JP3725249B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP3725249B2
JP3725249B2 JP18031496A JP18031496A JP3725249B2 JP 3725249 B2 JP3725249 B2 JP 3725249B2 JP 18031496 A JP18031496 A JP 18031496A JP 18031496 A JP18031496 A JP 18031496A JP 3725249 B2 JP3725249 B2 JP 3725249B2
Authority
JP
Japan
Prior art keywords
heating
heating coil
heating coils
coils
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18031496A
Other languages
Japanese (ja)
Other versions
JPH1027681A (en
Inventor
勉 石間
良男 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP18031496A priority Critical patent/JP3725249B2/en
Publication of JPH1027681A publication Critical patent/JPH1027681A/en
Application granted granted Critical
Publication of JP3725249B2 publication Critical patent/JP3725249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の加熱コイルと、各加熱コイルにそれぞれ異なる周波数の高周波電力を同時に給電する高周波電源とを備えた誘導加熱装置に関する。この誘導加熱装置は、例えば電磁調理器や炊飯器、あるいは高速線条加熱に代表されるように、加熱コイルに高周波電流を流し、このときに発生する高周波磁界によって、金属や磁性材、あるいはカーボン材で形成された被加熱物を誘導加熱するものである。加熱コイルには、リッツ線や銅パイプから成る平型渦巻状のものや湾曲状のもの、あるいはソレノイド状のものなどが使用される。
【0002】
【従来の技術及び発明が解決しようとする課題】
最近の誘導加熱装置には、複数の高周波電源にそれぞれ加熱コイルを独立に接続して一あるいは複数の被加熱物を同時に誘導加熱するものがある。ところが、複数の加熱コイルを接近させて誘導加熱を行うと、隣りあう加熱コイルの間で発生する磁束が鎖交し合うために相互干渉が起こり、下記のような問題が生じる。
【0003】
第1の問題は、加熱コイルに接続される高周波電源の出力が乱され、その安定化が不能となって、被加熱物であるワークの加熱温度が変化してしまう点である。相互干渉の度合いが大きいときは、高周波電源における出力の位相やレベルを制御する回路が悪影響を受け、発振動作そのものが不可能になったり、出力段にトランジスタが配されている場合はそれが破損することもある。
【0004】
第2の問題は、相互干渉による非常に大きなビート音が加熱コイルやワークから発生し、作業環境上好ましくない点である。例えば、25kHzと28kHzの高周波電源の場合、単体加熱では人の可聴周波数以上のため騒音は発生しないが、同時加熱の場合は、差分周波数である3kHzないしはその高調波成分の騒音が発生する。
【0005】
従来、これらの問題を解決するため、例えば、複数の加熱コイルの周囲に金属シールド板またはリングや磁性素材等を設けて相互干渉を防止する手法(以下、第1従来例)、加熱コイル間を干渉しない距離だけ離す手法(以下、第2従来例)、複数の高周波電源を同期駆動させて同一出力周波数にすることで相互干渉を防止する手法(以下、第3従来例)が提案されている。
第1従来例の内容は、例えば特開昭55―121297号公報、特開昭57―3388号公報、特開平02―301522号公報に詳細に記述されている。また、第2従来例の内容は例えば特開昭63―148588号公報、特開平08―66300号公報に記述されており、第3従来例の内容は特開平01―267991号公報に記述されている。
【0006】
上述の各従来例によれば、それぞれ所定条件のもとで相互干渉防止という所期の目的を達成することができる。しかし、以下のような解決すべき課題を残すものであった。
例えば、第1従来例では、高周波電源間の相互干渉を完全に除去することができず、加熱コイルの間隙を極めて接近させた場合には効果が発揮されない。また、第2従来例では、複数の加熱コイルを接近させた連続の加熱分布を得ることができない。第3従来例は、原理的には高周波電源間の相互干渉は生じないが、特定の1つの周波数で各加熱コイルの共通駆動回路を強制的に駆動するため、それぞれの共振回路の最適周波数を最適に制御することができない。そのため、負荷変動や共振回路のばらつき、あるいは温度特性や経時変化があると出力が変動する。特に、各高周波電源の出力の電圧や電流の位相が固定できないために加熱効率の変化を引き起こしたり、過大な電流が流れて加熱コイルに悪影響を与える場合もあった。さらに第3従来例では、複数の周波数を加熱分布の改善のために積極的に用いる観点がないため、周波数の異なる電力を出力する複数の高周波電源を用いて広い平面領域を全面同時加熱したり、あるいは部分的に加熱分布を変えたりする用途に十分適応できない場合があった。
【0007】
そこで、本発明の課題は、複数の加熱コイルによる同時誘導加熱の際の相互干渉を排除して目的の加熱分布を得る用途に効果を発揮できる、改良された誘導加熱装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の誘導加熱装置は、被加熱物を誘導加熱する複数の加熱コイルと、各加熱コイルにそれぞれ異なる周波数の高周波電力を同時に給電する高周波電源とを備え、各加熱コイルを、隣りあう他の加熱コイルの通電により発生する誘導起電力が相殺されるように配置したものである。
【0009】
また、本発明の変形例として、下記の構成を採用することができる。
第1構成の誘導加熱装置は、コイル面がそれぞれ被加熱物の加熱部位を指向する複数の加熱コイルと、それぞれ異なる周波数の高周波電力を出力する複数の高周波電源とを備える。前記複数の加熱コイルは、一の高周波電源により給電される内側加熱コイルと他の高周波電源により給電される複数の外側加熱コイルとの組合せを含んで成る。複数の外側加熱コイルは、例えば同一形状及び寸法の加熱コイルの対から成るものであり、それぞれ内側加熱コイルから等間隔となる部位に位置して内側加熱コイルとの間で生じる誘導起電力を互いに相殺する向きに直列接続される。
なお、内側加熱コイルとは前記加熱部位の中心よりに設けられる加熱コイル、外側加熱コイルとは内側加熱コイルの外周に沿って隣設される加熱コイルをいい、この誘導加熱装置が常に2組のみの加熱コイルから成ることを意味するものではない。例えば5組の加熱コイルが列状あるいは同心状に設けられた場合、4組目の加熱コイルはその外周方向の5組目の加熱コイルに対しては内側加熱コイルとなるが、その内側に位置する3組目の加熱コイルに対しては外側加熱コイルとなるものである。
【0010】
上記構成の誘導加熱装置は、被加熱物の形状にあわせて各加熱コイルの配置を変えることにより、適用用途の拡大を図ることができる。例えば被加熱物が湾曲状、あるいは筒状の有底容器である場合、前記複数の加熱コイルを、各々のコイル面が前記有底容器の外底面に沿うように配置する。
【0011】
第2構成の誘導加熱装置は、被加熱物を高速移動させながら誘導加熱する用途に適したものであり、棒状または線状の被加熱物に非接触に巻回されて配列される複数のソレノイド状の加熱コイルと、それぞれ異なる周波数の高周波電力を出力する複数の高周波電源とを備える。複数の加熱コイルは、一の高周波電源により給電される中央側加熱コイルと他の高周波電源により給電される複数の端部側加熱コイルとの組合せを含んで成る。複数の端部側加熱コイルは、前記中央側加熱コイルから等間隔となる部位に位置して中央側加熱コイルとの間で生じる誘導起電力を互いに相殺する向きに直列接続される。なお、中央側加熱コイルとは前記配列の中央よりに設けられる加熱コイル、端部側加熱コイルは、中央側加熱コイルの端部側に隣設される加熱コイルをそれぞれ意味する。2組の加熱コイルに限定する趣旨でないことは第1構成の場合と同様である。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0013】
(第1実施形態)
図1(a)は、本発明の第1実施形態に係る誘導加熱装置の正面図、(b)はそのA−A線断面図である。
この誘導加熱装置は、平型楕円渦巻状の第1加熱コイル1と、この第1加熱コイル1の中心に対して同一平面上で左右対称の位置に配され、直列接続された同一寸法の平型楕円渦巻状の第2加熱コイル2A,2Bとを備えている。各加熱コイル1,2A,2Bのコイル面側には、所定間隔で鉄やステンレス、カーボン等の材質からなる平板状の被加熱物10が配置され、また、コイル面の背面側または離れた位置には、第1加熱コイル1に高周波電流を供給する第1電源D1と、各第2加熱コイル2A,2Bに高周波電流を供給する第2電源D2が設けられている。各電源D1,D2は、それぞれ異なる周波数の電流を各加熱コイル1,2A,2Bに供給するものであり、例えば鋼板加熱、ビレットヒータ、電磁調理器、焼入等に用いられるものである。
【0014】
上記構成の誘導加熱装置において、各加熱コイル1,2A,2Bが同時に給電された場合の動作を図2(a),(b)を参照して説明する。
図2(a)において、図示の左側の第2加熱コイル2Aに電流2AIが流れると当該部位に磁束2AXが発生する。この磁束2AXが第1加熱コイル1の左側を鎖交する際に第1加熱コイル1の左側に誘導起電力が発生し、磁束2AXと反対向きの磁束2AXaを発生させるための誘導電流2AIaが流れる。一方、右側のコイル2Bに電流2BIが流れると、当該部位に磁束2BXが発生する。この磁束2BXが第1加熱コイル1の右側を鎖交すると、第1加熱コイル1の右側に誘導起電力が発生し、磁束2BXと反対向きの磁束2BXaを発生させるための誘導電流2BIaが流れる。第2電源D2は第2加熱コイル2A,2Bに直列に接続されているので、誘導電流2BIaと2AIaは、同レベルで互いに相殺する方向に流れる。そのため、第1加熱コイル1は、第2加熱コイル2A、2Bによる相互干渉を全く受けない。
【0015】
同様に、第1加熱コイル1に第1電源D1から給電されているときも、その両側に位置する第2加熱コイル2A,2Bに発生する誘導電流が相殺される。図2(b)はこのことを示す図であり、第1加熱コイル1の高周波電流1AI、1BIにより第2加熱コイル2A,2B内に発生する誘導電流1AIa,1BIaは、同一レベルで互いに相殺する方向に流れる。そのため第2加熱コイル2A、2Bは、第1加熱コイル1による相互干渉を全く受けない。
【0016】
このように、第1加熱コイル1とその左右側の第2加熱コイル2A,2Bとの間の相互干渉がそれぞれ相殺されるので、同時給電の際の従来の問題点を解消することができる。また、被加熱物10において各加熱コイル1,2A,2Bにより予定された本来の加熱分布を得ることができる。
【0017】
(第2実施形態)
次に、円板状の被加熱物を誘導加熱する場合の実施形態を図3を参照して説明する。この実施形態では、平型渦巻状の第1加熱コイルと、2つの細長い平型楕円渦巻状の第2加熱コイルとを配置し、それぞれ独立に高周波電流を流す。図3(a)は各加熱コイルの平面図、(b)はそのA−A線断面図である。
【0018】
図3(a)を参照すると、磁性材から成る被加熱物20の底面下部の中心部位から所定間隔の位置に第1加熱コイル21が配置され、さらに、第1加熱コイル21を同一面上で左右対称に囲む形で、直列接続された第2コイル22A,22Bが配置されている。各加熱コイル21,22A,22Bには、図2(b)に示す向きで第1電源D1、第2電源D2がそれぞれ接続されている。各電源D1,D2はそれぞれ異なる周波数の電流を各加熱コイル21,22A,22Bに供給するものである。
【0019】
このようなコイル配置及び接続形態で各加熱コイル21,22A,22Bに同時給電した場合の動作は第1実施形態の場合と同様であり、各加熱コイル21,22A,22Bの間の相互干渉が相殺される。従って、同時給電の際の従来の問題点が解消され、また、被加熱物20において各加熱コイル21,22A,22Bにより予定された本来の加熱分布を得ることができる。
【0020】
(第3実施形態)
次に、棒状または線状の被加熱物が高速移動する場合の実施形態を図4を参照して説明する。図4において、30は鉄等の磁性材や非磁性ステンレス材の棒状または線状の被加熱物、31は被加熱物30の中央部側に非接触に巻回されたソレノイド状の第1加熱コイル、32A、32Bは第1加熱コイル31の両端部側にそれぞれ中央部から対称に巻回された同一寸法のソレノイド状の第2加熱コイルである。各第2加熱コイル32A,32Bは、第1加熱コイル31との対向間隔が同一になっている。第1加熱コイル31には第1電源D1が直列接続されており、また、各第2加熱コイル32A,32Bには、それぞれ高周波電流の向きが第1加熱コイル31に対して相対的に反対になるように第2電源D2が直列接続されている。各電源D1,D2は、それぞれ異なる周波数の電流を各加熱コイル31,32A,32Bに供給するものである。
【0021】
このようなコイル配置及び接続形態では、各第2加熱コイル32A,32Bの通電時に発生する磁束AX、BXが互いに逆向きとなるため、第1加熱コイル31内に発生する誘導電流は相殺される。また、第1加熱コイル31に流れる高周波電流により発生する磁束31Xの一部は漏れ磁束となって各第2加熱コイル32A,32Bを鎖交するが、この漏れ磁束は同じ大きさなので、第2加熱コイル32A,32B内で発生する誘導電流が相殺される。従って、同時給電の際の第1加熱コイル31と各第2加熱コイル32A,32Bとの間の相互干渉がそれぞれ相殺され、被加熱物30において各加熱コイル31,32A,32Bにより予定された本来の加熱分布を得ることができる。
特に、第1及び第2電源D1,D2の周波数を10倍以上離して第1加熱コイル31と第2加熱コイル32A,32Bにより被加熱物30の断面方向の渦電流の浸透深さを変えて誘導加熱し、被加熱物30を高速送りすることにより、目的の加熱分布を得ることができる。
【0022】
(第4実施形態)
図5は、棒状または線状の被加熱物に巻回されて配列される加熱コイルと、各加熱コイルに高周波電流を供給する高周波電源の数をさらに増やして同時加熱を行う場合の例を示すものである。この場合、被加熱物40の中央部側に位置する第1加熱コイル41と、その両端部側の対称位置に配された第2加熱コイル42A,42Bとの間の相互干渉が相殺されることは第3実施形態の場合と同様である。この実施形態では、さらに、第2加熱コイル42A,42Bの両端部側に第3加熱コイル43A,43Bを配し、これに第2加熱コイル42A,42Bとの間で生じる誘導起電力を互いに相殺する向きに第3電源D3を直列接続するとともに、第4加熱コイル44A,44Bを第3加熱コイル43A,43Bの両端部側に配し、これに第3加熱コイル43A,43Bとの間で生じる誘導起電力を互いに相殺する向きに第4電源D4を直列接続している。各電源D1,D2,D3,D4は、それぞれ異なる周波数の電流を各加熱コイル41,42A,42B,43A,43B,44A,44Bに供給するものである。
【0023】
このようなコイル配置及び接続形態では、いずれの加熱コイルも、隣りあう他の加熱コイルとの相互干渉が相殺される。従って、被加熱物40において各加熱コイル41,42A,42B,43A,43B,44A,44Bにより予定された本来の加熱分布、例えば渦電流の浸透深さを考慮した加熱分布を容易に得ることができる。なお、図5では4組までの加熱コイルを巻回した場合の例を示したが、同様にしてさらに複数の加熱コイルを増やすことができる。
【0024】
(第5実施形態)
次に、有底容器を誘導加熱する場合の実施の形態を図6を参照して説明する。図中、符号50は容器の一例を示すもので、その材質は上述の各実施形態のものと同じである。この実施形態では、容器50の底面部の中心付近に平型渦巻状の第1加熱コイル51を配置するとともに、第1加熱コイル51と同一面上の両側に同一寸法の一対の平型楕円渦巻状の第2加熱コイル52A,52Bを配置している。さらに、容器50の両側面に平型楕円渦巻状の第3加熱コイル53A,53Bを配置している。第1加熱コイル51には第1電源D1が直列接続され、さらに、第2加熱コイル52A,52Bには第2電源D2、第3加熱コイル53A,53Bには第3電源3Dがそれぞれ直列に接続されている。各電源D1,D2,D3は、それぞれ異なる周波数の電流を各加熱コイル51,52A,52B,53A,53Bに供給するものである。
【0025】
通電時の第1加熱コイル51と第2加熱コイル52A,52Bとの間の相互干渉が相殺されることは、前述の各実施形態で説明した通りである。同様の原理により、第2加熱コイル52A,52Bと第3加熱コイル53A,53Bとの間の相互干渉が相殺される。従って、被加熱物50において各加熱コイル51,52A,52B,53A,53Bにより予定された本来の加熱分布を得ることができる。
なお、容器は図6の例に限定されず、種々の形状のものが適用可能である。例えば中華鍋のように外底面が湾曲状やすり鉢状の場合は、各加熱コイル51,52A,52B,53A,53Bを、そのコイル面がその外底面に沿うように配置すればよい。あるいはコイル面そのものを成形してもよい。
【0026】
以上、本発明を複数の実施形態により説明したが、本発明は複数の加熱コイルを、隣りあう他の加熱コイルの通電により発生する誘導起電力が相殺されるように配置する点に主眼があるので、必ずしも上記実施形態の例に限定されるものではなく、種々の設計変更が可能である。
【0027】
【発明の効果】
以上の説明から明らかなようにように、本発明によれば、複数の加熱コイルを近接させて同時給電した場合の相互干渉がなくなり、高周波電源への悪影響やビート音の発生を確実に防止することができる。また、加熱コイルや高周波電源の数を任意に増やすことができるので、複数の周波数の電力を用いて広い平面領域を全面同時加熱する用途や、渦電流の浸透深さを考慮して部分加熱する用途などにフレキシブルに対応することができる。
【図面の簡単な説明】
【図1】(a)は本発明の第1実施形態の平面図、(b)はA―A線断面図。
【図2】(a)は、第2加熱コイルが第1加熱コイルに対して干渉しないことを示す説明図、(b)は、第1加熱コイルが第2加熱コイルに対して干渉しないことを示す説明図。
【図3】(a)は本発明の第2実施形態の平面図、(b)はA―A線断面図。
【図4】本発明の第3実施形態の構成図。
【図5】本発明の第4実施形態の説明図。
【図6】本発明の第5実施形態の説明図。
【符号の説明】
1,21,31,41,51 第1加熱コイル
2A,2B,22A,22B,32A,32B,42A,42B,52A,52B第2加熱コイル
43A,43B,53A,53B 第3加熱コイル
44A,44B 第4加熱コイル
D1,D2,D3,D4 高周波電源
10,20,30,40,50 被加熱物
1AI,1BI,2AI,2BI 加熱コイルを流れる高周波電流
1AX,1BX,2AX,2BX 高周波電流の通電時に発生する磁束
1AXa,1BXa,2AXa,2BXa誘導磁束
1AIa,1BIa,2AIa,2BIa誘導電流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating apparatus including a plurality of heating coils and a high-frequency power source that simultaneously supplies high-frequency power of different frequencies to the heating coils. This induction heating device, for example, as represented by an electromagnetic cooker, rice cooker, or high-speed filament heating, allows a high-frequency current to flow through the heating coil, and depending on the high-frequency magnetic field generated at this time, metal, magnetic material, or carbon An object to be heated formed of a material is induction-heated. As the heating coil, a flat spiral shape or a curved shape made of a litz wire or a copper pipe, a solenoid shape, or the like is used.
[0002]
[Prior art and problems to be solved by the invention]
In some recent induction heating apparatuses, one or a plurality of objects to be heated are induction-heated simultaneously by independently connecting a heating coil to a plurality of high-frequency power sources. However, when induction heating is performed by bringing a plurality of heating coils close to each other, magnetic fluxes generated between adjacent heating coils are linked to each other, causing mutual interference, resulting in the following problems.
[0003]
The first problem is that the output of the high-frequency power source connected to the heating coil is disturbed, the stabilization becomes impossible, and the heating temperature of the workpiece that is the object to be heated changes. When the degree of mutual interference is large, the circuit that controls the phase and level of the output in the high-frequency power supply is adversely affected, and oscillation operation itself becomes impossible, or damage is caused if a transistor is arranged in the output stage Sometimes.
[0004]
The second problem is that a very loud beat sound due to mutual interference is generated from the heating coil and the workpiece, which is not preferable in the work environment. For example, in the case of high frequency power supplies of 25 kHz and 28 kHz, no noise is generated due to a frequency higher than the human audible frequency in single heating, but in the case of simultaneous heating, noise of 3 kHz or its harmonic component which is a differential frequency is generated.
[0005]
Conventionally, in order to solve these problems, for example, a method of preventing mutual interference by providing a metal shield plate or a ring or a magnetic material around a plurality of heating coils (hereinafter referred to as a first conventional example), between heating coils There are proposed a method of separating a distance that does not interfere (hereinafter referred to as a second conventional example) and a method of preventing mutual interference by synchronously driving a plurality of high-frequency power sources to have the same output frequency (hereinafter referred to as a third conventional example). .
The contents of the first conventional example are described in detail in, for example, Japanese Patent Laid-Open Nos. 55-121297, 57-3388, and 02-301522. The contents of the second conventional example are described in, for example, JP-A-63-148588 and JP-A-08-66300, and the contents of the third conventional example are described in JP-A-01-267991. Yes.
[0006]
According to each conventional example described above, the intended purpose of preventing mutual interference can be achieved under predetermined conditions. However, the following problems to be solved remained.
For example, in the first conventional example, the mutual interference between the high-frequency power sources cannot be completely removed, and the effect is not exhibited when the gap between the heating coils is very close. Further, in the second conventional example, a continuous heating distribution in which a plurality of heating coils are brought close cannot be obtained. In the third conventional example, in principle, mutual interference between high frequency power supplies does not occur, but the common drive circuit of each heating coil is forcibly driven at a specific frequency, so the optimum frequency of each resonance circuit is set. It cannot be optimally controlled. Therefore, the output fluctuates when there are load fluctuations, resonance circuit fluctuations, temperature characteristics, or changes with time. In particular, the output voltage and current phase of each high-frequency power supply cannot be fixed, which may cause a change in heating efficiency, or an excessive current may flow and adversely affect the heating coil. Further, in the third conventional example, since there is no viewpoint of actively using a plurality of frequencies for improving the heating distribution, a large planar area is simultaneously heated using a plurality of high-frequency power supplies that output power having different frequencies. In some cases, it may not be sufficiently applicable to applications in which the heating distribution is partially changed.
[0007]
Accordingly, an object of the present invention is to provide an improved induction heating apparatus capable of exhibiting an effect in an application for obtaining a target heating distribution by eliminating mutual interference during simultaneous induction heating by a plurality of heating coils. .
[0008]
[Means for Solving the Problems]
An induction heating apparatus of the present invention includes a plurality of heating coils that induction-heat an object to be heated, and a high-frequency power source that simultaneously supplies high-frequency power of different frequencies to each heating coil, and each heating coil is adjacent to another heating coil. In this arrangement, the induced electromotive force generated by energization of the heating coil is offset.
[0009]
Moreover, the following structure is employable as a modification of this invention.
The induction heating device of the first configuration includes a plurality of heating coils whose coil surfaces are each directed to a heated portion of an object to be heated, and a plurality of high-frequency power sources that output high-frequency power of different frequencies. The plurality of heating coils include a combination of an inner heating coil fed by one high frequency power source and a plurality of outer heating coils fed by another high frequency power source. The plurality of outer heating coils are composed of, for example, pairs of heating coils having the same shape and size, and the induced electromotive forces generated between the inner heating coils and the inner heating coils that are located at equal intervals from the inner heating coils are mutually connected. It is connected in series in the direction to cancel.
The inner heating coil is a heating coil provided from the center of the heating part, and the outer heating coil is a heating coil adjacently provided along the outer periphery of the inner heating coil. Only two sets of this induction heating device are always provided. It does not mean that it consists of a heating coil. For example, when five sets of heating coils are provided in a row or concentric manner, the fourth set of heating coils is an inner heating coil with respect to the fifth set of heating coils in the outer circumferential direction. The third set of heating coils is an outer heating coil.
[0010]
The induction heating apparatus having the above-described configuration can be used for a wider range of applications by changing the arrangement of the heating coils in accordance with the shape of the object to be heated. For example, when the object to be heated is a curved or cylindrical bottomed container, the plurality of heating coils are arranged such that each coil surface is along the outer bottom surface of the bottomed container.
[0011]
The induction heating device of the second configuration is suitable for the purpose of induction heating while moving the object to be heated at high speed, and is a plurality of solenoids wound and arranged in a non-contact manner on a rod-like or linear object to be heated. And a plurality of high-frequency power supplies that output high-frequency power having different frequencies. The plurality of heating coils includes a combination of a center side heating coil fed by one high frequency power source and a plurality of end side heating coils fed by another high frequency power source. The plurality of end-side heating coils are connected in series so as to cancel each other the induced electromotive force generated between the center-side heating coil and the center-side heating coil that are located at equal intervals from the center-side heating coil. The center side heating coil means a heating coil provided from the center of the array, and the end side heating coil means a heating coil provided adjacent to the end side of the center side heating coil. It is the same as in the case of the first configuration that it is not intended to limit to two sets of heating coils.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
(First embodiment)
Fig.1 (a) is a front view of the induction heating apparatus which concerns on 1st Embodiment of this invention, (b) is the AA sectional view taken on the line.
The induction heating device includes a flat elliptical spiral first heating coil 1 and a flat plane of the same dimensions arranged in a symmetrical manner on the same plane with respect to the center of the first heating coil 1 and connected in series. And a second heating coil 2A, 2B having an elliptical spiral shape. On the coil surface side of each of the heating coils 1, 2 </ b> A, 2 </ b> B, a plate-like object to be heated 10 made of a material such as iron, stainless steel, or carbon is disposed at a predetermined interval. Are provided with a first power supply D1 for supplying a high-frequency current to the first heating coil 1 and a second power supply D2 for supplying a high-frequency current to each of the second heating coils 2A and 2B. Each power source D1, D2 supplies currents having different frequencies to the respective heating coils 1, 2A, 2B, and is used for, for example, steel plate heating, billet heater, electromagnetic cooker, quenching and the like.
[0014]
In the induction heating apparatus having the above configuration, the operation when the heating coils 1, 2 </ b> A, and 2 </ b> B are simultaneously fed will be described with reference to FIGS. 2 (a) and 2 (b).
In FIG. 2A, when a current 2AI flows through the second heating coil 2A on the left side of the drawing, a magnetic flux 2AX is generated at the portion. When this magnetic flux 2AX is linked to the left side of the first heating coil 1, an induced electromotive force is generated on the left side of the first heating coil 1, and an induced current 2AIa for generating a magnetic flux 2AXa in the opposite direction to the magnetic flux 2AX flows. . On the other hand, when a current 2BI flows through the right coil 2B, a magnetic flux 2BX is generated at that portion. When this magnetic flux 2BX is linked to the right side of the first heating coil 1, an induced electromotive force is generated on the right side of the first heating coil 1, and an induced current 2BIa for generating a magnetic flux 2BXa opposite to the magnetic flux 2BX flows. Since the second power supply D2 is connected in series to the second heating coils 2A and 2B, the induced currents 2BIa and 2AIa flow in the direction of canceling each other at the same level. Therefore, the 1st heating coil 1 does not receive the mutual interference by 2nd heating coil 2A, 2B at all.
[0015]
Similarly, when the first heating coil 1 is supplied with power from the first power supply D1, the induced currents generated in the second heating coils 2A and 2B located on both sides thereof are canceled out. FIG. 2B is a diagram showing this, and the induction currents 1AIa and 1BIa generated in the second heating coils 2A and 2B by the high-frequency currents 1AI and 1BI of the first heating coil 1 cancel each other out at the same level. Flow in the direction. Therefore, the second heating coils 2 </ b> A and 2 </ b> B do not receive any mutual interference from the first heating coil 1.
[0016]
Thus, since the mutual interference between the 1st heating coil 1 and the 2nd heating coils 2A and 2B of the right and left sides is canceled, the conventional problem in simultaneous power feeding can be solved. In addition, the original heating distribution scheduled by the heating coils 1, 2 </ b> A, 2 </ b> B can be obtained in the article to be heated 10.
[0017]
(Second Embodiment)
Next, an embodiment in the case of induction heating a disk-shaped object to be heated will be described with reference to FIG. In this embodiment, a flat spiral first heating coil and two elongated flat elliptical spiral second heating coils are arranged, and a high-frequency current is allowed to flow independently of each other. FIG. 3A is a plan view of each heating coil, and FIG. 3B is a cross-sectional view taken along line AA.
[0018]
Referring to FIG. 3A, the first heating coil 21 is disposed at a predetermined distance from the central portion of the bottom of the bottom surface of the object to be heated 20 made of a magnetic material, and the first heating coil 21 is arranged on the same surface. The second coils 22A and 22B connected in series are arranged so as to be symmetrically enclosed. A first power supply D1 and a second power supply D2 are connected to the heating coils 21, 22A, 22B in the direction shown in FIG. Each of the power sources D1 and D2 supplies currents having different frequencies to the heating coils 21, 22A and 22B.
[0019]
The operation when power is simultaneously supplied to the heating coils 21, 22A and 22B in such a coil arrangement and connection form is the same as that in the first embodiment, and mutual interference between the heating coils 21, 22A and 22B is caused. Offset. Therefore, the conventional problem at the time of simultaneous power feeding is solved, and the original heating distribution scheduled by the heating coils 21, 22A, 22B in the article to be heated 20 can be obtained.
[0020]
(Third embodiment)
Next, an embodiment in which a rod-like or linear object to be heated moves at high speed will be described with reference to FIG. In FIG. 4, 30 is a rod-like or linear object to be heated of a magnetic material such as iron or a non-magnetic stainless steel, and 31 is a solenoid-like first heating wound in a non-contact manner around the center of the object to be heated 30. Coils 32 </ b> A and 32 </ b> B are solenoid-like second heating coils of the same dimensions wound symmetrically from the center on both ends of the first heating coil 31. Each 2nd heating coil 32A, 32B has the same opposing space | interval with the 1st heating coil 31. FIG. A first power supply D1 is connected in series to the first heating coil 31, and the direction of the high-frequency current is relatively opposite to the first heating coil 31 in each of the second heating coils 32A and 32B. The 2nd power supply D2 is connected in series so that it may become. Each power source D1, D2 supplies currents having different frequencies to the heating coils 31, 32A, 32B.
[0021]
In such a coil arrangement and connection form, since the magnetic fluxes AX and BX generated when the second heating coils 32A and 32B are energized are opposite to each other, the induced current generated in the first heating coil 31 is canceled out. . In addition, a part of the magnetic flux 31X generated by the high-frequency current flowing in the first heating coil 31 becomes a leakage magnetic flux, and links each of the second heating coils 32A and 32B. The induced current generated in the heating coils 32A and 32B is canceled out. Therefore, the mutual interference between the first heating coil 31 and the second heating coils 32A and 32B at the time of simultaneous power feeding is canceled, respectively, and the original intended by the heating coils 31, 32A and 32B in the object to be heated 30. Can be obtained.
In particular, the penetration depth of the eddy current in the cross-sectional direction of the object to be heated 30 is changed by the first heating coil 31 and the second heating coils 32A and 32B by separating the frequency of the first and second power sources D1 and D2 by 10 times or more. The target heating distribution can be obtained by induction heating and feeding the article 30 to be heated at a high speed.
[0022]
(Fourth embodiment)
FIG. 5 shows an example in which simultaneous heating is performed by further increasing the number of high-frequency power sources that supply a high-frequency current to each heating coil and a heating coil that is wound around a rod-shaped or linear object to be heated. Is. In this case, the mutual interference between the first heating coil 41 located on the center side of the object to be heated 40 and the second heating coils 42A and 42B arranged at the symmetrical positions on the both end sides is offset. Is the same as in the third embodiment. In this embodiment, the third heating coils 43A and 43B are further arranged on both end sides of the second heating coils 42A and 42B, and the induced electromotive forces generated between the second heating coils 42A and 42B cancel each other. The third power source D3 is connected in series in the direction to be connected, and the fourth heating coils 44A and 44B are arranged on both end sides of the third heating coils 43A and 43B, and this occurs between the third heating coils 43A and 43B. A fourth power supply D4 is connected in series in such a direction that the induced electromotive forces cancel each other. The power sources D1, D2, D3, and D4 supply currents having different frequencies to the heating coils 41, 42A, 42B, 43A, 43B, 44A, and 44B, respectively.
[0023]
In such a coil arrangement and connection form, any heating coil cancels out mutual interference with other adjacent heating coils. Therefore, it is possible to easily obtain the original heating distribution planned by the heating coils 41, 42A, 42B, 43A, 43B, 44A, 44B, for example, the heating distribution in consideration of the penetration depth of the eddy current in the article 40 to be heated. it can. In addition, although the example at the time of winding up to 4 sets of heating coils was shown in FIG. 5, a several heating coil can be increased similarly.
[0024]
(Fifth embodiment)
Next, an embodiment in the case of induction heating the bottomed container will be described with reference to FIG. In the figure, reference numeral 50 denotes an example of the container, and the material thereof is the same as that of each of the above-described embodiments. In this embodiment, a flat spiral first heating coil 51 is disposed near the center of the bottom surface of the container 50, and a pair of flat elliptical spirals having the same dimensions are provided on both sides on the same plane as the first heating coil 51. Shaped second heating coils 52A, 52B are arranged. Further, third elliptical spiral coils 53 </ b> A and 53 </ b> B are arranged on both side surfaces of the container 50. A first power supply D1 is connected in series to the first heating coil 51, a second power supply D2 is connected in series to the second heating coils 52A and 52B, and a third power supply 3D is connected in series to the third heating coils 53A and 53B. Has been. Each power source D1, D2, D3 supplies currents having different frequencies to the heating coils 51, 52A, 52B, 53A, 53B.
[0025]
As described in the above embodiments, the mutual interference between the first heating coil 51 and the second heating coils 52A and 52B during energization is canceled out. By the same principle, the mutual interference between the second heating coils 52A and 52B and the third heating coils 53A and 53B is canceled. Therefore, it is possible to obtain the original heating distribution scheduled by the heating coils 51, 52A, 52B, 53A, 53B in the object to be heated 50.
In addition, a container is not limited to the example of FIG. 6, The thing of various shapes is applicable. For example, when the outer bottom surface is in a curved filed bowl shape like a wok, each heating coil 51, 52A, 52B, 53A, 53B may be arranged so that the coil surface is along the outer bottom surface. Or you may shape | mold the coil surface itself.
[0026]
As mentioned above, although this invention was demonstrated by several embodiment, this invention has a main point at the point which arrange | positions several heating coils so that the induced electromotive force generate | occur | produced by electricity supply of the other heating coil which adjoins may be offset. Therefore, it is not necessarily limited to the example of the above embodiment, and various design changes are possible.
[0027]
【The invention's effect】
As is clear from the above description, according to the present invention, there is no mutual interference when a plurality of heating coils are brought close to each other and power is supplied simultaneously, and it is possible to reliably prevent adverse effects on the high-frequency power source and occurrence of beat sounds. be able to. In addition, since the number of heating coils and high-frequency power supplies can be increased arbitrarily, partial heating is performed in consideration of the use of multiple frequency power to simultaneously heat a wide planar area entirely, and the penetration depth of eddy currents. It is possible to respond flexibly to usages.
[Brief description of the drawings]
1A is a plan view of a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA.
2A is an explanatory view showing that the second heating coil does not interfere with the first heating coil, and FIG. 2B shows that the first heating coil does not interfere with the second heating coil. FIG.
3A is a plan view of a second embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line AA.
FIG. 4 is a configuration diagram of a third embodiment of the present invention.
FIG. 5 is an explanatory diagram of a fourth embodiment of the present invention.
FIG. 6 is an explanatory diagram of a fifth embodiment of the present invention.
[Explanation of symbols]
1,21,31,41,51 1st heating coil
2A, 2B, 22A, 22B, 32A, 32B, 42A, 42B, 52A, 52B Second heating coil
43A, 43B, 53A, 53B 3rd heating coil
44A, 44B 4th heating coil
D1, D2, D3, D4 High frequency power supply
10, 20, 30, 40, 50 Object to be heated
1AI, 1BI, 2AI, 2BI High-frequency current flowing through the heating coil
1AX, 1BX, 2AX, 2BX Magnetic flux generated when high-frequency current is applied
1AXa, 1BXa, 2AXa, 2BXa induced magnetic flux
1AIa, 1BIa, 2AIa, 2BIa induced current

Claims (1)

棒状または線状の被加熱物に非接触に巻回されて配列される複数のソレノイド状の加熱コイルと、それぞれ異なる周波数の高周波電力を出力する複数の高周波電源とを備え、
前記複数の加熱コイルは、
前記配列の中央よりに設けられ、一の高周波電源により給電される中央側加熱コイルと、
この中央側加熱コイルの端部側に隣設され、他の高周波電源により給電される複数の端部側加熱コイルとの組合せを含んで成り、
前記複数の端部側加熱コイルは、前記中央側加熱コイルから等間隔となる部位に位置して中央側加熱コイルとの間で生じる誘導起電力を互いに相殺する向きに直列接続されていることを特徴とする
誘導加熱装置。
A plurality of solenoidal heating coils arranged in a non-contact manner around a rod-shaped or linear object to be heated, and a plurality of high-frequency power sources that output high-frequency power of different frequencies, respectively.
The plurality of heating coils are:
A central heating coil provided from the center of the array and fed by one high frequency power source;
Next to the end side of this center side heating coil, comprising a combination with a plurality of end side heating coils fed by other high frequency power supply,
The plurality of end-side heating coils are connected in series so that the induced electromotive forces generated between the plurality of end-side heating coils and the center-side heating coil are offset from each other at positions that are equidistant from the center-side heating coil. Characteristic induction heating device.
JP18031496A 1996-07-10 1996-07-10 Induction heating device Expired - Lifetime JP3725249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18031496A JP3725249B2 (en) 1996-07-10 1996-07-10 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18031496A JP3725249B2 (en) 1996-07-10 1996-07-10 Induction heating device

Publications (2)

Publication Number Publication Date
JPH1027681A JPH1027681A (en) 1998-01-27
JP3725249B2 true JP3725249B2 (en) 2005-12-07

Family

ID=16081052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18031496A Expired - Lifetime JP3725249B2 (en) 1996-07-10 1996-07-10 Induction heating device

Country Status (1)

Country Link
JP (1) JP3725249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101135A1 (en) 2009-03-06 2010-09-10 三菱電機株式会社 Induction cooking device
WO2012029306A1 (en) 2010-09-03 2012-03-08 三菱電機株式会社 Induction cooking appliance
WO2012035709A1 (en) 2010-09-13 2012-03-22 三菱電機株式会社 Induction heat cooker
WO2012132274A1 (en) 2011-03-29 2012-10-04 三菱電機株式会社 Induction heating cookware
WO2013008390A1 (en) 2011-07-08 2013-01-17 三菱電機株式会社 Induction-heating cooker and program therefor
JP2013137938A (en) * 2011-12-28 2013-07-11 Panasonic Corp Induction heating cooker
JPWO2013021535A1 (en) * 2011-08-10 2015-03-05 三菱電機株式会社 Induction heating cooker and its program

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228464A (en) * 2007-03-13 2008-09-25 Oet:Kk Coil-heating device
JP2010073384A (en) * 2008-09-17 2010-04-02 Panasonic Corp Induction heating cooking appliance
JP5358673B2 (en) * 2009-03-06 2013-12-04 三菱電機株式会社 Induction heating cooker
JP5332839B2 (en) * 2009-04-08 2013-11-06 パナソニック株式会社 Induction heating cooker
DE102009018134A1 (en) * 2009-04-15 2010-09-16 E.G.O. Elektro-Gerätebau GmbH Induction heating device for induction cooker, comprises three induction coils that are arranged, such that central induction coil is arranged between two outer induction coils
CN105578635B (en) * 2010-03-19 2019-06-11 三菱电机株式会社 Induction heating cooking instrument
ES2678499T3 (en) * 2010-05-28 2018-08-13 Mitsubishi Electric Corporation Induction cooking system
JP5425012B2 (en) * 2010-07-27 2014-02-26 三菱電機株式会社 Induction heating cooker and method for inducing proper position of object to be heated in induction heating cooker
CN102393033B (en) * 2010-11-29 2014-04-23 九阳股份有限公司 Electromagnetic cooking appliance capable of three-dimensionally heating cooking container
TWI487497B (en) * 2011-02-28 2015-06-11 Mitsubishi Electric Corp Heating the cooking device
EP2760251B1 (en) * 2011-09-20 2018-11-14 Mitsubishi Electric Corporation Induction heating cooker
US10399684B2 (en) 2014-10-29 2019-09-03 The Boeing Company Induction heating coils with uniform heating
CN110679204B (en) * 2017-06-05 2021-10-22 三菱电机株式会社 Induction heating cooker

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101135A1 (en) 2009-03-06 2010-09-10 三菱電機株式会社 Induction cooking device
WO2012029306A1 (en) 2010-09-03 2012-03-08 三菱電機株式会社 Induction cooking appliance
WO2012035709A1 (en) 2010-09-13 2012-03-22 三菱電機株式会社 Induction heat cooker
EP3280223A1 (en) 2010-09-13 2018-02-07 Mitsubishi Electric Corporation Induction cooking system
WO2012132274A1 (en) 2011-03-29 2012-10-04 三菱電機株式会社 Induction heating cookware
WO2013008390A1 (en) 2011-07-08 2013-01-17 三菱電機株式会社 Induction-heating cooker and program therefor
JPWO2013021535A1 (en) * 2011-08-10 2015-03-05 三菱電機株式会社 Induction heating cooker and its program
JP2013137938A (en) * 2011-12-28 2013-07-11 Panasonic Corp Induction heating cooker

Also Published As

Publication number Publication date
JPH1027681A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP3725249B2 (en) Induction heating device
CN101617562B (en) Induction heating device
JP5235836B2 (en) Induction cooking device
RU2518187C2 (en) Induction heater with cross-flow
US5844213A (en) Induction heating coil assembly for prevention of circulating currents in induction heating lines for continuous-cast products
JP4313775B2 (en) Induction heating method and apparatus
US7315011B2 (en) Magnetic heating device
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
JP2004530275A5 (en)
US3846609A (en) Inductor for inductively heating elongated rotating workpiece
EP2900036B1 (en) High-frequency induction heating device and processing device
JP2012515430A (en) Induction heating treatment of workpieces with complex shapes
JPH07101633B2 (en) Flat plate induction heating device
JPH07169561A (en) Induction heating device
JPS6448391A (en) Single winding induction heating coil used in floating zone melting method
JP4299265B2 (en) Thermal energy inductive coupling device for image fixing processing
JP3578795B2 (en) Internal hardening method of cylinder block
JP3576097B2 (en) High frequency heating method and apparatus
JP3578785B2 (en) Induction heating coil
JP7290858B2 (en) induction heating coil
JP7314024B2 (en) Electromagnetic induction heating device
JP4890278B2 (en) Metal plate induction heating device
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
RU2214072C2 (en) Induction heating device affording desired temperature profile
JP2008144230A (en) Heat-treatment method and apparatus for thin sheet-made member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

EXPY Cancellation because of completion of term