JP3724257B2 - Polymer composition and molded body thereof - Google Patents

Polymer composition and molded body thereof Download PDF

Info

Publication number
JP3724257B2
JP3724257B2 JP13329099A JP13329099A JP3724257B2 JP 3724257 B2 JP3724257 B2 JP 3724257B2 JP 13329099 A JP13329099 A JP 13329099A JP 13329099 A JP13329099 A JP 13329099A JP 3724257 B2 JP3724257 B2 JP 3724257B2
Authority
JP
Japan
Prior art keywords
fluorine
formula
copolymer
pfa
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13329099A
Other languages
Japanese (ja)
Other versions
JP2000319471A (en
Inventor
篤 船木
直子 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13329099A priority Critical patent/JP3724257B2/en
Publication of JP2000319471A publication Critical patent/JP2000319471A/en
Application granted granted Critical
Publication of JP3724257B2 publication Critical patent/JP3724257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという)の結晶化特性の改良に関する。
【0002】
【従来の技術】
PFAは耐熱性、耐薬品性、耐溶剤性等が優れた高分子材料であり、その特徴を生かして種々の用途に用いられている。しかし、PFAは結晶性樹脂であり、溶融成形後の冷却、固化に際して溶融体内に多数の結晶核が生じる。この結晶核を中心に等方向に球晶が成長し、互いに境を接して球晶の成長が止まる。球晶が生成する成形物の表面平滑性はこの球晶の大きさに依存し、大きいと表面平滑度が劣ることが知られている。球晶が大きく成長し成形物の表面平滑性が劣ると、チューブとして使用した場合に不純物が表面に蓄積しやすくなる。またパイプ継手として使用した場合、ストレスクラックを生じやすい。
【0003】
球晶の大きさは溶融成形後の冷却速度に依存することが知られている。急冷するほど微細な球晶が生成するが、成形方法によっては急冷が不可能な場合がある。例えば厚肉チューブの押出成形においては、押出されたチューブを外面から冷却するとパイプ内面は急冷されないため、パイプ内面に大きな球晶が生成し、内面の平滑性が劣る問題がある。比較的遅い冷却速度でも微細な球晶を生成する結晶化特性を有するPFAが求められている。
【0004】
PFAの球晶を微細にする方法としては、結晶核剤として少量の特定のポリテトラフルオロエチレン(以下、PTFEという)をPFAに添加する方法(特開平7−70397)が知られている。しかしPTFEとPFAとの溶融混練が不充分のときフィッシュアイが発生しやすい。また過剰に溶融混練するとPTFEがPFAに混ざり合い、結晶核剤として球晶を微細にする効果が減少する問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、PFAの物性、成形性を損なうことなく、小さな球晶が生成するように結晶化特性を改善することにある。
【0006】
【課題を解決するための手段】
本発明は、式1で表される単位を96〜99.99モル%、式2で表される単位を0.01〜1モル%、および任意成分として式3で表される単位を0〜3モル%の割合で含有する共重合体(A)(以下、含フッ素共重合体(A)という)を200℃以上で熱処理した含フッ素共重合体(B)と、PFA(C)とを含む組成物であり、(B)と(C)の合計100重量部に対して(B)を0.05〜20重量部の割合で含有する含フッ素重合体組成物を提供する。
【0007】
【化2】

Figure 0003724257
【0008】
ただし、式中、Xはフッ素原子または塩素原子であり、Rfは2価のフッ素置換有機基であり、Yはヒドロキシアルキル基、カルボキシル基、または1価のカルボン酸誘導体基であり、Zは−O−RfY以外の1価のフッ素置換有機基である。
【0009】
また、本発明は、上記含フッ素重合体組成物を溶融成形してなる成形体を提供する。
【0010】
含フッ素共重合体(B)は、含フッ素共重合体(A)を熱処理することにより得られ、PFA(C)の結晶核剤としての働きをする。
本発明の含フッ素重合体組成物は、過剰に溶融混練しても結晶核剤としての効果が低減しない。
【0011】
【発明の実施の形態】
本発明は、含フッ素共重合体(B)とPFAとを含む組成物である。含フッ素共重合体(A)を熱処理することにより、得られる含フッ素共重合体(B)の溶融粘度が上昇する。これは、熱処理することにより、含フッ素共重合体(A)の分子中の式2における官能基−O−RfY部が、他の分子中の同官能基部と架橋反応することにより、架橋構造を有する含フッ素共重合体(B)が生成しているためと推定される。ただし、この説明は本発明の理解を助けるためのもので、何ら本発明を限定するものではない。
【0012】
本発明の組成物中の含フッ素共重合体(B)はPFAの結晶核剤となりうる。PFAに含フッ素共重合体(B)を少量添加し溶融混練して成形すると、その成形物に微細な球晶が生成する。また、過剰に溶融混練してもPTFEとは異なり結晶核剤としての効果が損なわれない。この効果は、おそらく含フッ素共重合体(B)が架橋していることによりPFAと完全には混じり合わないためと推定される。
【0013】
式1の単位において、Xはフッ素原子であるものが耐薬品性などの面からより好ましい。
式2の単位において、Rfすなわち2価のフッ素置換有機基は、置換フッ素原子の数が1個以上であればよく、完全フッ素化された2価のフッ素置換有機基がより好ましい。また、Rfは、炭素のみまたは炭素と酸素により鎖が形成された2価のフッ素置換有機基が好ましい。
【0014】
その具体例としては、例えばパーフルオロアルキレン基またはエーテル結合を含有するパーフルオロアルキレン基が挙げられる。Rfの鎖を構成する炭素数は1〜15、特に1〜10の範囲が好ましい。Rfは直鎖の構造が好ましいが、分岐の構造であってもよい。分岐の構造である場合には、分岐部分の炭素数が1〜3程度の短鎖であるものが好ましい。特に好ましいRfは−(CF2m−(mは2〜6の整数)である。
【0015】
fの具体例としては、例えば−(CF22−、−(CF23−、−(CF24−、−(CF25−、−(CF26−、−CF2CF(CF3)O(CF23−、−CF2CF(CF3)OCF2CF(CF3)O(CF22−、−(CF2CF2O)2−(CF23−,−CF2CF(CF3)CF2CF2CF(CF3)CF2−などが挙げられる。
【0016】
式2におけるYはヒドロキシアルキル基、カルボキシル基、または1価のカルボン酸誘導体基である。カルボン酸誘導体基としては−COOA(Aは炭素数1〜3程度のアルキル基、炭素数1〜3程度のフルオロアルキル基、アルカリ金属、アンモニウム塩基、または置換アンモニウム塩基)または−COB(Bはフッ素原子または塩素原子)が例示される。これらのうち、好ましいYは、ヒドロキシアルキル基およびアルコキシカルボニル基であり、−CH2OH、−CH2CH2OH、−COOCH3が好ましい。
【0017】
含フッ素共重合体(A)中の式2で表される単位の含有量は、0.01〜1モル%である。0.01モル%未満では、含フッ素共重合体(B)の架橋密度が不充分でPFAと過剰に溶融混練するとPFAに混ざり合い結晶核剤としての効果が小さい。1モル%超では含フッ素共重合体(B)の溶融粘度が上昇しすぎ、PFAと混練しにくくなりフィッシュアイが発生する。
式2の単位は1種のみ含まれていてもよく2種以上含まれてもよい。
【0018】
式3の単位において、Zすなわち1価のフッ素置換有機基は、式2の−O−RfY以外の1価のフッ素置換有機基であり、耐熱性、耐薬品性などの点から炭素数1〜10のパーフルオロアルコキシ基が好ましい。式3の含有量が3モル%超では含フッ素共重合体(B)の融点が低下しすぎ結晶核剤としての効果が低くなる。
【0019】
含フッ素共重合体(B)は、含フッ素重合体(A)を200℃以上の温度で熱処理することにより得られる。200℃未満では式2中の−O−RfYが架橋反応しにくい。融点以上では−O−RfYが架橋反応するが、含フッ素重合体(B)が融着するため、粉砕してPFAに添加しないとフィッシュアイの原因になるおそれがあるので、好ましくは融点未満の熱処理温度を採用するのがよい。熱処理は、式2中のYの5割以上、好ましくは9割以上が分解し、架橋反応するまでの時間行うことが好ましい。式2中のYが架橋反応せず多量に残存すると、組成物の耐薬品性が低下するおそれがある。熱処理時間は、例えば300℃では3時間以上が好ましい。本発明における熱処理は、酸素が存在する雰囲気で行うのが望ましい。
【0020】
含フッ素共重合体(B)に架橋構造が生じていると推測される機構を以下に示す。含フッ素共重合体(A)には、式2におけるYがIR分析により認められる。含フッ素共重合体(B)には、含フッ素共重合体(A)に比べてYの量が減少することが認められ、またはYが認められない。また、含フッ素共重合体(B)の溶融粘度は含フッ素共重合体(A)に比べて大きくなり、その上昇率は含フッ素共重合体(A)中の式2におけるYの含有割合が多いほど大きい。
【0021】
例えば、式2中の−RfYが−(CF23COOCH3であり、その式2で表される単位を0.2モル%、式1で表される単位を99.8モル%含有し、溶融粘度が7.7×104ポアズの含フッ素共重合体(A)を、300℃で20時間熱処理して得られる含フッ素共重合体(B)には、IR分析で−COOCH3由来のピークが検出されず、その溶融粘度が1.6×106ポアズに上昇する。
【0022】
架橋構造が生じる機構として、Y、例えば−COOCH3が熱と空気中の水分により加水分解反応、脱炭酸反応などを生起し、−CF2CF2・ラジカルが発生し、次いで共重合体鎖間の2個のラジカルがカップリングして架橋構造が生じると推定される。したがって、含フッ素共重合体(B)は、テトラフルオロエチレンの単独重合体(PTFE)、1重量%未満の微量のヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)などに基づく重合単位を含有する変性PTFEと異なる構造を有するものと推定される。
【0023】
また、含フッ素共重合体(B)の結晶化熱は40〜49J/gであることが好ましい。熱処理により架橋構造が生成すると結晶性が低下して結晶化熱が下がる傾向にある。結晶化熱が49J/g超では含フッ素共重合体(B)の架橋密度が不充分で、PFAと過剰に溶融混練すると結晶核剤としての効果が低下する。また、40J/g未満では架橋密度が高くなりすぎPFAと混合しにくくなりフィッシュアイの原因になる。
【0024】
本発明組成物における含フッ素共重合体(B)の割合は、PFAと含フッ素共重合体(B)との合計100重量部に対して0.05〜20重量部である。0.05重量部未満では球晶の微細化の効果が少なく、20重量部超では成形性を損ないやすい。
【0025】
含フッ素共重合体(A)およびその製造方法は公知である(特開平3−91513、特開平3−234753)。
含フッ素共重合体(A)は、式4で表される単量体、式5で表される単量体、および必要により式6で表される単量体を重合開始源の作用下に共重合することにより得られる。ただし式4におけるX、式5におけるRfおよびY、式6におけるZはいずれも前述と同じである。
【0026】
【化3】
Figure 0003724257
【0027】
重合開始源としては、電離放射線や、有機パーオキシド系重合開始剤、酸化還元系重合開始剤などの重合開始剤などが採用できる。重合方法としては、懸濁重合、乳化重合、溶液重合、塊状重合など従来公知の重合方法が採用できる。
【0028】
重合開始剤としては、ビス(フルオロアシル)パーオキシド類、ビス(クロロフルオロアシル)パーオキシド類、ジアルキルパーオキシジカーボネート類、ジアシルパーオキシド類、パーオキシエステル類、過硫酸塩類などが挙げられる。
【0029】
重合媒体としては、溶液重合ではCClF2CF2CClFH(以下HCFC225cbという)などのヒドロクロロフルオロカーボン類のほか、t−ブタノールなどが挙げられ、懸濁重合、乳化重合では水または水と他の溶媒との混合溶媒が用いられる。重合温度は0℃〜100℃、重合圧力は0.5〜30kg/cm2の範囲から選択できる。
【0030】
本発明におけるPFAの原料単量体であるパーフルオロ(アルキルビニルエーテル)としては、PFAの高温における機械的強度の観点から、炭素数3〜10のパーフルオロ(アルキルビニルエーテル)が好ましく、特に炭素数5のパーフルオロ(プロピルビニルエーテル)が好ましい。また、PFA中のパーフルオロ(アルキルビニルエーテル)に基づく重合単位の含有割合は、PFAの成形性、高温における機械的強度の観点から1〜3モル%程度であることが好ましい。
【0031】
また、PFAの溶融粘度は特に限定されないが、成形性の点から372℃における溶融粘度は5×103〜5×105ポアズであることが好ましい。
本発明の含フッ素重合体組成物は、PFAの優れた物性、成形性を損なうことなく、球晶サイズの小さい結晶化特性を有する。
【0032】
含フッ素重合体組成物の溶融混練方法は特に限定されない。溶融したPFAに含フッ素共重合体(B)を撹拌しながら混合する方法、単軸または2軸の混練押出機にPFAと含フッ素共重合体(B)を同時に供給し混練する方法などが挙げられる。簡便さから、混練押出機により混練する方法が好ましい。混練時のPFAおよび含フッ素共重合体(B)の形態も特に限定されず、ペレット、ビーズ、粉末等が用いられるが、含フッ素共重合体(B)の形態は粉末が好ましい。
【0033】
本発明の含フッ素重合体組成物は、溶融成形できる。溶融成形とは、溶融した含フッ素重合体組成物を押出成形機、射出成形機または圧縮成形機を用いてフィルム、シート、チューブなどの成形体を成形すること、含フッ素重合体組成物を各種基材に被覆した成形体を成形することなどを含む。
【0034】
本発明の含フッ素重合体組成物は、溶融成形により含フッ素重合体の球晶サイズが10μm以下、好ましくは5μm以下の成形体を与え、また、内面粗度が0.3μm以下の押出成形チューブを与える。さらに、比較的遅い冷却速度でも微細な球晶を生成しやすい結晶化特性を有するので、押出成形法により厚肉チューブを成形する場合も、内面平滑性に優れたチューブを円滑有利に得ることができる。
【0035】
本発明において、球晶サイズ、内面粗度、溶融粘度、融点、結晶化熱、結晶化温度、共重合体組成は以下の方法で測定される。
【0036】
[球晶サイズ]
試料を340℃で厚さ200μmのフィルムに圧縮成形し、続いて冷却プレス機で約5分間で室温付近まで急冷して試験フィルムを作成する。試験フィルムの表面を偏光顕微鏡で観察することにより球晶サイズを測定した。
【0037】
[内面粗度]
単軸押出機を用いて、試料を380℃で内径8mm、外径10mmのチューブに押出成形し、続いてチューブの外側から水冷して試験チューブを作成する。試験チューブの内面粗度(Rt)を粗さ計(サーフコーダSE−30H、小坂研究所製)にて測定した。
【0038】
[溶融粘度]
島津製作所製フローテスターを用いてノズル長8mm、ノズル径2.1mmのダイスを用いて荷重7kg、所定の温度で押出したときの流れ値Q(cm3/秒)から、溶融粘度(ポアズ)=409/Qなる式によって求めた。
【0039】
[融点]
試料10mgをDTA(セイコー電子製)を用いて、昇温速度10℃/分で測定し、吸熱ピークの先端の温度を融点とした。
【0040】
[結晶化熱、結晶化温度]
試料10mgをDSC(セイコー電子製)を用いて、溶融状態から10℃/分の速度で冷却し、結晶化させたときの結晶化熱とそのピーク温度を測定した。ピーク温度を結晶化温度とした。
【0041】
[共重合体組成]
厚さ約30μmの成形フィルムをIR分析し以下のように求めた。(CF2=CFO(CF23COOCH3に基づく重合単位)/(テトラフルオロエチレンに基づく重合単位)(モル比)は0.42×(2370cm-1における吸光度)/(1800cm-1における吸光度)として算出した。
【0042】
【実施例】
[例1]
内容積1.1リットルのステンレス製反応容器を脱気し、水の470g、HCFC225cbの290g、CF2=CFO(CF23COOCH3の10.5g、テトラフルオロエチレン(以下、TFEという)の80g、メタノールの45gを仕込んだ。温度を50℃に保持して、重合開始剤ビス(パーフルオロブチリル)パーオキシドの濃度が0.25重量%のHCFC225cb溶液を仕込み、反応を開始させた。反応中、系内にTFEを導入し、反応圧力を13.0kg/cm2に保持した。重合開始剤は重合速度がほぼ一定になるように断続的に仕込んだ。TFEの導入量が100gになった時点で反応を終了させ、含フッ素共重合体A1の白色粉末の106gを得た。NMR分析の結果、含フッ素共重合体A1はCF2=CFO(CF23COOCH3に基づく重合単位の含有量が0.4モル%、融点が315℃、結晶化温度が295℃、結晶化熱が51J/g、372℃における溶融粘度が7.8×104ポアズであった。
【0043】
続いて、含フッ素共重合体A1を300℃のオーブンで24時間熱処理し、含フッ素共重合体B1を得た。IR分析の結果、含フッ素共重合体B1には−COOCH3に由来するピークが検出されず、融点が320℃、結晶化温度が302℃、結晶化熱が43J/g、372℃における溶融粘度が5.3×106ポアズであった。
【0044】
つぎに、TFEに基づく重合単位/CF2=CFOC37に基づく重合単位が98.7/1.3(モル比)であり、372℃における溶融粘度が2.5×105ポアズ、結晶化温度が280℃であるPFA1を用い、このPFA1のビーズ状物の95重量部と上記の含フッ素共重合体B1の粉末の5重量部を、2軸の混練押出機により溶融混練して、含フッ素重合体組成物1のペレットを得た。溶融混練条件は、シリンダ温度C1/C2/C3/C4/C5/C6/H=200℃/350℃/380℃/380℃/380℃/385℃/385℃、フィード量20kg/hr、スクリュ回転数80rpmであった。得られたペレットの372℃における溶融粘度は2.7×105ポアズであった。
【0045】
この含フッ素重合体組成物1のペレットを圧縮成形して、厚さ200μmのフィルムを得た。このフィルムにおける球晶サイズは1〜3μmであった。また、この含フッ素重合体組成物1から得られた押出成形チューブにおける内面粗度(Rt)は0.3μmであった。
【0046】
溶融混練条件として、シリンダ温度C1/C2/C3/C4/C5/C6/H=200℃/390℃/390℃/390℃/390℃/395℃/395℃、フィード量10kg/hrと過剰な条件に変更しても、球晶サイズ、押出成形チューブの内面粗度(Rt)は同じであった。
【0047】
[例2]
CF2=CFO(CF23COOCH3の0.8g、メタノールの50gを用いる以外は例1と同様に重合を行い、含フッ素共重合体A2の白色粉末の105gを得た。NMR分析の結果、含フッ素共重合体A2は、CF2=CFO(CF23COOCH3に基づく重合単位の含有量が0.09モル%、融点が325℃、結晶化温度が309℃、結晶化熱が53.7J/g、372℃における溶融粘度が9.7×104ポアズであった。含フッ素共重合体A2を300℃で24時間熱処理し、得られた含フッ素共重合体B2をIR分析した結果、−COOCH3に由来するピークは検出されず、融点が327℃、結晶化温度が315℃、結晶化熱が47J/g、372℃における溶融粘度が1.6×105ポアズであった。
【0048】
含フッ素共重合体B2の5重量部と例1で用いたPFA1のビーズ状物の95重量部を、2軸の混練押出機により溶融混練して、含フッ素重合体組成物2のペレットを得た。溶融混練条件は、シリンダ温度C1/C2/C3/C4/C5/C6/H=200℃/350℃/380℃/380℃/380℃/385℃/385℃、フィード量20kg/hr、スクリュ回転数80rpmであった。得られたペレットの372℃における溶融粘度は2.8×105ポアズであった。
【0049】
この含フッ素重合体組成物2のペレットを圧縮成形して、厚さ200μmのフィルムを得た。このフィルムにおける球晶サイズは1〜3μmであった。また、この含フッ素重合体組成物2から得られた押出成形チューブの内面粗度(Rt)は0.3μmであった。
【0050】
溶融混練条件として、シリンダ温度C1/C2/C3/C4/C5/C6/H=200℃/390℃/390℃/390℃/390℃/395℃/395℃、フィード量10kg/hrと過剰な条件に変更しても、球晶サイズ、押出成形チューブの内面粗度(Rt)は同じであった。
【0051】
[例3(比較例)]
CF2=CFO(CF23COOCH3を用いず、メタノールの20gを用いる以外は例1と同様にしてTFEを重合し、白色PTFE粉末の105gを得た。このPTFE粉末は、結晶化温度が315℃、結晶化熱が55J/g、372℃における溶融粘度が1.7×106ポアズであった。
【0052】
このPTFE粉末の5重量部と例1で用いたPFA1のビーズ状物の95重量部を、2軸の混練押出機により溶融混練して、ペレット状の重合体組成物を得た。溶融混練条件は、シリンダ温度C1/C2/C3/C4/C5/C6/H=200℃/350℃/380℃/380℃/380℃/385℃/385℃、フィード量20kg/hr、スクリュ回転数80rpmであった。得られたペレットの372℃における溶融粘度は2.8×105ポアズであった。
【0053】
この重合体組成物のペレットを圧縮成形して、厚さ200μmのフィルムを得た。このフィルムにおける球晶サイズは2〜5μmであった。また、この重合体組成物から得られた押出成形チューブの内面粗度(Rt)は0.4μmであった。
【0054】
溶融混練条件として、シリンダ温度C1/C2/C3/C4/C5/C6/H=200℃/390℃/390℃/390℃/390℃/395℃/395℃、フィード量10kg/hrと過剰な条件に変更すると、球晶サイズは10〜20μm、押出成形チューブの内面粗度(Rt)は0.9μmに増大した。
【0055】
【発明の効果】
PFAの物性、加工性を損なうことなく、溶融成形において微細な球晶を生成するPFA組成物が容易に得られ、表面平滑性に優れた成形物を得ることができる。また、過剰な溶融混練条件においても、球晶を微細にする効果が低下しないし、表面平滑性の低下も認められない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in crystallization characteristics of a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA).
[0002]
[Prior art]
PFA is a polymer material having excellent heat resistance, chemical resistance, solvent resistance, and the like, and is used for various applications by taking advantage of its characteristics. However, PFA is a crystalline resin, and many crystal nuclei are generated in the melt during cooling and solidification after melt molding. Spherulite grows in the same direction around this crystal nucleus, and the growth of the spherulite stops after touching each other. It is known that the surface smoothness of a molded product in which spherulites are generated depends on the size of the spherulites, and if the spherulites are large, the surface smoothness is inferior. If the spherulites grow greatly and the surface smoothness of the molded product is inferior, impurities are likely to accumulate on the surface when used as a tube. When used as a pipe joint, stress cracks are likely to occur.
[0003]
It is known that the size of the spherulite depends on the cooling rate after melt molding. Finer spherulites are generated as the temperature is rapidly cooled, but depending on the molding method, there are cases where rapid cooling is impossible. For example, in the extrusion molding of thick-walled tubes, the inner surface of the pipe is not rapidly cooled when the extruded tube is cooled from the outer surface, so that a large spherulite is generated on the inner surface of the pipe and the smoothness of the inner surface is poor. There is a need for PFAs having crystallization characteristics that produce fine spherulites even at relatively slow cooling rates.
[0004]
As a method for making PFA spherulites fine, a method is known in which a small amount of specific polytetrafluoroethylene (hereinafter referred to as PTFE) is added to PFA as a crystal nucleating agent (JP-A-7-70397). However, fish eyes are likely to occur when PTFE and PFA are not sufficiently melt-kneaded. Moreover, when it melts and kneads excessively, PTFE mixes with PFA, and there is a problem that the effect of making spherulites fine as a crystal nucleating agent decreases.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to improve the crystallization characteristics so that small spherulites are formed without impairing the physical properties and moldability of PFA.
[0006]
[Means for Solving the Problems]
In the present invention, the unit represented by Formula 1 is 96 to 99.99 mol%, the unit represented by Formula 2 is 0.01 to 1 mol%, and the unit represented by Formula 3 is optionally 0 to A fluorine-containing copolymer (B) obtained by heat-treating a copolymer (A) (hereinafter referred to as a fluorine-containing copolymer (A)) containing 3 mol% at 200 ° C. or higher, and PFA (C) A fluorine-containing polymer composition containing 0.05 to 20 parts by weight of (B) with respect to a total of 100 parts by weight of (B) and (C).
[0007]
[Chemical formula 2]
Figure 0003724257
[0008]
In the formula, X is a fluorine atom or a chlorine atom, R f is a divalent fluorine-substituted organic group, Y is a hydroxyalkyl group, a carboxyl group, or a monovalent carboxylic acid derivative group, and Z is It is a monovalent fluorine-substituted organic group other than —O—R f Y.
[0009]
Moreover, this invention provides the molded object formed by melt-molding the said fluoropolymer composition.
[0010]
The fluorine-containing copolymer (B) is obtained by heat-treating the fluorine-containing copolymer (A) and functions as a crystal nucleating agent for PFA (C).
Even if the fluoropolymer composition of the present invention is excessively melt-kneaded, the effect as a crystal nucleating agent is not reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a composition comprising a fluorinated copolymer (B) and PFA. By heat-treating the fluorine-containing copolymer (A), the melt viscosity of the resulting fluorine-containing copolymer (B) increases. This is because the functional group —O—R f Y part in Formula 2 in the molecule of the fluorine-containing copolymer (A) undergoes a crosslinking reaction with the same functional group part in the other molecule by heat treatment. It is presumed that the fluorine-containing copolymer (B) having a structure is generated. However, this description is intended to help understanding of the present invention and does not limit the present invention.
[0012]
The fluorine-containing copolymer (B) in the composition of the present invention can be a crystal nucleating agent for PFA. When a small amount of the fluorinated copolymer (B) is added to PFA and melt-kneaded and molded, fine spherulites are generated in the molded product. Further, even if it is excessively melt-kneaded, the effect as a crystal nucleating agent is not impaired unlike PTFE. This effect is presumably because the fluorine-containing copolymer (B) is not completely mixed with PFA due to crosslinking.
[0013]
In the unit of Formula 1, X is more preferably a fluorine atom from the viewpoint of chemical resistance.
In the unit of Formula 2, R f, that is, the divalent fluorine-substituted organic group may have one or more substituted fluorine atoms, and a fully fluorinated divalent fluorine-substituted organic group is more preferable. R f is preferably a divalent fluorine-substituted organic group in which a chain is formed of only carbon or carbon and oxygen.
[0014]
Specific examples thereof include a perfluoroalkylene group or a perfluoroalkylene group containing an ether bond. The number of carbon atoms constituting the R f chain is preferably in the range of 1 to 15, particularly 1 to 10. R f preferably has a linear structure, but may have a branched structure. In the case of a branched structure, a short chain having about 1 to 3 carbon atoms in the branched portion is preferable. Particularly preferred R f is — (CF 2 ) m — (m is an integer of 2 to 6).
[0015]
Specific examples of R f include, for example, — (CF 2 ) 2 —, — (CF 2 ) 3 —, — (CF 2 ) 4 —, — (CF 2 ) 5 —, — (CF 2 ) 6 —, — CF 2 CF (CF 3 ) O (CF 2 ) 3 —, —CF 2 CF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 2 —, — (CF 2 CF 2 O) 2 — (CF 2 ) 3− , —CF 2 CF (CF 3 ) CF 2 CF 2 CF (CF 3 ) CF 2 — and the like.
[0016]
Y in Formula 2 is a hydroxyalkyl group, a carboxyl group, or a monovalent carboxylic acid derivative group. As the carboxylic acid derivative group, -COOA (A is an alkyl group having about 1 to 3 carbon atoms, a fluoroalkyl group having about 1 to 3 carbon atoms, an alkali metal, an ammonium base, or a substituted ammonium base) or -COB (B is fluorine Atom or chlorine atom). Among these, preferable Y is a hydroxyalkyl group and an alkoxycarbonyl group, and —CH 2 OH, —CH 2 CH 2 OH, and —COOCH 3 are preferable.
[0017]
Content of the unit represented by Formula 2 in a fluorine-containing copolymer (A) is 0.01-1 mol%. If it is less than 0.01 mol%, the crosslinking density of the fluorine-containing copolymer (B) is insufficient, and if it is excessively melt-kneaded with PFA, it will be mixed with PFA and its effect as a crystal nucleating agent will be small. If it exceeds 1 mol%, the melt viscosity of the fluorinated copolymer (B) will increase too much, making it difficult to knead with PFA and causing fish eyes.
Only one type of unit of Formula 2 may be included, or two or more types may be included.
[0018]
In the unit of Formula 3, Z, that is, the monovalent fluorine-substituted organic group is a monovalent fluorine-substituted organic group other than —O—R f Y of Formula 2, and has a carbon number from the viewpoint of heat resistance and chemical resistance. 1-10 perfluoroalkoxy groups are preferred. If the content of Formula 3 exceeds 3 mol%, the melting point of the fluorine-containing copolymer (B) is too low, and the effect as a crystal nucleating agent is lowered.
[0019]
The fluorine-containing copolymer (B) can be obtained by heat-treating the fluorine-containing polymer (A) at a temperature of 200 ° C. or higher. If it is less than 200 ° C., —O—R f Y in Formula 2 is difficult to undergo a crosslinking reaction. Above the melting point, —O—R f Y undergoes a crosslinking reaction. However, since the fluoropolymer (B) is fused, if it is not pulverized and added to PFA, it may cause fish eyes. A heat treatment temperature of less than is good. The heat treatment is preferably performed for a period of time until 50% or more, preferably 90% or more, of Y in Formula 2 is decomposed and a crosslinking reaction occurs. If Y in Formula 2 does not undergo a crosslinking reaction and remains in a large amount, the chemical resistance of the composition may be reduced. The heat treatment time is preferably 3 hours or more at 300 ° C., for example. The heat treatment in the present invention is desirably performed in an atmosphere containing oxygen.
[0020]
A mechanism presumed that a cross-linked structure is generated in the fluorine-containing copolymer (B) is shown below. In the fluorine-containing copolymer (A), Y in Formula 2 is recognized by IR analysis. In the fluorine-containing copolymer (B), it is recognized that the amount of Y is reduced as compared with the fluorine-containing copolymer (A), or Y is not recognized. Further, the melt viscosity of the fluorinated copolymer (B) is larger than that of the fluorinated copolymer (A), and the rate of increase is determined by the content ratio of Y in Formula 2 in the fluorinated copolymer (A). The more it is, the bigger it is.
[0021]
For example, —R f Y in Formula 2 is — (CF 2 ) 3 COOCH 3 , the unit represented by Formula 2 is 0.2 mol%, and the unit represented by Formula 1 is 99.8 mol%. The fluorine-containing copolymer (B) obtained by heat-treating the fluorine-containing copolymer (A) having a melt viscosity of 7.7 × 10 4 poises at 300 ° C. for 20 hours has a —COOCH by IR analysis. No peak derived from 3 is detected and its melt viscosity rises to 1.6 × 10 6 poise.
[0022]
As a mechanism for forming a cross-linked structure, Y, for example, —COOCH 3 causes hydrolysis reaction, decarboxylation reaction, etc. by heat and moisture in the air to generate —CF 2 CF 2 .radical, and then between the copolymer chains. It is presumed that the two radicals are coupled to form a crosslinked structure. Therefore, the fluorine-containing copolymer (B) is a modified PTFE containing a polymer unit based on a tetrafluoroethylene homopolymer (PTFE), a trace amount of hexafluoropropylene of less than 1% by weight, perfluoro (alkyl vinyl ether) and the like. It is presumed to have a different structure.
[0023]
Moreover, it is preferable that the crystallization heat of a fluorine-containing copolymer (B) is 40-49 J / g. When a crosslinked structure is formed by heat treatment, the crystallinity is lowered and the crystallization heat tends to be lowered. If the heat of crystallization exceeds 49 J / g, the crosslinking density of the fluorinated copolymer (B) is insufficient, and if it is excessively melt-kneaded with PFA, the effect as a crystal nucleating agent is reduced. On the other hand, if it is less than 40 J / g, the crosslinking density becomes too high and it becomes difficult to mix with PFA, which causes fish eyes.
[0024]
The ratio of the fluorine-containing copolymer (B) in the composition of the present invention is 0.05 to 20 parts by weight with respect to a total of 100 parts by weight of the PFA and the fluorine-containing copolymer (B). If it is less than 0.05 part by weight, the effect of refining the spherulites is small, and if it exceeds 20 parts by weight, the moldability tends to be impaired.
[0025]
The fluorine-containing copolymer (A) and the production method thereof are known (Japanese Patent Laid-Open Nos. 3-91513 and 3-234533).
The fluorine-containing copolymer (A) comprises a monomer represented by formula 4, a monomer represented by formula 5, and, if necessary, a monomer represented by formula 6 under the action of a polymerization initiation source. Obtained by copolymerization. However, X in Formula 4, R f and Y in Formula 5, and Z in Formula 6 are all the same as described above.
[0026]
[Chemical 3]
Figure 0003724257
[0027]
As the polymerization initiation source, ionizing radiation, a polymerization initiator such as an organic peroxide polymerization initiator, a redox polymerization initiator, or the like can be employed. As the polymerization method, conventionally known polymerization methods such as suspension polymerization, emulsion polymerization, solution polymerization and bulk polymerization can be employed.
[0028]
Examples of the polymerization initiator include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, persulfates and the like.
[0029]
Examples of the polymerization medium include hydrochlorofluorocarbons such as CClF 2 CF 2 CClFH (hereinafter referred to as HCFC225cb) in solution polymerization and t-butanol. In suspension polymerization and emulsion polymerization, water or water and other solvents are used. The mixed solvent is used. The polymerization temperature can be selected from the range of 0 to 100 ° C., and the polymerization pressure can be selected from the range of 0.5 to 30 kg / cm 2 .
[0030]
The perfluoro (alkyl vinyl ether) which is a raw material monomer of PFA in the present invention is preferably a perfluoro (alkyl vinyl ether) having 3 to 10 carbon atoms, particularly 5 carbon atoms from the viewpoint of mechanical strength at high temperatures of PFA. Perfluoro (propyl vinyl ether) is preferred. Moreover, it is preferable that the content rate of the polymer unit based on the perfluoro (alkyl vinyl ether) in PFA is about 1-3 mol% from a viewpoint of the moldability of PFA and the mechanical strength in high temperature.
[0031]
The melt viscosity of PFA is not particularly limited, but the melt viscosity at 372 ° C. is preferably 5 × 10 3 to 5 × 10 5 poise from the viewpoint of moldability.
The fluoropolymer composition of the present invention has crystallization characteristics with a small spherulite size without impairing the excellent physical properties and moldability of PFA.
[0032]
The method for melt-kneading the fluoropolymer composition is not particularly limited. A method of mixing the fluorine-containing copolymer (B) with molten PFA while stirring, a method of simultaneously feeding and kneading the PFA and the fluorine-containing copolymer (B) to a single-screw or biaxial kneader-extruder, and the like. It is done. In view of simplicity, a method of kneading with a kneading extruder is preferred. The form of PFA and fluorine-containing copolymer (B) at the time of kneading is not particularly limited, and pellets, beads, powders, and the like are used. The form of fluorine-containing copolymer (B) is preferably powder.
[0033]
The fluoropolymer composition of the present invention can be melt-molded. Melt molding refers to molding a molded product such as a film, a sheet, or a tube by using an extrusion molding machine, an injection molding machine or a compression molding machine, and various types of fluoropolymer compositions. Including forming a molded body coated on a substrate.
[0034]
The fluoropolymer composition of the present invention gives a molded product having a spherulite size of 10 μm or less, preferably 5 μm or less by melt molding, and an extruded tube having an inner surface roughness of 0.3 μm or less. give. Furthermore, since it has a crystallization characteristic that easily produces fine spherulites even at a relatively slow cooling rate, it is possible to smoothly and advantageously obtain a tube with excellent inner surface smoothness even when forming a thick tube by an extrusion method. it can.
[0035]
In the present invention, spherulite size, inner surface roughness, melt viscosity, melting point, heat of crystallization, crystallization temperature, and copolymer composition are measured by the following methods.
[0036]
[Spherulite size]
The sample is compression-molded into a film having a thickness of 200 μm at 340 ° C., and then rapidly cooled to around room temperature in a cooling press for about 5 minutes to prepare a test film. The spherulite size was measured by observing the surface of the test film with a polarizing microscope.
[0037]
[Inner surface roughness]
Using a single screw extruder, the sample is extruded into a tube having an inner diameter of 8 mm and an outer diameter of 10 mm at 380 ° C., and then water-cooled from the outside of the tube to prepare a test tube. The inner surface roughness (R t ) of the test tube was measured with a roughness meter (Surfcoder SE-30H, manufactured by Kosaka Laboratory).
[0038]
[Melt viscosity]
From a flow value Q (cm 3 / sec) when extruded at a predetermined temperature using a Shimadzu flow tester with a nozzle length of 8 mm and a nozzle diameter of 2.1 mm, the melt viscosity (poise) = It calculated | required by the formula of 409 / Q.
[0039]
[Melting point]
10 mg of a sample was measured using a DTA (manufactured by Seiko Denshi) at a rate of temperature increase of 10 ° C./min, and the temperature at the end of the endothermic peak was taken as the melting point.
[0040]
[Heat of crystallization, crystallization temperature]
A 10 mg sample was cooled at a rate of 10 ° C./min from a molten state using DSC (manufactured by Seiko Denshi), and the heat of crystallization and its peak temperature were measured. The peak temperature was taken as the crystallization temperature.
[0041]
[Copolymer composition]
A molded film having a thickness of about 30 μm was subjected to IR analysis and determined as follows. (CF 2 = polymer unit based on CFO (CF 2 ) 3 COOCH 3 ) / (polymer unit based on tetrafluoroethylene) (molar ratio) is 0.42 × (absorbance at 2370 cm −1 ) / (absorbance at 1800 cm −1 ) ).
[0042]
【Example】
[Example 1]
A stainless steel reaction vessel having an internal volume of 1.1 liters was degassed, and 470 g of water, 290 g of HCFC225cb, 10.5 g of CF 2 = CFO (CF 2 ) 3 COOCH 3 , tetrafluoroethylene (hereinafter referred to as TFE) 80 g and 45 g of methanol were charged. While maintaining the temperature at 50 ° C., an HCFC225cb solution having a polymerization initiator bis (perfluorobutyryl) peroxide concentration of 0.25 wt% was charged to initiate the reaction. During the reaction, TFE was introduced into the system, and the reaction pressure was maintained at 13.0 kg / cm 2 . The polymerization initiator was intermittently charged so that the polymerization rate was almost constant. The reaction was terminated when the amount of TFE introduced reached 100 g to obtain 106 g of a white powder of fluorine-containing copolymer A1. Results of NMR analysis, the fluorine-containing copolymer A1 is CF 2 = CFO (CF 2) 3 content of the polymerized units based on COOCH 3 0.4 mol%, a melting point of 315 ° C., a crystallization temperature of 295 ° C., crystals The heat of formation was 51 J / g and the melt viscosity at 372 ° C. was 7.8 × 10 4 poise.
[0043]
Subsequently, the fluorinated copolymer A1 was heat-treated in an oven at 300 ° C. for 24 hours to obtain a fluorinated copolymer B1. As a result of IR analysis, no peak derived from —COOCH 3 was detected in the fluorinated copolymer B1, the melting point was 320 ° C., the crystallization temperature was 302 ° C., the crystallization heat was 43 J / g, and the melt viscosity at 372 ° C. Was 5.3 × 10 6 poise.
[0044]
Next, the polymerized unit based on TFE / the polymerized unit based on CF 2 = CFOC 3 F 7 is 98.7 / 1.3 (molar ratio), the melt viscosity at 372 ° C. is 2.5 × 10 5 poise, crystals Using PFA1 having a conversion temperature of 280 ° C., 95 parts by weight of the PFA1 beads and 5 parts by weight of the powder of the fluorinated copolymer B1 were melt-kneaded by a twin-screw kneading extruder, A pellet of fluoropolymer composition 1 was obtained. Melting and kneading conditions are: cylinder temperature C1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C / 350 ° C / 380 ° C / 380 ° C / 380 ° C / 380 ° C / 385 ° C, feed amount 20 kg / hr, screw rotation It was several 80 rpm. The melt viscosity at 372 ° C. of the obtained pellet was 2.7 × 10 5 poise.
[0045]
The pellet of this fluoropolymer composition 1 was compression molded to obtain a film having a thickness of 200 μm. The spherulite size in this film was 1-3 μm. Further, the inner surface roughness (R t ) of the extruded tube obtained from this fluoropolymer composition 1 was 0.3 μm.
[0046]
As melt-kneading conditions, cylinder temperature C1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C / 390 ° C / 390 ° C / 390 ° C / 390 ° C / 395 ° C / 395 ° C, feed amount of 10 kg / hr is excessive. Even when the conditions were changed, the spherulite size and the inner surface roughness (R t ) of the extruded tube were the same.
[0047]
[Example 2]
0.8g of CF 2 = CFO (CF 2) 3 COOCH 3, except using 50g of methanol subjected to the same polymerization as in Example 1 to obtain 105g of a white powder of the fluorocopolymer A2. NMR analysis of the results, the fluorine-containing copolymer A2 is, CF 2 = CFO (CF 2 ) 3 content of the polymerized units based on COOCH 3 0.09 mol%, a melting point of 325 ° C., a crystallization temperature of 309 ° C., The heat of crystallization was 53.7 J / g, and the melt viscosity at 372 ° C. was 9.7 × 10 4 poise. The fluorine-containing copolymer A2 was heat-treated at 300 ° C. for 24 hours, and as a result of IR analysis of the obtained fluorine-containing copolymer B2, no peak derived from —COOCH 3 was detected, the melting point was 327 ° C., and the crystallization temperature. Was 315 ° C., the heat of crystallization was 47 J / g, and the melt viscosity at 372 ° C. was 1.6 × 10 5 poise.
[0048]
5 parts by weight of the fluorocopolymer B2 and 95 parts by weight of the PFA1 beads used in Example 1 were melt-kneaded by a twin-screw kneading extruder to obtain a pellet of the fluoropolymer composition 2. It was. Melting and kneading conditions are: cylinder temperature C1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C / 350 ° C / 380 ° C / 380 ° C / 380 ° C / 380 ° C / 385 ° C, feed amount 20 kg / hr, screw rotation It was several 80 rpm. The melt viscosity at 372 ° C. of the obtained pellet was 2.8 × 10 5 poise.
[0049]
The pellets of this fluoropolymer composition 2 were compression molded to obtain a film having a thickness of 200 μm. The spherulite size in this film was 1-3 μm. Further, the inner surface roughness (R t ) of the extruded tube obtained from this fluoropolymer composition 2 was 0.3 μm.
[0050]
As melt-kneading conditions, cylinder temperature C1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C / 390 ° C / 390 ° C / 390 ° C / 390 ° C / 395 ° C / 395 ° C, feed amount 10 kg / hr Even when the conditions were changed, the spherulite size and the inner surface roughness (R t ) of the extruded tube were the same.
[0051]
[Example 3 (comparative example)]
CF 2 = without the CFO (CF 2) 3 COOCH 3 , except using 20g of methanol in the same manner as in Example 1 by polymerizing TFE, to obtain a 105g of white PTFE powder. This PTFE powder had a crystallization temperature of 315 ° C., a crystallization heat of 55 J / g, and a melt viscosity at 372 ° C. of 1.7 × 10 6 poise.
[0052]
5 parts by weight of this PTFE powder and 95 parts by weight of the PFA1 beads used in Example 1 were melt-kneaded by a biaxial kneading extruder to obtain a pellet-shaped polymer composition. Melting and kneading conditions were as follows: cylinder temperature C1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C./350° C./380° C./380° C./380° C./385° C./385° C., feed amount 20 kg / hr, screw rotation It was several 80 rpm. The resulting pellet had a melt viscosity of 2.8 × 10 5 poise at 372 ° C.
[0053]
The polymer composition pellets were compression molded to obtain a film having a thickness of 200 μm. The spherulite size in this film was 2-5 μm. Further, the inner surface roughness (R t ) of the extruded tube obtained from this polymer composition was 0.4 μm.
[0054]
As melt-kneading conditions, cylinder temperature C1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C / 390 ° C / 390 ° C / 390 ° C / 390 ° C / 395 ° C / 395 ° C, feed amount 10 kg / hr When changed to the conditions, the spherulite size increased to 10-20 μm and the inner surface roughness (R t ) of the extruded tube increased to 0.9 μm.
[0055]
【The invention's effect】
Without impairing the physical properties and processability of PFA, a PFA composition that produces fine spherulites in melt molding can be easily obtained, and a molded product having excellent surface smoothness can be obtained. Further, even under excessive melt-kneading conditions, the effect of making the spherulites fine is not lowered, and the surface smoothness is not lowered.

Claims (4)

式1で表される単位を96〜99.99モル%、式2で表される単位を0.01〜1モル%、および任意成分として式3で表される単位を0〜3モル%の割合で含有する共重合体(A)を200℃以上で熱処理した含フッ素共重合体(B)と、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(C)とを含む組成物であり、(B)と(C)の合計100重量部に対して(B)を0.05〜20重量部の割合で含有する含フッ素重合体組成物。
Figure 0003724257
ただし、式中、Xはフッ素原子または塩素原子であり、Rfは2価のフッ素置換有機基であり、Yはヒドロキシアルキル基、カルボキシル基、または1価のカルボン酸誘導体基であり、Zは−O−RfY以外の1価のフッ素置換有機基である。
96 to 99.99 mol% of the unit represented by Formula 1, 0.01 to 1 mol% of the unit represented by Formula 2, and 0 to 3 mol% of the unit represented by Formula 3 as an optional component. A composition comprising a fluorine-containing copolymer (B) obtained by heat-treating a copolymer (A) contained at a ratio of 200 ° C. or higher and a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (C). The fluorine-containing polymer composition containing (B) at a ratio of 0.05 to 20 parts by weight with respect to 100 parts by weight as a total of (B) and (C).
Figure 0003724257
In the formula, X is a fluorine atom or a chlorine atom, R f is a divalent fluorine-substituted organic group, Y is a hydroxyalkyl group, a carboxyl group, or a monovalent carboxylic acid derivative group, and Z is It is a monovalent fluorine-substituted organic group other than —O—R f Y.
パーフルオロ(アルキルビニルエーテル)が、パーフルオロ(プロピルビニルエーテル)である請求項1記載の含フッ素重合体組成物。The fluoropolymer composition according to claim 1, wherein the perfluoro (alkyl vinyl ether) is perfluoro (propyl vinyl ether). 請求項1または2記載の含フッ素重合体組成物を溶融成形してなる成形体。A molded article obtained by melt-molding the fluoropolymer composition according to claim 1 or 2. 該成形体を構成する含フッ素重合体の球晶サイズが10μm以下であることを特徴とする請求項3記載の成形体。4. The molded article according to claim 3, wherein the spherulite size of the fluoropolymer constituting the molded article is 10 μm or less.
JP13329099A 1999-05-13 1999-05-13 Polymer composition and molded body thereof Expired - Fee Related JP3724257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13329099A JP3724257B2 (en) 1999-05-13 1999-05-13 Polymer composition and molded body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13329099A JP3724257B2 (en) 1999-05-13 1999-05-13 Polymer composition and molded body thereof

Publications (2)

Publication Number Publication Date
JP2000319471A JP2000319471A (en) 2000-11-21
JP3724257B2 true JP3724257B2 (en) 2005-12-07

Family

ID=15101204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13329099A Expired - Fee Related JP3724257B2 (en) 1999-05-13 1999-05-13 Polymer composition and molded body thereof

Country Status (1)

Country Link
JP (1) JP3724257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300301A (en) * 2005-10-31 2008-11-05 大金工业株式会社 Method for molding polytetrafluoroethylene, polytetrafluoroethylene molded body, crosslinkable polytetrafluoroethylene, crosslinked polytetrafluoroethylene powder, resin blend composition, and molded

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264327A (en) * 1997-03-27 1998-10-06 Asahi Glass Co Ltd Composite tube
JP3627497B2 (en) * 1998-01-30 2005-03-09 旭硝子株式会社 Fluoropolymer composition and molded article thereof

Also Published As

Publication number Publication date
JP2000319471A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
EP1053284B1 (en) Mixtures of thermoplastic fluoropolymers
JP5232653B2 (en) Core / shell polymer
EP1454963A1 (en) Resin composition and process for producing molding
JP4719975B2 (en) Spherical micronizing agent for crystalline fluororesin, and crystalline fluororesin composition comprising the micronizing agent
JPH027963B2 (en)
JP2009516068A (en) Fluoropolymer blending method
JP2002053620A (en) Tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer and method for producing the same
JPH05186532A (en) Particle of modified polytetrafluoroethylene copolymer
JP3550891B2 (en) Tetrafluoroethylene copolymer blend
JP3724257B2 (en) Polymer composition and molded body thereof
US20040102572A1 (en) Resin composition and process for producing molding
US20150299402A1 (en) Process for preparing a fluoropolymer composition
JP2003519260A (en) Perfluoro copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether
JP2012503677A (en) Application of ethylene / tetrafluoroethylene copolymer
JP3627497B2 (en) Fluoropolymer composition and molded article thereof
JP3791223B2 (en) Ethylene / tetrafluoroethylene copolymer composition
JP3521643B2 (en) Tube molding
JP3783443B2 (en) Ethylene / tetrafluoroethylene copolymer composition with improved moldability
JPH11210941A (en) Tube
JP3458601B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition
JPH11210942A (en) Tube
JP2001151971A (en) Fluorine-containing resin molded article with ultra fine spherulite
JP2023536649A (en) Processable Tetrafluoroethylene Copolymer
JPH1110653A (en) Release film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees