JP3725267B2 - Active vibration suppression device - Google Patents

Active vibration suppression device Download PDF

Info

Publication number
JP3725267B2
JP3725267B2 JP31802096A JP31802096A JP3725267B2 JP 3725267 B2 JP3725267 B2 JP 3725267B2 JP 31802096 A JP31802096 A JP 31802096A JP 31802096 A JP31802096 A JP 31802096A JP 3725267 B2 JP3725267 B2 JP 3725267B2
Authority
JP
Japan
Prior art keywords
vibration
signal
principal component
reference signal
canceling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31802096A
Other languages
Japanese (ja)
Other versions
JPH10161664A (en
Inventor
久 佐野
潤 田中
中村  聡
光勇 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31802096A priority Critical patent/JP3725267B2/en
Publication of JPH10161664A publication Critical patent/JPH10161664A/en
Application granted granted Critical
Publication of JP3725267B2 publication Critical patent/JP3725267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は振動源からの振動に基づく騒音を相殺振動発生装置からの出力音によって打ち消す能動振動抑制装置に関する。
【0002】
【従来の技術】
本明細書における「振動」の語は「騒音」も含めた意味で使用する。
【0003】
能動振動抑制装置を車両に適応した場合を例に説明すれば、車室内振動対策の一つとして、車室内の振動と逆位相の振動を発生させて車室内の振動を打ち消す能動振動抑制装置(以下、“AVNC”とも記す)が知られている。
【0004】
従来のかかる能動振動抑制装置では、振動源からの振動を振動検出器によって検出し、振動検出器によって検出された振動に基づく信号が参照信号として入力されてこの参照信号に基づき車室内の振動と逆位相の相殺信号を適応制御回路によって生成し、生成された相殺信号に基づいて発生される相殺振動と前記振動源に基づく車室内の振動との差を検出して該差に基づく差信号を送出し、該差信号に基づいて適応制御回路に含まれている適応パラメータを変更するようにしたものがある。
【0005】
上記した従来の能動振動抑制装置は、具体的には、図2に示すように車両10に搭載されたエンジンの振動を振動検出器1によって検出して電気信号に変換し、前後左右の車輪を懸架するサスペンションの振動を振動検出器2〜5によって検出して電気信号に変換し、振動検出器1〜5から出力される電気信号を参照信号とし、該参照信号をデジタルデータに変換し、デジタルデータに変換された参照信号を、フィルタ係数可変のFIRデジタルフィルタと適応アルゴリズム演算部とからなるFIR適応デジタルフィルタにて構成された適応制御回路61に供給し、適応制御出力であるFIR適応デジタルフィルタの出力をアナログ信号に変換し、変換されたアナログ信号によって、相殺振動音を発生させるために車室に設けたスピーカ7を駆動する。
【0006】
一方、車両10の振動源によって車室内に発生した振動とスピーカ7によって発生させた相殺振動との差である差信号を、車室に設けたマイクロフォン8によって検出し、マイクロフォン8からの出力信号をデジタルデータに変換し、差信号の2乗の期待値(以下、単に期待値と記す)が最小になる適応パラメータの演算を適応制御回路61の適応アルゴリズム演算部において演算し、演算値に基づくフィルタ係数にFIRデジタルフィルタのフィルタ係数を修正することによって車室内に生ずる振動を抑制している。
【0007】
【発明が解決しようとする課題】
上記した従来の能動振動抑制装置においては、振動源の振動を振動検出器によって検出し、検出信号の全てを参照信号として制御回路に供給し、参照信号に基づき演算処理を行って、振動打消のための相殺信号を生成していた。
【0008】
しかしながら、振動検出器によって振動を検出するべき振動源の数が増えると検出信号の数が増加し、制御回路における相殺信号生成のための演算量が増加する。このために演算時間がかかり、振動抑制までに時間を要することになって、能動振動抑制装置の振動抑制性能が低下するという問題点があった。
【0009】
本発明は、上記の問題点を解消して、振動源数が多くても制御性能を向上させることができる能動振動抑制装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の能動振動抑制装置は、複数の振動源からの振動を検出する複数の振動検出手段と、該振動検出手段により検出される振動に基づく信号が参照信号として入力され、かつ参照信号を互いにほぼ直交する主成分信号に変換する主成分分析手段と、相殺振動発生手段と、前記主成分信号が入力されて前記振動源からの振動を相殺する相殺信号を生成し、該相殺信号に基づいて前記相殺振動発生手段を駆動する制御回路と、を備え、
前記振動検出手段は、各振動源に応じて設けられていると共に、前記主成分分析手段は、時間領域で求められた参照信号の固有ベクトルマトリックスに基づいて前記参照信号を前記主成分信号へ変換することを特徴とする。
【0011】
本発明の能動振動抑制装置は、振動検出手段により振動源の振動が検出されて、該振動に基づく信号が参照信号とされ、主成分分析手段により該参照信号が互いにほぼ直交する主成分信号に変換される。変換された主成分信号は制御回路に入力され、制御回路によって振動源からの振動を相殺するための相殺信号が生成され、相殺信号に基づく相殺振動が相殺振動発生手段によって発生され、相殺信号に基づいて相殺振動発生手段が駆動されて、振動源からの振動が相殺され、振動の抑制が行われる。
【0012】
しかるに、本発明の能動振動抑制装置によれば、参照信号が互いに直交する主成分信号に変換されて、主成分信号に基づいて振動抑制制御が行われる。この結果、相関の高い参照信号は除去されているため、振動抑制制御のために制御回路に入力される信号数は低減されて、振動抑制制御のための演算が高速に行われることになり、振動抑制性能が向上する。さらに、時間領域で求められた参照信号の固有ベクトルマトリックスに基づいて前記参照信号が前記主成分信号へ変換されるために、主成分信号を得るための演算量も少なくて済み、高速に行える。
【0013】
【発明の実施の形態】
以下、本発明にかかる能動振動抑制装置を実施の形態によって説明する。
【0014】
図1は本発明の実施の一形態にかかる能動振動抑制装置の構成を示すブロック図である。図1に示した本発明の実施の一形態にかかる能動振動抑制装置は車両に適応して車室内の振動を抑制する場合を例示している。
【0015】
本発明の実施の一形態にかかる能動振動抑制装置においては、車両10に搭載されたエンジンの振動を振動検出器1によって検出して電気信号に変換し、前後左右の車輪を懸架するサスペンションの振動を振動検出器2〜5によって検出して電気信号に変換し、振動検出器1〜5から出力される電気信号を参照信号とし、該参照信号をデジタルデータに変換し、デジタルデータに変換された参照信号を、主成分分析回路9に供給して互いに直交する主成分信号に時間領域において変換する。
【0016】
主成分分析回路9において変換された主成分信号はフィルタ係数可変のFIRデジタルフィルタと適応アルゴリズム演算部とからなるFIR適応デジタルフィルタにて構成された適応制御回路6に供給し、適応制御出力であるFIR適応デジタルフィルタの出力をアナログ信号に変換し、変換されたアナログ信号によって、相殺振動騒音を発生させるために車室に設けたスピーカ7を駆動する。
【0017】
一方、車両10の振動源によって車室内に発生した振動とスピーカ7によって発生させた相殺振動との差である差信号を、車室に設けたマイクロフォン8によって検出し、マイクロフォン8からの出力信号をデジタルデータに変換し、差信号の2乗の期待値が最小になる適応パラメータの演算を適応アルゴリズム演算部において演算し、演算された適応パラメータに基づくフィルタ係数にFIRデジタルフィルタのフィルタ係数を修正することによって車室内に生ずる振動を抑制する。
【0018】
能動振動抑制において、本発明の主成分分析回路9がない場合についてまず説明する。振動検出器1〜5からの出力信号すなわち参照信号と車室音のレスポンスとから、その間の伝達関数、すなわち適応制御回路の伝達関数が求められる。適応制御回路による適応制御は振動源の振動による車室内の振動がFIRデジタルフィルタで近似できると仮定し、この未知システムのパラメータを適応制御回路によって推定し、未知システムと同じ車室内の振動を得ようとするものである。
【0019】
ここで、(R)を参照信号の相関関数マトリックスとし、(P)を参照信号と車室内の振動とのレスポンスの相互相関関数ベクトルとし、(W)を伝達関数としたとき、これらの間には下記の(1)式の関係がある。以下、(R)、(P)、(W)、(U)、(X)等はマトリックスを表す。
【0020】
(R)(W)=(P) …(1)
上記の(1)式を解いて伝達関数(W)は(2)式によって求められる。
【0021】
(W)=(R)-1(P) …(2)
この場合に、参照信号間の相関が大きいときには、参照信号相関関数マトリックス(R)の条件数cond〔R〕が大きくなって、逆マトリックス(R)-1が数値的に解きにくくなり、(2)式による伝達関数(W)の演算が困難となる。
【0022】
参照信号相関関数マトリックス(R)の条件数cond〔R〕は参照信号の相関関数マトリックス(R)の最大特異値σmaxと最小特異値σminとの比であって、条件数cond〔R〕=σmax/σminで示される。
【0023】
しかるに、本発明の実施の一形態にかかる能動振動抑制装置においては、すなわち主成分分析回路9が設けられている場合は、参照信号は主成分分析回路9に供給されて主成分分析される。この場合に主成分信号は振動検出器の数だけ、すなわち、本実施の形態では“5”だけできるが、本発明の実施の一形態にかかる能動振動抑制装置においては互いに直交しない主成分信号は除去されて、主成分分析回路9によって参照信号が互いに直交する主成分信号のみが参照信号として適応制御回路6に供給される。
【0024】
したがって、適応制御回路6に供給される信号は、互いに相関がない無相関な独立した主成分信号となり、参照信号相関関数マトリックス(R)の条件数〔R〕が小さくなって、逆マトリックス(R)-1が数値的に解き易くなる。この結果、(2)式による伝達関数(W)の演算が容易となる。
【0025】
また、主成分分析の数学的処理は、下記の(3)式に示す如くであって、固有値分解に等しい。
【0026】
(R)=(U)(R′)(U)t …(3)
ここで、(U)は参照信号の相関関数マトリックス(R)の固有ベクトルマトリックスであり、(R′)は参照信号の相関関数マトリックス(R)の固有値対角マトリックスであり、(U)t は(U)の転置マトリックスである。
【0027】
この固有ベクトルマトリックス(U)を用いて、(4)式に示すごとく主成分信号が求められる。(X)は参照加速度信号マトリックスを、(X′)は主成分マトリックスを示す。
【0028】
(X)=(U)(X′) …(4)
この主成分信号が適応制御回路6に新たな参照信号として供給され、伝達関数演算の負担が軽減されて、適応パラメータの収束速度、すなわちフィルタ係数の収束速度が早まる。
【0029】
さらに、適応制御回路6に供給する信号を無相関な主成分信号として不必要な主成分信号を除くことにより、適応制御回路6に供給する信号数が減り、演算量が減少することになり、フィルタ係数の収束速度が早まることになる。
【0030】
また上記のように本発明の実施の一形態にかかる能動振動抑制装置では、主成分分析は時間領域で行なわれ、かつ互いにほぼ直交する主成分信号に変換される。
【0031】
このように、本発明の実施の一形態にかかる能動振動抑制装置では、主成分分析が時間領域で行なわれるために、参照信号相関関数マトリックス(R)、固有ベクトルマトリックス(U)の次数は(振動検出器の数)×(振動検出器の数)、すなわち5行×5行のマトリックスですみ、(3)式および(4)式の演算における演算量は少なくてすみ、演算に要する時間が少なくてすむ。
【0032】
演算量が少なくてすむことは、(4)式の演算はリアルタイムにて行う必要があるため、能動振動抑制に対してきわめて有効である。
【0033】
一方、主成分分析を時間領域に代わって、周波数領域で行うことも可能である。しかし、周波数領域で主成分分析を行なうときは、上記参照信号相関関数マトリックス(R)、固有ベクトルマトリックス(U)の次数は、上記した時間領域におけるマトリックスの次数の、参照信号を周波数分析したときの周波数スペクトル倍となって、その演算量は増加し、(3)式および(4)式の演算に時間がかかることになる。
【0034】
また、本発明の実施の一形態にかかる能動振動抑制装置では、相関を有する主成分信号のみが除去されるため、主成分分析回路9から出力される主成分信号は主成分分析回路9に入力される全ての参照信号の影響を受けた主成分信号であって、参照信号の情報を保っており、参照信号が有する情報量が減少させられるようなことはない。
【0035】
【発明の効果】
以上説明したように本発明にかかる能動振動抑制装置によれば、適応制御回路に供給される信号数が低減されて、適応パラメータの収束速度が早まり、さらに、主成分信号は無相関な信号としたために、参照信号の相関マトリックスの条件数が小さくなって、演算時間が短縮され、かつ演算精度が向上するという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の一形態にかかる能動振動抑制装置の構成を示すブロック図である。
【図2】本発明の実施の一形態にかかる能動振動抑制装置における投受光装置および路面状況認識部の構成を示すブロック図である。
【符号の説明】
1〜5 振動検出器
6 適応制御回路
7 スピーカ
8 マイクロフォン
9 主成分分析回路
10 車両
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an active vibration suppressing device that cancels noise based on vibration from a vibration source by output sound from a canceling vibration generator.
[0002]
[Prior art]
In this specification, the term “vibration” is used to mean “noise”.
[0003]
As an example of a case where the active vibration suppression device is applied to a vehicle, as one of the measures against vehicle interior vibration, an active vibration suppression device that generates vibration having a phase opposite to that in the vehicle interior to cancel the vibration in the vehicle interior ( Hereinafter, it is also referred to as “AVNC”).
[0004]
In such a conventional active vibration suppression device, vibration from a vibration source is detected by a vibration detector, and a signal based on the vibration detected by the vibration detector is input as a reference signal. An anti-phase canceling signal is generated by an adaptive control circuit, and a difference signal between the canceling vibration generated based on the generated canceling signal and the vibration in the vehicle interior based on the vibration source is detected, and a difference signal based on the difference is generated. In some cases, the adaptive parameter included in the adaptive control circuit is changed based on the difference signal.
[0005]
Specifically, the conventional active vibration suppression device described above detects vibrations of the engine mounted on the vehicle 10 by the vibration detector 1 and converts them into electric signals as shown in FIG. Vibrations of the suspended suspension are detected by the vibration detectors 2 to 5 and converted into electric signals. The electric signals output from the vibration detectors 1 to 5 are used as reference signals, and the reference signals are converted into digital data. The reference signal converted into data is supplied to an adaptive control circuit 61 composed of an FIR adaptive digital filter composed of an FIR digital filter having a variable filter coefficient and an adaptive algorithm calculation unit, and an FIR adaptive digital filter which is an adaptive control output Is converted into an analog signal, and a speaker 7 provided in the passenger compartment is used to generate a canceling vibration sound by the converted analog signal. To do.
[0006]
On the other hand, a difference signal that is the difference between the vibration generated in the vehicle interior by the vibration source of the vehicle 10 and the canceling vibration generated by the speaker 7 is detected by the microphone 8 provided in the vehicle interior, and the output signal from the microphone 8 is detected. A filter based on the calculated value is converted into digital data, and an adaptive parameter calculation unit of the adaptive control circuit 61 calculates an adaptive parameter that minimizes the expected value of the square of the difference signal (hereinafter simply referred to as an expected value). By correcting the filter coefficient of the FIR digital filter to the coefficient, vibration generated in the passenger compartment is suppressed.
[0007]
[Problems to be solved by the invention]
In the conventional active vibration suppression device described above, the vibration of the vibration source is detected by the vibration detector, all of the detection signals are supplied to the control circuit as reference signals, and calculation processing is performed based on the reference signals to cancel the vibration. For generating an offset signal.
[0008]
However, when the number of vibration sources whose vibrations are to be detected by the vibration detector increases, the number of detection signals increases, and the amount of calculation for generating a cancellation signal in the control circuit increases. For this reason, there is a problem in that it takes a calculation time and it takes time to suppress the vibration, and the vibration suppressing performance of the active vibration suppressing device is lowered.
[0009]
An object of the present invention is to provide an active vibration suppression device that can solve the above-described problems and improve control performance even when the number of vibration sources is large.
[0010]
[Means for Solving the Problems]
The active vibration suppression apparatus of the present invention, a plurality of vibration detecting means for detecting the vibrations from a plurality of vibration sources, signal based on the vibration detected by said vibration detecting means is inputted as a reference signal, and the reference signal Main component analysis means for converting into principal component signals substantially orthogonal to each other, cancellation vibration generation means, and input of the principal component signal to generate a cancellation signal for canceling vibration from the vibration source, based on the cancellation signal Bei example and a control circuit for driving the canceling vibration generating means Te,
The vibration detecting means is provided according to each vibration source, and the principal component analyzing means converts the reference signal into the principal component signal based on the eigenvector matrix of the reference signal obtained in the time domain. It is characterized by that.
[0011]
In the active vibration suppression device of the present invention, the vibration of the vibration source is detected by the vibration detection means, a signal based on the vibration is used as a reference signal, and the reference signals are converted into principal component signals that are substantially orthogonal to each other by the principal component analysis means. Converted. The converted principal component signal is input to the control circuit, and the control circuit generates a canceling signal for canceling the vibration from the vibration source. The canceling vibration based on the canceling signal is generated by the canceling vibration generating means, Based on this, the cancellation vibration generating means is driven, the vibration from the vibration source is canceled, and the vibration is suppressed.
[0012]
However, according to the active vibration suppression device of the present invention, the reference signals are converted into the principal component signals orthogonal to each other, and vibration suppression control is performed based on the principal component signals. As a result, since highly correlated reference signals are removed, the number of signals input to the control circuit for vibration suppression control is reduced, and calculation for vibration suppression control is performed at high speed. Vibration suppression performance is improved. Furthermore, since the reference signal is converted into the principal component signal based on the eigenvector matrix of the reference signal obtained in the time domain, the amount of calculation for obtaining the principal component signal is small, and the processing can be performed at high speed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an active vibration suppression device according to the present invention will be described with reference to embodiments.
[0014]
FIG. 1 is a block diagram showing a configuration of an active vibration suppressing device according to an embodiment of the present invention. The active vibration suppressing device according to the embodiment of the present invention shown in FIG. 1 illustrates a case where vibrations in a passenger compartment are suppressed by adapting to a vehicle.
[0015]
In the active vibration suppressing device according to the embodiment of the present invention, vibration of the engine mounted on the vehicle 10 is detected by the vibration detector 1 and converted into an electric signal, and vibration of the suspension that suspends the front, rear, left and right wheels. Is detected by the vibration detectors 2 to 5 and converted into electric signals. The electric signals output from the vibration detectors 1 to 5 are used as reference signals, the reference signals are converted into digital data, and converted into digital data. The reference signal is supplied to the principal component analysis circuit 9 and converted in the time domain into principal component signals orthogonal to each other.
[0016]
The principal component signal converted in the principal component analysis circuit 9 is supplied to an adaptive control circuit 6 composed of an FIR adaptive digital filter composed of an FIR digital filter having a variable filter coefficient and an adaptive algorithm calculation unit, and is an adaptive control output. The output of the FIR adaptive digital filter is converted to an analog signal, and the speaker 7 provided in the passenger compartment is driven by the converted analog signal to generate canceling vibration noise.
[0017]
On the other hand, a difference signal that is the difference between the vibration generated in the vehicle interior by the vibration source of the vehicle 10 and the canceling vibration generated by the speaker 7 is detected by the microphone 8 provided in the vehicle interior, and the output signal from the microphone 8 is detected. Conversion to digital data, calculation of an adaptive parameter that minimizes the expected value of the square of the difference signal is calculated in an adaptive algorithm calculation unit, and the filter coefficient of the FIR digital filter is corrected to the filter coefficient based on the calculated adaptive parameter This suppresses the vibration generated in the passenger compartment.
[0018]
First, a case where the principal component analysis circuit 9 of the present invention is not provided in active vibration suppression will be described. A transfer function between them, that is, a transfer function of the adaptive control circuit, is obtained from an output signal from the vibration detectors 1 to 5, that is, a reference signal and a response of the cabin sound. The adaptive control by the adaptive control circuit assumes that the vibration in the passenger compartment due to the vibration of the vibration source can be approximated by the FIR digital filter, and the parameters of this unknown system are estimated by the adaptive control circuit to obtain the same vehicle interior vibration as the unknown system. It is about to try.
[0019]
Here, (R) is the correlation function matrix of the reference signal, (P) is the cross-correlation function vector of the response between the reference signal and the vehicle interior vibration, and (W) is the transfer function. Is related to the following equation (1). Hereinafter, (R), (P), (W), (U), (X) and the like represent matrices.
[0020]
(R) (W) = (P) (1)
Solving the above equation (1), the transfer function (W) is obtained by equation (2).
[0021]
(W) = (R) −1 (P) (2)
In this case, when the correlation between the reference signals is large, the condition number cond [R] of the reference signal correlation function matrix (R) becomes large, and the inverse matrix (R) −1 becomes difficult to solve numerically (2 ) Is difficult to calculate the transfer function (W).
[0022]
The condition number cond [R] of the reference signal correlation function matrix (R) is a ratio between the maximum singular value σmax and the minimum singular value σmin of the correlation function matrix (R) of the reference signal, and the condition number cond [R] = σmax. / Σmin.
[0023]
However, in the active vibration suppression device according to the embodiment of the present invention, that is, when the principal component analysis circuit 9 is provided, the reference signal is supplied to the principal component analysis circuit 9 and subjected to principal component analysis. In this case, the number of principal component signals can be as many as the number of vibration detectors, that is, only “5” in the present embodiment, but in the active vibration suppression device according to the embodiment of the present invention, principal component signals that are not orthogonal to each other are Only the principal component signals whose reference signals are orthogonal to each other are removed and supplied to the adaptive control circuit 6 as reference signals by the principal component analysis circuit 9.
[0024]
Therefore, the signal supplied to the adaptive control circuit 6 becomes an uncorrelated independent principal component signal which is not correlated with each other, the condition number [R] of the reference signal correlation function matrix (R) is reduced, and the inverse matrix (R ) -1 is numerically easy to solve. As a result, the transfer function (W) can be easily calculated by the equation (2).
[0025]
The mathematical process of principal component analysis is as shown in the following equation (3), which is equivalent to eigenvalue decomposition.
[0026]
(R) = (U) (R ′) (U) t (3)
Here, (U) is an eigenvector matrix of the correlation function matrix (R) of the reference signal, (R ′) is an eigenvalue diagonal matrix of the correlation function matrix (R) of the reference signal, and (U) t is ( U) transpose matrix.
[0027]
Using this eigenvector matrix (U), a principal component signal is obtained as shown in equation (4). (X) represents a reference acceleration signal matrix, and (X ′) represents a principal component matrix.
[0028]
(X) = (U) (X ′) (4)
This principal component signal is supplied to the adaptive control circuit 6 as a new reference signal, the burden of transfer function calculation is reduced, and the convergence speed of the adaptive parameter, that is, the convergence speed of the filter coefficient is increased.
[0029]
Further, by removing unnecessary main component signals as uncorrelated main component signals from signals supplied to the adaptive control circuit 6, the number of signals supplied to the adaptive control circuit 6 is reduced, and the amount of calculation is reduced. The convergence speed of the filter coefficient is increased.
[0030]
As described above, in the active vibration suppression device according to the embodiment of the present invention, the principal component analysis is performed in the time domain and converted into principal component signals that are substantially orthogonal to each other.
[0031]
As described above, in the active vibration suppression device according to the embodiment of the present invention, since the principal component analysis is performed in the time domain, the orders of the reference signal correlation function matrix (R) and the eigenvector matrix (U) are (vibration). The number of detectors) x (number of vibration detectors), that is, a matrix of 5 rows x 5 rows is sufficient, and the amount of computation in equations (3) and (4) is small, and the time required for the computation is small. Tesumu.
[0032]
Reducing the amount of calculation is extremely effective for suppressing active vibration because the calculation of equation (4) needs to be performed in real time.
[0033]
On the other hand, principal component analysis can be performed in the frequency domain instead of the time domain. However, when performing principal component analysis in the frequency domain, the order of the reference signal correlation function matrix (R) and eigenvector matrix (U) is the order of the matrix in the time domain described above when the reference signal is frequency-analyzed. As the frequency spectrum is doubled, the amount of computation increases, and the computations of equations (3) and (4) take time.
[0034]
In the active vibration suppression device according to the embodiment of the present invention, only the principal component signal having correlation is removed, so that the principal component signal output from the principal component analysis circuit 9 is input to the principal component analysis circuit 9. The main component signal is influenced by all the reference signals, and retains the information of the reference signal, so that the information amount of the reference signal is not reduced.
[0035]
【The invention's effect】
As described above, according to the active vibration suppression device of the present invention, the number of signals supplied to the adaptive control circuit is reduced, the convergence speed of the adaptive parameter is increased, and the principal component signal is an uncorrelated signal. As a result, the number of conditions in the correlation matrix of the reference signal is reduced, so that the calculation time is shortened and the calculation accuracy is improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an active vibration suppression device according to an embodiment of the present invention.
FIG. 2 is a block diagram illustrating a configuration of a light projecting / receiving device and a road surface condition recognition unit in the active vibration suppressing device according to the embodiment of the present invention.
[Explanation of symbols]
1-5 Vibration detector 6 Adaptive control circuit 7 Speaker 8 Microphone 9 Principal component analysis circuit 10 Vehicle

Claims (2)

複数の振動源からの振動を検出する複数の振動検出手段と、
該振動検出手段により検出される振動に基づく信号が参照信号として入力され、かつ該参照信号を互いにほぼ直交する主成分信号に変換する主成分分析手段と、
相殺振動発生手段と、
前記主成分信号が入力されて前記振動源からの振動を相殺する相殺信号を生成し、該相殺信号に基づいて前記相殺振動発生手段を駆動する制御回路と、
を備え、
前記振動検出手段は、各振動源に応じて設けられていると共に、
前記主成分分析手段は、時間領域で求められた参照信号の固有ベクトルマトリックスに基づいて前記参照信号を前記主成分信号へ変換すること、
を特徴とする能動振動抑制装置。
A plurality of vibration detecting means for detecting vibrations from a plurality of vibration sources;
A principal component analysis means for inputting a signal based on vibration detected by the vibration detection means as a reference signal and converting the reference signal into principal component signals substantially orthogonal to each other;
Canceling vibration generating means;
A control circuit that receives the principal component signal and generates a canceling signal that cancels the vibration from the vibration source, and drives the canceling vibration generating means based on the canceling signal;
Bei to give a,
The vibration detecting means is provided according to each vibration source,
The principal component analysis means converts the reference signal into the principal component signal based on an eigenvector matrix of the reference signal obtained in the time domain;
An active vibration suppression device characterized by the above.
請求項1記載の能動振動抑制装置において、制御回路に入力される主成分信号の数は参照信号の数よりも少ないことを特徴とする能動振動抑制装置。  2. The active vibration suppression device according to claim 1, wherein the number of principal component signals input to the control circuit is smaller than the number of reference signals.
JP31802096A 1996-11-28 1996-11-28 Active vibration suppression device Expired - Fee Related JP3725267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31802096A JP3725267B2 (en) 1996-11-28 1996-11-28 Active vibration suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31802096A JP3725267B2 (en) 1996-11-28 1996-11-28 Active vibration suppression device

Publications (2)

Publication Number Publication Date
JPH10161664A JPH10161664A (en) 1998-06-19
JP3725267B2 true JP3725267B2 (en) 2005-12-07

Family

ID=18094606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31802096A Expired - Fee Related JP3725267B2 (en) 1996-11-28 1996-11-28 Active vibration suppression device

Country Status (1)

Country Link
JP (1) JP3725267B2 (en)

Also Published As

Publication number Publication date
JPH10161664A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
US5691893A (en) Adaptive control system
JP6616768B2 (en) Active noise control system
JP2921232B2 (en) Active uncomfortable wave control device
US8098837B2 (en) Active noise control apparatus
EP2996111A1 (en) Scalable adaptive noise control system
CN112805778A (en) System and method for noise cancellation using microphone projection
EP0654901B1 (en) System for the rapid convergence of an adaptive filter in the generation of a time variant signal for cancellation of a primary signal
CN111627414B (en) Active denoising method and device and electronic equipment
JP3725267B2 (en) Active vibration suppression device
JP2529745B2 (en) Active noise control device
JPH07281676A (en) Active type vibration and noise controller
CN116438597A (en) System and method for adapting an estimated secondary path
JP2674252B2 (en) Active noise control device
JP3590096B2 (en) Noise cancellation system
JPH07210179A (en) Active noise eliminator
JP3661063B2 (en) Active vibration noise control device for vehicle
JP3630171B2 (en) Active vibration control device
JP3796869B2 (en) Active noise reduction apparatus and noise reduction method
Akiho et al. Virtual reference signals for active noise cancellation system
JPH07104770A (en) Active vibration controller
JP3405752B2 (en) Noise cancellation method
JP2000259158A (en) Active vibration controller of vehicle body panel
JP3697702B2 (en) Vehicle vibration control apparatus and vibration control method
JP3142982B2 (en) Vehicle vibration control device
JPH04302204A (en) Voice output device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees