, by heat treatment, to form a solder core, of the semiconductor substrate on the side formed with said solder core, thicker than the height of said solder core, the filler-containing epoxy resin was printed, and cured by defoaming to form a first resin layer, said first resin layer 及Said solder core, said grinding from 2/3 until 1/2 of the height of the solder core by exposing the solder core, thinned by polishing the semiconductor substrate on the back surface side opposite to the exposed surface of the solder core From the exposed solder core on the exposed solder core , the epoxy resin containing filler is printed on the back side of the polished semiconductor substrate , defoamed and cured to form a second resin layer. A solder bump is formed by printing a solder paste using a mask having a large opening and performing heat treatment , and the first resin layer, the semiconductor substrate, and the second resin layer on which the solder bump is formed are formed. It is characterized by cutting into pieces .
[0008]
By using this method, since the interval between the electrode pads is increased on the semiconductor substrate and the barrier metal layer is interposed, the solder bump can be directly formed on the semiconductor substrate by printing solder paste and heat treatment. Moreover, since the barrier layer is formed by electroless plating, the barrier metal layer can be formed only on the electrode pad portion where the bump electrode is necessary, and it is provided on the entire surface by sputtering or the like as in the prior art. The metal film can be formed without a complicated process of forming a mask, performing electrolytic plating, and then etching. Furthermore, since the solder core and the solder bump are formed by printing and heat treatment, the manufacturing process is greatly simplified.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, a method for manufacturing a semiconductor device of the present invention will be described with reference to the drawings. In the method of manufacturing a semiconductor device according to the present invention, first, as shown in FIGS. 1 to 3, an electronic circuit is formed on a semiconductor substrate 1, and electrode terminals 2 of the electronic circuit are connected to the semiconductor substrate 1 via wiring 4. Dispersed electrode pads 4a are formed by dispersing, and as shown in FIG. 4, a barrier metal layer 6 is formed on the electrode pads 4a by electroless plating, as shown in FIG. A solder core 7 is formed on the barrier metal layer 6 by printing a solder paste and heat-treating, and a resin is printed on the surface of the semiconductor substrate 1 on which the solder core 7 is formed, as shown in FIG. The resin layer 8 is formed, and the resin layer 8 is ground to expose the solder core 7 as shown in FIG. 7, and the back side of the semiconductor substrate 1 is polished as shown in FIG. As the semiconductor substrate The backing layer 9 is formed on the back side of, as shown in FIG. 10, on the solder core 7 exposed by further printing was heat treated solder paste to form solder bumps 10, as shown in FIG. 12 Thus, it manufactures by dicing and dicing at the boundary part of an electronic circuit .
[0010]
This semiconductor device manufacturing method will be described in more detail with specific examples. First, as shown in FIG. 1, a circuit element (not shown) such as a transistor or a diode is formed on a semiconductor substrate (wafer) 1 to form an electronic circuit, and an electrode terminal 2 of the electronic circuit is formed on the surface thereof. At the same time, an insulating film 3 is formed on the surface of the semiconductor substrate 1 to protect the circuit elements. This state is the state of the wafer before it is made into a normal semiconductor chip. 1 to 10 show one electrode terminal and one bump electrode provided to be connected to the electrode terminal in one example. However, bump electrodes can be simultaneously formed in the same manner for all the electrode terminals. Is formed.
[0011]
Next, an electrode material made of Al—Si (Si is 1 wt%) or the like is formed to a thickness of about 1 μm by sputtering or the like, and a resist film (not shown) is provided and patterned, and the result is shown in FIG. As described above, the wiring 4 is formed so as to be connected to the electrode terminal 2 and extend to a desired place where the bump electrode is formed. Thereafter, as shown in FIG. 3, a coating layer 5 made of SiO 2 or Si 3 N 4 or the like is provided on the entire surface by CVD or the like so that only the bump electrode forming location which is the end portion of the wiring 4 is exposed. To pattern. At this time, the rearranged electrode pad 4a with the wiring 4 exposed as a bump electrode formation location is spaced about 0.5 mm from the other rearranged electrode pads, and the size is about 150 μmφ. Form.
[0012]
Next, as shown in FIG. 4, a barrier metal layer 6 is formed on the rearranged electrode pad 4a. Specifically, it was performed as follows. First, degreasing treatment was performed to improve the hydrophilicity of the rearranged electrode pad 4a surface, and then the oxide film adhered to the surface was removed with sulfuric acid or nitric acid. Thereafter, a Zn film was substitution plated on the surface. After removing this Zn film once with nitric acid, the Zn film was subjected to substitution plating again to form a uniform Zn film on the surface of the electrode pad 4a. Next, 5 to 9 μm of Ni was deposited by a reduction reaction. Furthermore, in order to prevent the Ni surface from being oxidized, the barrier metal layer 6 was formed by forming 0.03 μm of an Au film by a displacement plating method. The diameter of the barrier metal layer 6 was 160 μm. Here, the electrode pad 4a has a large etching amount when the first Zn is formed by substitution plating. Specifically, it was etched by about 0.7 μm. Therefore, it is necessary to provide the wiring 4 with a thickness of about 1 μm or more. When the thickness is 1 μm or less, the material of the electrode pad 4a may be melted and lost before forming the second Zn, and the Ni plating may not grow, which is not preferable. After forming the Au film, heat treatment was performed at 230 ° C. for 1 hour in order to strengthen the bond between these films.
[0013]
Next, as shown in FIG. 5, a solder core 7 is formed on the surface of the barrier metal layer 6 by a printing method. As a mask in this case, it is preferable to use a solder mask having a ratio of (mask opening area πr 2 ) / (mask wall surface area 2πrt at opening) = r / 2t of 1/2 or more. When (mask opening area) / (mask wall surface area) is smaller than 1/2, for example, when the mask opening diameter is 350 μmφ and the mask thickness t is 200 μm, the adhesive strength with the mask wall surface is greater. This is because the solder paste remains on the mask and transfer reproducibility is poor. Specifically, printing was performed using Sn—Cu (Cu is 2 wt%) solder paste using a mask having a diameter of 350 μmφ and a thickness t of 100 μm. And it reflowed by heat-processing for 10 second or more at 260 degreeC in the inert gas atmosphere whose oxygen concentration is 1000 ppm or less. As a result of changing the mask thickness when the diameter of the opening of the solder mask was 350 μm, it was confirmed that the solder was transferred until the thickness t was 175 μm (ie, r / 2t = 0.5). Further, when the oxygen concentration during reflow was 1000 ppm or more, the height of the solder core 7 varied. When the diameter of the barrier metal layer was 160 μmφ, the diameter of the mask opening was 350 μmφ, and the mask thickness t was 100 μm, the height of the solder core 7 was obtained in the range of 190 ± 20 μm.
[0014]
Next, as shown in FIG. 6, a resin layer 8 is formed on the active surface (surface on which the solder core 7 is formed) on the semiconductor wafer by applying, for example, an epoxy resin with filler under atmospheric pressure by a printing method. To do. At this time, a resin printing mask in which an opening hole is formed except for the periphery of the wafer that defines the thickness of the resin layer 8 is attached. This resin printing mask is 150 μm larger than the same thickness as the solder core. The thickness is in the range up to the thickness. After printing, it is left in a vacuum atmosphere to defoam air bubbles that are involved during printing. Thereafter, the resin is cured at a high temperature. Specifically, a mask having a thickness of 250 μm larger than the height of the solder core is used for printing, and the resin is removed by leaving it for 20 minutes under a reduced pressure of 665 Pa using five types of resins of 100 Pa · s. Foamed. Thereafter, the resin was cured by heat treatment at 100 ° C. for 1 hour and 150 ° C. for 2 hours. The thickness of the resin layer 8 after curing was 275 ± 50 μm. It has been confirmed that the resin used can be used at a viscosity of 25, 200, 300, 600 Pa · s.
[0015]
Next, as shown in FIG. 7, the resin layer 8 on the active surface side (surface side) of the semiconductor substrate 1 is ground to expose the solder core 7. The grinding amount of the resin was set so that the grinding surface of the resin layer 8 was 2/3 to 1/2 of the height of the solder core 7. Specifically, in the case of the solder core 7 having a height of 190 μm, grinding was performed such that the thickness of the resin layer (the height of the solder core 5 after grinding) was 95 to 125 (110 ± 15) μm. At this time, the diameter of the exposed solder core 7 was obtained in a range of 200 ± 20 μmφ.
[0016]
Next, as shown in FIG. 8, the back surface of the semiconductor substrate 1 is polished so that the thickness of the semiconductor substrate 1 becomes 150 to 350 μm. Specifically, the semiconductor substrate 1 having a thickness of 630 μm was polished to a thickness of 200 ± 15 μm. After that, as shown in FIG. 9, for example, a filler-filled epoxy resin is applied to the back surface side of the semiconductor substrate 1 by printing under atmospheric pressure to form the back surface resin layer 9. The mask used in this printing is selected so that the thickness of the back surface resin layer 9 is 150 ± 100 μm. Then, after leaving the air bubble under vacuum pressure to defoam bubbles, a heat treatment is performed at 100 ° C. for 1 hour and 150 ° C. for 2 hours to cure the resin, thereby forming the back resin layer 9. As a specific example, using a 100 μm-thick mask with openings other than the periphery of the wafer, a resin having a viscosity of 30 Pa · s is applied by printing, and left for 20 minutes under a vacuum pressure of 665 Pa or less to perform defoaming and air bubbles Was removed. Thereafter, heat treatment was performed at 100 ° C. for 1 hour and at 150 ° C. for 2 hours to cure the resin. The thickness of the back surface resin layer 9 after curing was obtained in the range of 100 ± 40 μm.
[0017]
Next, as shown in FIG. 10, solder bumps 10 are formed on the solder core 7 by a printing method. Here, as in the case of forming the solder core 7 described above, the mask used for printing the solder paste is a solder whose ratio of (mask opening area) / (mask wall surface area in the opening) is 1/2 or more. It was good to use a mask. Then, reflow was performed by heat treatment at 260 ° C. for 10 seconds in an inert gas atmosphere having an oxygen concentration of 1000 ppm or less. Specifically, a mask having a diameter of 350 μmφ and a thickness t of 100 μm was used as a mask, and printing was performed using a solder paste of Sn—Cu (Cu is 2 wt%). As a result of changing the mask thickness when the diameter of the solder mask opening was 350 μm, it was confirmed that the solder was transferred up to a thickness t of 175 μm as in the case described above. Solder remained on the mask, and transfer reproducibility was poor. In addition, when the oxygen concentration during reflow was set to 1000 ppm or more, the height of the solder bumps 10 varied. When the diameter of the solder core 7 was 200 ± 20 μmφ, the diameter of the mask opening was 350 μmφ, and the mask thickness t was 100 μm, the height of the solder bump 10 was obtained in the range of 150 ± 20 μm.
[0018]
Next, as shown by 123 in FIG. 11, a mark 11 such as a model name is attached to the back surface of the wafer, that is, the exposed surface of the back surface resin layer 9. This marking is performed by a method such as printing or laser marking. If the semiconductor substrate 1 is silicon, it may be printed or laser-engraved. However, if the semiconductor substrate is GaAs and the like, toxic substances such as As may be scattered by laser engraving, marking is performed by a printing method. . In the specific example, since the semiconductor substrate is Si, marking is performed by a laser.
[0019]
Next, as shown in FIG. 12, the same electronic circuit formed in large numbers on the wafer is diced at the boundary portions to form chips (individualized). Specifically, the back side of the wafer is attached to the dicing tape 12, and the chips are cut by the dicer 13. Even after cutting, the test of the next process can be performed while being stuck to the dicing tape 12.
[0020]
Thereafter, as shown in FIG. 13, a tester probe 14 is brought into contact with the solder bump 10 to perform an electrical test. In this way, by performing the test immediately before packing, it is possible to detect a defect during dicing, to completely prevent the outflow of defective products, and to improve reliability. Further, by performing the test while being adhered to the dicing tape 12 in this way, each chip is aligned on the dicing tape 12 while being electrically separated, so as shown in FIG. Two or more chips can be tested simultaneously. Specifically, four chips could be tested simultaneously. Since a plurality of chips can be tested simultaneously in this way, the test index can be shortened and the cost can be reduced. Of course, it is also possible to perform a test in a single unit by pick and press as usual.
[0021]
Finally, an appearance inspection is performed, and as shown in FIG. 14, the carrier tape 15 is housed in a recessed portion in which a recessed portion that can be housed for each chip is formed, and the carrier tape is packed to be ready for shipment.
[0022]
According to the present invention, the electrode terminals provided on the substrate surface of the semiconductor chip are rearranged to widen the space between the electrode pads, the barrier metal layer is formed by electroless plating, and the solder core and the solder bump are printed and heated thereon. Since it is formed by processing, it is possible to obtain a semiconductor device that can be directly mounted on a mother board or the like with a very small manufacturing process compared to the conventional method of providing solder bumps by electrolytic plating. it can.
[0023]
In the above specific example, Al—Si (Si is 1 wt%) is used as the wiring 4 for rearranging the electrode terminals. However, when Au or Cu is used as the wiring 4, In order to form this film, it may be formed by vacuum deposition in addition to the sputtering method. Moreover, the formation process of the barrier metal layer 6 of FIG. 4 is performed as follows.
[0024]
First, in the same manner as in the above-described example, a degreasing process is performed to improve the hydrophilicity of the surface of the rearranged electrode pad 4a, and then the oxide film attached to the surface is removed with sulfuric acid or nitric acid. Thereafter, Pd is deposited on the surface of the electrode pad 4a by displacement plating. Next, 5 to 9 μm of Ni is deposited by a reduction reaction. Further, the barrier metal layer 6 is formed by forming 0.03 μm of Au film by displacement plating. The diameter of the barrier metal layer 6 was 160 μm. Here, since the wire 4 may be disconnected due to unevenness on the surface of the semiconductor substrate 1, it is necessary to form the wire 4 with a thickness of 1 μm or more.
[0025]
【The invention's effect】
As described above, according to the present invention, since the electrode terminals are rearranged by using the wafer process on the surface of the semiconductor substrate and the distance between the electrode pads is widened, it is directly applied to the mother board or the like without using the interposer. A very small semiconductor device having a chip size that can be mounted can be obtained. In addition, the barrier metal layer is formed by electroless plating before forming the solder core or solder bump on the surface of the semiconductor substrate, and the solder core or solder bump is formed by printing and heat treatment. Moreover, it can be manufactured by batch processing. As a result, a small, thin, and lightweight semiconductor device can be obtained at a very low cost.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing process of an embodiment of a manufacturing method according to the present invention.
FIG. 2 is an explanatory view showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 3 is an explanatory view showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 4 is an explanatory view showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 5 is an explanatory view showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 6 is an explanatory view showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 7 is an explanatory diagram showing manufacturing steps of an embodiment of the manufacturing method according to the present invention.
FIG. 8 is an explanatory diagram showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 9 is an explanatory diagram showing a manufacturing process of an embodiment of the manufacturing method according to the present invention.
FIG. 10 is an explanatory diagram showing manufacturing steps of an embodiment of the manufacturing method according to the present invention.
FIG. 11 is an explanatory diagram showing manufacturing steps of an embodiment of the manufacturing method according to the present invention.
FIG. 12 is an explanatory diagram showing manufacturing steps of an embodiment of the manufacturing method according to the present invention.
FIG. 13 is an explanatory diagram showing manufacturing steps of an embodiment of the manufacturing method according to the present invention.
FIG. 14 is an explanatory diagram showing manufacturing steps of an embodiment of the manufacturing method according to the present invention.
FIG. 15 is an explanatory diagram showing an example of a structure in a conventional semiconductor device.
FIG. 16 is an explanatory diagram showing an example of a structure in a conventional semiconductor device.
FIG. 17 is an explanatory diagram showing an example of a structure in a conventional semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Electrode terminal 4 Wiring 4a Electrode pad 6 Barrier metal layer 7 Solder core 8 Resin layer 9 Back surface resin layer 10 Solder bump

Claims (1)

ウェハ状態の半導体基板に電子回路を形成し、該電子回路の電極端子と接続してバンプ電極を形成する所望の場所まで延在する配線を形成した後、全面に被覆膜を形成し、バンプ電極形成場所の前記配線を露出させた再配置された電極パッドを形成し、
該電極パッド上に、ニッケル及び金膜を無電解メッキし、熱処理を行い、バリアメタル層を形成し、
該バリアメタル層より大きい開口部を有するマスクを用いて、該バリアメタル層上に、ハンダペーストを印刷し、熱処理をすることにより、ハンダコアを形成し、
前記半導体基板の前記ハンダコアを形成した面側に、前記ハンダコアの高さより厚く、フィラー入りエポキシ樹脂を印刷し、脱泡して硬化させ、第1の樹脂層を形成し、
第1の樹脂層及び前記ハンダコアを、前記ハンダコアの高さの2/3から1/2となるまで研削して前記ハンダコアを露出させ
前記ハンダコアを露出した面と反対の裏面側の前記半導体基板を研磨して薄くし、
該研磨した前記半導体基板の前記裏面側に、フィラー入りエポキシ樹脂を印刷し、脱泡して硬化させ、第2の樹脂層を形成した後、
前記露出したハンダコア上に、露出する該ハンダコアより大きい開口部を有するマスクを用いて、ハンダペーストを印刷し、熱処理をすることにより、ハンダバンプを形成し、
該ハンダバンプを形成した前記第1の樹脂層、前記半導体基板及び前記第2の樹脂層を切断し、個片化することを特徴とする半導体装置の製造方法。
An electronic circuit is formed on a semiconductor substrate in a wafer state, a wiring extending to a desired location for forming a bump electrode by connecting with an electrode terminal of the electronic circuit is formed, a coating film is formed on the entire surface, and a bump is formed. Forming a rearranged electrode pad that exposes the wiring at the electrode formation location ;
Electroless plating of nickel and gold film on the electrode pad , heat treatment is performed, and a barrier metal layer is formed ,
Using a mask having an opening larger than the barrier metal layer, a solder paste is printed on the barrier metal layer , and heat treatment is performed, thereby forming a solder core .
On the side of the formation of the solder core of the semiconductor substrate, thicker than the height of said solder core, the filler-containing epoxy resin was printed, and cured by defoaming to form a first resin layer,
The first resin layer and the solder core, by grinding from 2/3 until 1/2 of the height of the solder core to expose the solder core,
Polishing and thinning the semiconductor substrate on the back side opposite to the exposed surface of the solder core ,
After the filler-filled epoxy resin is printed on the back side of the polished semiconductor substrate , defoamed and cured to form a second resin layer ,
A solder bump is formed on the exposed solder core by printing a solder paste using a mask having an opening larger than the exposed solder core, and performing heat treatment ,
A method of manufacturing a semiconductor device, wherein the first resin layer, the semiconductor substrate, and the second resin layer on which the solder bumps are formed are cut into individual pieces .
JP2002144124A 2002-05-20 2002-05-20 Manufacturing method of semiconductor device Expired - Fee Related JP3726115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144124A JP3726115B2 (en) 2002-05-20 2002-05-20 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144124A JP3726115B2 (en) 2002-05-20 2002-05-20 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003338515A JP2003338515A (en) 2003-11-28
JP3726115B2 true JP3726115B2 (en) 2005-12-14

Family

ID=29703877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144124A Expired - Fee Related JP3726115B2 (en) 2002-05-20 2002-05-20 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3726115B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041401A (en) * 2004-07-29 2006-02-09 Sharp Corp Semiconductor device and manufacturing method thereof
JP4739198B2 (en) * 2005-01-19 2011-08-03 新日本無線株式会社 Manufacturing method of semiconductor device
JP2008108987A (en) * 2006-10-26 2008-05-08 Sharp Corp Semiconductor device, display unit and electronic apparatus using the same
JP2009266853A (en) * 2008-04-22 2009-11-12 New Japan Radio Co Ltd Semiconductor device, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003338515A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
KR100247463B1 (en) Method for manufacturing semiconductor integrated circuit device having elastomer
US20080191335A1 (en) Cmos image sensor chip scale package with die receiving opening and method of the same
JP3842548B2 (en) Semiconductor device manufacturing method and semiconductor device
US20080116564A1 (en) Wafer level package with die receiving cavity and method of the same
US8759685B2 (en) Wiring substrate and method of manufacturing the wiring substrate
JP2004349361A (en) Semiconductor device and its manufacturing method
JP5942823B2 (en) Electronic component device manufacturing method, electronic component device, and electronic device
JPH0897217A (en) Semiconductor device and its manufacture
WO2009052150A1 (en) Chip scale stacked die package
US20100190294A1 (en) Methods for controlling wafer and package warpage during assembly of very thin die
US8178977B2 (en) Semiconductor device and method of manufacturing the same
JP4739198B2 (en) Manufacturing method of semiconductor device
US7615408B2 (en) Method of manufacturing semiconductor device
JP2001338932A (en) Semiconductor device and method of manufacturing semiconductor device
JPH053183A (en) Semiconductor device and manufacture thereof
KR20040027346A (en) Method of manufacturing circuit device
US20090170307A1 (en) Method of manufacturing semiconductor device
JP3726115B2 (en) Manufacturing method of semiconductor device
KR100639737B1 (en) Method of manufacturing circuit device
US20040259290A1 (en) Method for improving the mechanical properties of BOC module arrangements
CN111613586B (en) Electronic device and method for manufacturing electronic device
JP2004079816A (en) Chip-shaped electronics component and its fabricating process, quasi-wafer used for the process and its fabricating process and mounting structure
JP3339472B2 (en) Semiconductor device and manufacturing method thereof
CN114171467A (en) Semiconductor packaging structure
JP2000150557A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Ref document number: 3726115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees