JP3458601B2 - Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition - Google Patents

Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition

Info

Publication number
JP3458601B2
JP3458601B2 JP15246596A JP15246596A JP3458601B2 JP 3458601 B2 JP3458601 B2 JP 3458601B2 JP 15246596 A JP15246596 A JP 15246596A JP 15246596 A JP15246596 A JP 15246596A JP 3458601 B2 JP3458601 B2 JP 3458601B2
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene
perfluoro
pfa
vinyl ether
alkyl vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15246596A
Other languages
Japanese (ja)
Other versions
JPH101585A (en
Inventor
篤 船木
輝夫 高倉
直子 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15246596A priority Critical patent/JP3458601B2/en
Publication of JPH101585A publication Critical patent/JPH101585A/en
Application granted granted Critical
Publication of JP3458601B2 publication Critical patent/JP3458601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、表面平滑性、耐ス
トレスクラック性に優れたテトラフルオロエチレン/ペ
ルフルオロ(アルキルビニルエーテル)共重合体(以
下、PFAという)成形体が得られるPFA組成物に関
する。 【0002】 【従来の技術】PFAは、耐熱性、耐薬品性、耐溶剤性
等が優れ、しかも熱可塑性で容易に成形加工できる高分
子材料であることから、近年その特徴を生かしてウエハ
ーキャリアやきわめて高いクリーン度を要求される流体
移送のチューブ等の半導体製造装置の部品、容器の内面
コーティングの素材、電線被覆材等種々の用途に用いら
れている。 【0003】PFAは結晶性樹脂であり、溶融成形後の
冷却され固化する際に、PFAが再結晶することにより
溶融体内に多数の結晶核が生じ、この結晶核を中心に等
方向に結晶が生長するが、互いの結晶が境を接すること
により生長が止まり、いわゆる球晶が生成する。PFA
成形体の表面平滑性はこの球晶の大きさに依存すること
が知られている。 【0004】従来のPFAは、一般的に球晶が大きく成
長し、その結果として成形体の表面に多数の凹凸が発生
する。このようなPFAから成形されたチューブでは、
内周面に沿って流動する流体に乱流が生じ、このときの
輸送抵抗により流体の円滑な輸送が妨げられる。 【0005】例えば、流体の流速が遅いときには表面凹
凸部に流れの生じない箇所が発生し、超純水の場合には
該部分に流体が長く滞留することにより、該部分にバク
テリア等が発生して、流体のクリーン度が損なわれると
いう問題があった。また、容器の内面コーティング材と
して使用した場合、大きな球晶を生じた塗膜はストレス
クラックを生じやすく耐久性が低下するという問題もあ
った。 【0006】球晶の大きさは溶融成形後の冷却速度に依
存することが知られており、急冷するほど微細な球晶が
生成する。しかし、成形方法によっては急冷が不可能な
場合がある。例えば、押出成形法により厚肉チューブを
得る場合、押出されたチューブを外面から冷却するとチ
ューブ内面は急冷されないため、大きな球晶が生成しチ
ューブ内面の平滑性が劣るという問題がある。 【0007】PFAにペルフルオロ(アルキルビニルエ
ーテル)含有量の少ないPFA(特開平8−4126
7)または低分子量のテトラフルオロエチレン重合体
(以下、PTFEという)(特開平7−70394)を
添加することにより、結晶化特性を改良し、微細な結晶
を得る方法が提案されている。添加剤が結晶核となり、
この結晶核が多数存在するために結晶が大きく成長する
前に隣接の結晶と接するために生長が止まり、球晶サイ
ズが小さくなると考えられる。 【0008】しかし、これらの方法では添加物をPFA
と混練する操作条件の設定範囲が狭く、PFAと添加物
との混練が弱すぎると混合性が悪くチューブに成形した
場合に添加物が塊となって、いわゆるフィッシュアイと
なる。また混練が強すぎるとPFAと添加物が均一に混
合し、添加物が結晶核の役割をしえなくなり球晶サイズ
を小さくする効果が著しく低下する。 【0009】 【発明が解決しようとする課題】本発明は、PFA自体
の優れた物性や成形加工性を損なうことなく、球晶サイ
ズが小さい結晶化特性を有し、また、添加物である改質
PTFEを広い操作範囲でPFAと混練しても、表面平
滑性、耐ストレスクラック性に優れた成形体を与えうる
PFA組成物を提供する。 【0010】 【課題を解決するための手段】すなわち、本発明は、P
FAの100重量部当たり、下記の改質PTFEを0.
05〜20重量部の割合で含有する、PFAと改質PT
FEとを含む組成物である。改質PTFE:テトラフル
オロエチレンとペルフルオロ(ジビニロキシアルカン)
との共重合体であって、テトラフルオロエチレン基づく
重合単位とペルフルオロ(ジビニロキシアルカン)に基
づく重合単位とのモル比が99〜99.999/1〜
0.001であり、その容量流速Xが0.01〜20m
3 /秒である共重合体。ただし、容量流速Xは、高化
式フローテスターを使用して、温度380℃、荷重20
kg/cm2 で、直径2mm、長さ8mmのノズルか
ら、当該重合体を溶融流出させ、単位時間に流出する重
合体の容量である。 【0011】 【発明の実施の形態】本発明において、PFAの容量流
速Yは0.5〜100mm3 /秒であることが好まし
い。ただし、容量流速Yは、高化式フローテスターを使
用して、温度380℃、荷重7kg/cm2 で、直径2
mm、長さ8mmのノズルからPFAを溶融流出させ、
単位時間に流出するPFAの容量である。 【0012】容量流速Yが小さすぎると成形加工性が充
分でなく、また大きすぎると強度が低下する。より好ま
しいPFAの容量流速Yは、1〜50mm3 /秒であ
る。 【0013】PFAにおける共重合成分であるペルフル
オロ(アルキルビニルエーテル)は、一般式CF2 =C
FO(CF2n CF3 で表され、PFAの高温での機
械的強度が優れる点から、nは0〜6の整数であること
が好ましい。nが2であるペルフルオロ(プロピルビニ
ルエーテル)が特に好ましい。そして、PFA中のペル
フルオロ(アルキルビニルエーテル)に基づく重合単位
の含有量は、PFAの成形加工性から1.0〜3.0モ
ル%程度が好ましい。 【0014】本発明において改質PTFEは、テトラフ
ルオロエチレンとペルフルオロ(ジビニロキシアルカ
ン)の共重合体であって、ペルフルオロ(ジビニロキシ
アルカン)に基づく重合単位の含有量は0.001〜1
モル%、テトラフルオロエチレンに基づく重合単位の含
有量は99〜99.999モル%であり、容量流速Xが
0.01〜20mm3 /秒であるPTFEである。ペル
フルオロ(ジビニロキシアルカン)に基づく重合単位の
含有量が1モル%超では、PFAに混練することが困難
になる。また容量流速Xが0.01mm3 /秒未満でも
同様に、PFAに混練することが困難になる。 【0015】ルフルオロ(ジビニロキシアルカン)
、重合性および重合体の熱安定性の点から好ましい。
ペルフルオロ(ジビニロキシアルカン)は反応性が高
く、テトラフルオロエチレンと共重合することにより架
橋構造を形成する。 【0016】本発明の組成物においては、改質PTFE
の配合量は、PFAの100重合部当たり0.05〜2
0重合部の範囲から選定される。特に0.5〜10重量
部程度を含有せしめるのが好ましい。改質PTFEの配
合量が少なすぎると球晶サイズを小さくする効果が少な
く、一方、多すぎるとPFA組成物の成形加工性が損な
われるため好ましくない。 【0017】本発明の組成物の製造方法としては周知の
方法が採用される。あらかじめPFAのペレットと改質
PTFE粉末を混合したPFA組成物を単軸または2軸
の混練押出機に供給し、改質PTFEの溶融温度以上、
例えば、340〜400℃、滞留時間は1〜30分、回
転数は10〜100rpmと広い混練条件で混練する方
法、溶融したPFAに改質PTFEを溶融温度以上に加
熱して添加し、撹拌しながら混合する方法などが挙げら
れる。また、混合時に供給されるPFAおよび改質PT
FEの形状も特に限定されず、ペレット状、ビーズ状、
粉末状などが採用できる。 【0018】本発明の組成物は、球晶サイズが10μm
以下の成形体を与え、また、内面粗度が0.3μm以下
の押出成形チューブを与える。さらに、比較的遅い冷却
速度でも微細な球晶を生成しやすい結晶化特性を有する
ので、押出成形法により厚肉チューブを成形する場合に
も、内面平滑性に優れたチューブが円滑有利に得られ
る。 【0019】本発明において、球晶サイズ、内面粗度、
および結晶化温度は、以下のとおり定義される。 【0020】球晶サイズ:組成物の試料を340℃で厚
さ200μmのフィルムに圧縮成形し、続いて冷却プレ
ス機で約5分間で室温付近まで急冷して試験フィルムを
作成する。試験フィルムの表面を偏光顕微鏡で観察する
ことにより球晶サイズを測定する。 【0021】内面粗度:単軸押出機を用いて、組成物の
試料を380℃で内径8mm、外径10mmのチューブ
に押出成形し、続いてチューブの外側から水冷して試験
チューブを作成する。試験チューブの内面粗度を粗さ計
(小坂研究所製のサーフコーダSE−30H:商品名)
にて測定する。 【0022】結晶化温度:走査型示差熱量計(DSC)
により10℃/分で降温したときの発熱ピークを求め、
そのときの温度を結晶化温度とする。 【0023】 【実施例】 [実施例1]脱気した1リットルのオートクレーブに水
640g、メタノール10g、ペルフルオロオクタン酸
アンモニウム塩1.3g、溶媒のフロリナートFC−4
3(住友スリーエム社製、商品名)の30g、ペルフル
オロ(1,4−ジビニロキシブタン)CF2 =CFO
(CF24 OCF=CF2 の0.35g、テトラフル
オロエチレンの23gを仕込み、75℃に保持して、重
合開始剤として過硫酸アンモニウム2.5gを添加し、
反応を開始させた。 【0024】反応圧力を10kg/cm2 に保持し、反
応中に消費されたテトラフルオロエチレンに見合う量の
テトラフルオロエチレンを反応器に連続的に導入した。
テトラフルオロエチレン100gを導入した時点で反応
を止め、約105gの白色の改質PTFE粉末を得た。
この改質PTFEの結晶化温度は315℃、容量流速X
は1.5mm3 /秒であった。 【0025】つぎに、テトラフルオロエチレン/ペルフ
ルオロ(プロピルビニルエーテル)に基づく重合単位が
98.7/1.3(モル比)であり、容量流速Yが2m
/秒であり、結晶化温度が280℃であるPFAの
ビーズ状物100重量部と、先に得た改質PTFE粉末
の5重量部を、2軸の混練押出機によりシリンダ温度C
1/C2/C3/C4/C5/C6/H=200℃/3
50℃/380℃/380℃/380℃/385℃/3
85℃、フィード量20kg/時間、スクリュ回転数8
0rpmで混練して、PFA組成物のペレットを得た。 【0026】このペレットを圧縮成形により作成した厚
さ200μmのフィルムの平均球晶サイズは6μmであ
った。押出成形機で作成したチューブ(内径8mm、外
径10mm)の内面粗度は0.06μmであった。シリ
ンダ温度をC1/C2/C3/C4/C5/C6/H=
200℃/390℃/390℃/390℃/390℃/
395℃/395℃、フィード量を10kgに変更して
も、球晶サイズ、チューブ内面粗度は同じであった。 【0027】[比較例1]ペルフルオロ(1,4−ジビ
ニロキシブタン)を用いない以外は実施例1と同様にし
て、テトラフルオロエチレンを重合し、白色PTFE粉
末103gを得た。この白色PTFE粉末の結晶化温度
は316℃、容量流速Xは2.3mm3 /秒であった。 【0028】このPTFE粉末の5重量部と実施例1で
用いたPFAのビーズ状物の100重量部を、2軸の混
練押出機によりシリンダ温度C1/C2/C3/C4/
C5/C6/H=200℃/350℃/380℃/38
0℃/380℃/385℃/385℃、フィード量20
kg/時間、スクリュ回転数80rpmで混練して、P
FA組成物のペレットを得た。 【0029】このペレットを圧縮成形により作成した厚
さ200μmのフィルムの平均球晶サイズは6μmであ
った。押出成形機で作成したチューブの内面粗度は0.
06μmであった。シリンダ温度をC1/C2/C3/
C4/C5/C6/H=200℃/390℃/390℃
/390℃/390℃/395℃/395℃、フィード
量を10kgに変更したところ、圧縮フィルムの球晶サ
イズは、32μmであり、押出成形チューブの内面粗度
は0.22μmであった。 【0030】 【発明の効果】本発明のPFA組成物は、PFA自体の
優れた物性や成形加工性を損なうことなく、球晶サイズ
が小さい結晶化特性を有し、また、添加物である改質P
TFEを広い範囲でPFAと混練しても、表面平滑性、
耐ストレスクラック性に優れた成形体を与えうる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA) having excellent surface smoothness and stress crack resistance. The present invention relates to a PFA composition from which a molded article is obtained. 2. Description of the Related Art PFA is a polymer material which is excellent in heat resistance, chemical resistance, solvent resistance, etc., is thermoplastic and can be easily formed and processed. It is used in various applications such as parts of semiconductor manufacturing equipment such as tubes for fluid transfer requiring extremely high cleanliness, materials for coating the inner surface of containers, and wire covering materials. [0003] PFA is a crystalline resin. When cooled and solidified after melt molding, PFA is recrystallized to generate a large number of crystal nuclei in the melt, and crystals are formed in the same direction around the crystal nuclei. Although they grow, the growth stops when the crystals come into contact with each other, and so-called spherulites are formed. PFA
It is known that the surface smoothness of a compact depends on the size of the spherulite. In conventional PFA, spherulites generally grow large, and as a result, a large number of irregularities are generated on the surface of a molded body. In a tube molded from such PFA,
Turbulence occurs in the fluid flowing along the inner peripheral surface, and the transport resistance at this time prevents smooth transport of the fluid. For example, when the flow velocity of the fluid is low, a portion where the flow does not occur occurs on the surface uneven portion. In the case of ultrapure water, the fluid stays in the portion for a long time, and bacteria and the like are generated in the portion. Therefore, there is a problem that the cleanliness of the fluid is impaired. Further, when used as a coating material for the inner surface of a container, there is also a problem that a coating film having a large spherulite tends to cause stress cracks and deteriorate durability. It is known that the size of spherulites depends on the cooling rate after melt molding, and the more rapid the cooling, the more fine spherulites are formed. However, rapid cooling may not be possible depending on the molding method. For example, when a thick-walled tube is obtained by an extrusion molding method, there is a problem that when the extruded tube is cooled from the outer surface, the inner surface of the tube is not rapidly cooled, so that large spherulites are generated and the inner surface of the tube is poor in smoothness. PFA having a low perfluoro (alkyl vinyl ether) content (Japanese Patent Laid-Open No. 8-4126)
7) A method has been proposed in which crystallization characteristics are improved and fine crystals are obtained by adding a low molecular weight tetrafluoroethylene polymer (hereinafter referred to as PTFE) (JP-A-7-70394). The additive becomes crystal nucleus,
It is considered that the large number of crystal nuclei causes the growth to stop and the spherulite size to decrease because the crystal nuclei come into contact with adjacent crystals before the crystals grow large. However, in these methods, the additive is PFA
When the kneading of PFA and the additive is too weak, the mixing property is poor and the additive becomes a lump when molded into a tube, resulting in a so-called fish eye. On the other hand, if the kneading is too strong, the PFA and the additive are uniformly mixed, and the additive cannot serve as a crystal nucleus, and the effect of reducing the spherulite size is significantly reduced. SUMMARY OF THE INVENTION The present invention relates to a modified PFA, which has a small spherulite size and crystallization characteristics without impairing the excellent physical properties and moldability of PFA itself. Provided is a PFA composition that can provide a molded article having excellent surface smoothness and stress crack resistance even when high-quality PTFE is kneaded with PFA in a wide operation range. [0010] That is, the present invention provides a P
The following modified PTFE was added in an amount of 0,0 per 100 parts by weight of FA.
PFA and modified PT contained in a proportion of 0.5 to 20 parts by weight
And FE. Modified PTFE: tetrafluoroethylene and perfluoro (divinyloxyalkane)
Wherein the molar ratio of the polymerized units based on tetrafluoroethylene to the polymerized units based on perfluoro ( divinyloxyalkane ) is 99 to 99.999 / 1 to 1
0.001, and the volume flow rate X is 0.01-20 m
A copolymer having a m 3 / sec. However, the volume flow rate X was measured at a temperature of 380 ° C. and a load of 20 using a Koka type flow tester.
It is the volume of the polymer that melts and flows out per unit time from a nozzle having a diameter of 2 mm and a length of 8 mm in kg / cm 2 . DETAILED DESCRIPTION OF THE INVENTION In the present invention, the volume flow rate Y of PFA is preferably 0.5 to 100 mm 3 / sec. However, the volume flow rate Y was measured using a Koka type flow tester at a temperature of 380 ° C., a load of 7 kg / cm 2 and a diameter of 2 kg.
melt PFA from a nozzle with a length of 8 mm and a length of 8 mm,
This is the volume of PFA flowing out per unit time. If the volume flow rate Y is too small, the moldability is not sufficient, and if it is too large, the strength decreases. The more preferable volumetric flow rate Y of PFA is 1 to 50 mm 3 / sec. Perfluoro (alkyl vinyl ether), which is a copolymer component in PFA, has a general formula CF 2 CC
N is preferably an integer of 0 to 6 in that it is represented by FO (CF 2 ) n CF 3 and PFA has excellent mechanical strength at high temperatures. Perfluoro (propyl vinyl ether) wherein n is 2 is particularly preferred. The content of the polymerized unit based on perfluoro (alkyl vinyl ether) in PFA is preferably about 1.0 to 3.0 mol% from the moldability of PFA. In the present invention, the modified PTFE comprises tetrafluoroethylene and perfluoro (divinyloxyalka).
A copolymer of perfluoro (divinyloxy)
The content of the polymerized unit based on ( alkane) is 0.001 to 1
Mol%, the content of the polymerized unit based on tetrafluoroethylene is 99 to 99.999 mol%, and the volume flow rate X is PTFE having a volume flow rate of 0.01 to 20 mm 3 / sec. Pell
If the content of the polymerized units based on fluoro (divinyloxyalkane) is more than 1 mol%, it becomes difficult to knead with PFA. Similarly, if the volume flow rate X is less than 0.01 mm 3 / sec, it becomes difficult to knead with PFA. [0015] Bae Rufuruoro (divinyloxyethyl carboxylate alkanes)
Is preferred from the viewpoint of polymerizability and thermal stability of the polymer.
Perfluoro (divinyloxyalkane) is highly reactive and forms a crosslinked structure by copolymerizing with tetrafluoroethylene. In the composition of the present invention, the modified PTFE
Is from 0.05 to 2 per 100 polymerized parts of PFA.
It is selected from the range of 0 polymerization parts. In particular, it is preferable to add about 0.5 to 10 parts by weight. If the amount of the modified PTFE is too small, the effect of reducing the spherulite size is small, while if it is too large, the moldability of the PFA composition is impaired, which is not preferable. As a method for producing the composition of the present invention, a known method is employed. A PFA composition, in which PFA pellets and modified PTFE powder are mixed in advance, is supplied to a single-screw or twin-screw kneading extruder, and the melting temperature of the modified PTFE or higher,
For example, a method of kneading under a wide kneading condition of 340 to 400 ° C., a residence time of 1 to 30 minutes, and a rotation speed of 10 to 100 rpm, adding modified PTFE to molten PFA by heating it to a melting temperature or higher and stirring. While mixing. In addition, PFA and modified PT supplied during mixing are used.
The shape of the FE is also not particularly limited, and may be a pellet, a bead,
A powder form can be adopted. The composition of the present invention has a spherulite size of 10 μm.
The following molded articles are provided, and an extruded tube having an inner surface roughness of 0.3 μm or less is provided. Furthermore, since it has a crystallization characteristic that easily produces fine spherulites even at a relatively slow cooling rate, a tube having excellent inner surface smoothness can be obtained smoothly even when forming a thick-walled tube by an extrusion molding method. . In the present invention, spherulite size, inner surface roughness,
And the crystallization temperature is defined as follows. Spherulite Size: A sample of the composition is compression molded at 340 ° C. into a 200 μm thick film, and then quenched to near room temperature in about 5 minutes with a cooling press to produce a test film. Spherulite size is measured by observing the surface of the test film with a polarizing microscope. Inner surface roughness: Using a single screw extruder, a sample of the composition is extruded at 380 ° C. into a tube having an inner diameter of 8 mm and an outer diameter of 10 mm, and then water-cooled from the outside of the tube to prepare a test tube. . Roughness meter for surface roughness of test tube (Surfcoder SE-30H, trade name, manufactured by Kosaka Laboratory)
Measure with. Crystallization temperature: Scanning differential calorimeter (DSC)
To determine the exothermic peak when the temperature was lowered at 10 ° C./min,
The temperature at that time is defined as the crystallization temperature. Example 1 640 g of water, 10 g of methanol, 1.3 g of ammonium perfluorooctanoate, Fluorinert FC-4 as a solvent were placed in a 1 liter degassed autoclave.
3 (manufactured by Sumitomo 3M Limited, trade name), 30 g, perfluoro (1,4-divinyloxybutane) CF 2 CFCFO
0.35 g of (CF 2 ) 4 OCF = CF 2 and 23 g of tetrafluoroethylene were charged and maintained at 75 ° C., and 2.5 g of ammonium persulfate was added as a polymerization initiator.
The reaction was started. The reaction pressure was maintained at 10 kg / cm 2 , and an amount of tetrafluoroethylene corresponding to the amount of tetrafluoroethylene consumed during the reaction was continuously introduced into the reactor.
The reaction was stopped when 100 g of tetrafluoroethylene was introduced, and about 105 g of white modified PTFE powder was obtained.
The crystallization temperature of this modified PTFE is 315 ° C., and the volume flow rate X
Was 1.5 mm 3 / sec. Next, the polymerization unit based on tetrafluoroethylene / perfluoro (propyl vinyl ether) is 98.7 / 1.3 (molar ratio), and the volume flow rate Y is 2 m
m 3 / sec, 100 parts by weight of PFA beads having a crystallization temperature of 280 ° C., and 5 parts by weight of the previously obtained modified PTFE powder were subjected to a cylinder temperature C by a twin-screw kneading extruder.
1 / C2 / C3 / C4 / C5 / C6 / H = 200 ° C./3
50 ° C / 380 ° C / 380 ° C / 380 ° C / 385 ° C / 3
85 ° C, feed rate 20kg / hour, screw rotation speed 8
The mixture was kneaded at 0 rpm to obtain pellets of the PFA composition. The average spherulite size of a 200 μm thick film formed by compression molding the pellets was 6 μm. The inner surface roughness of the tube (inner diameter 8 mm, outer diameter 10 mm) produced by the extruder was 0.06 μm. Cylinder temperature is C1 / C2 / C3 / C4 / C5 / C6 / H =
200 ° C / 390 ° C / 390 ° C / 390 ° C / 390 ° C /
Even when the feed amount was changed to 395 ° C./395° C. and the feed amount was changed to 10 kg, the spherulite size and the inner surface roughness of the tube were the same. Comparative Example 1 Tetrafluoroethylene was polymerized in the same manner as in Example 1 except that perfluoro (1,4-divinyloxybutane) was not used, to obtain 103 g of white PTFE powder. The crystallization temperature of this white PTFE powder was 316 ° C., and the volume flow rate X was 2.3 mm 3 / sec. 5 parts by weight of this PTFE powder and 100 parts by weight of the beads of PFA used in Example 1 were subjected to a cylinder temperature C1 / C2 / C3 / C4 /
C5 / C6 / H = 200 ° C./350° C./380° C./38
0 ° C / 380 ° C / 385 ° C / 385 ° C, feed amount 20
kg / hour, kneading at a screw rotation speed of 80 rpm,
A pellet of the FA composition was obtained. The average spherulite size of a 200 μm thick film formed by compression molding of the pellets was 6 μm. The inner surface roughness of the tube made by the extruder is 0.1.
It was 06 μm. Set the cylinder temperature to C1 / C2 / C3 /
C4 / C5 / C6 / H = 200 ° C / 390 ° C / 390 ° C
/ 390 ° C / 390 ° C / 395 ° C / 395 ° C and the feed amount was changed to 10 kg. As a result, the spherulite size of the compressed film was 32 µm, and the inner surface roughness of the extruded tube was 0.22 µm. The PFA composition of the present invention has a small spherulite crystallization characteristic without impairing the excellent physical properties and moldability of PFA itself, and is a modified additive. Quality P
Even if TFE is kneaded with PFA in a wide range, surface smoothness,
A molded article having excellent stress crack resistance can be provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−41267(JP,A) 特開 平8−73689(JP,A) 特開 平6−136218(JP,A) 特開 昭62−59610(JP,A) 特開 平5−230151(JP,A) 特開 平9−316266(JP,A) 特表 平5−509433(JP,A) 米国特許3310606(US,A) 英国特許1106344(GB,B) (58)調査した分野(Int.Cl.7,DB名) C08L 27/18 C08L 29/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-41267 (JP, A) JP-A-8-73689 (JP, A) JP-A-6-136218 (JP, A) JP-A-62-162 59610 (JP, A) JP-A-5-230151 (JP, A) JP-A-9-316266 (JP, A) JP-A-5-509433 (JP, A) US Patent 3,310,606 (US, A) UK Patent 1,106,344 (GB, B) (58) Field surveyed (Int. Cl. 7 , DB name) C08L 27/18 C08L 29/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】テトラフルオロエチレン/ペルフルオロ
(アルキルビニルエーテル)共重合体の100重量部当
たり、下記の改質テトラフルオロエチレン重合体を0.
05〜20重量部の割合で含有する、テトラフルオロエ
チレン/ペルフルオロ(アルキルビニルエーテル)共重
合体と改質テトラフルオロエチレン重合体とを含む組成
物。改質テトラフルオロエチレン重合体:テトラフルオ
ロエチレンとペルフルオロ(ジビニロキシアルカン)
の共重合体であって、テトラフルオロエチレン基づく重
合単位とペルフルオロ(ジビニロキシアルカン)に基づ
く重合単位とのモル比が99〜99.999/1〜0.
001であり、その容量流速Xが0.01〜20mm3
/秒である共重合体。ただし、容量流速Xは、高化式フ
ローテスターを使用して、温度380℃、荷重20kg
/cm2 で、直径2mm、長さ8mmのノズルから、当
該重合体を溶融流出させ、単位時間に流出する重合体の
容量である。
(57) [Claim 1] The following modified tetrafluoroethylene polymer is added to 100 parts by weight of the tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer.
A composition containing a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer and a modified tetrafluoroethylene polymer, contained in a proportion of from 0.5 to 20 parts by weight. Modified tetrafluoroethylene polymer: a copolymer of tetrafluoroethylene and perfluoro ( divinyloxyalkane) , wherein the molar ratio of the polymerized units based on tetrafluoroethylene to the polymerized units based on perfluoro (divinyloxyalkane) Is 99-99.999 / 1-0.
001 and the volume flow rate X is 0.01 to 20 mm 3
Per second. However, the volume flow rate X was measured at a temperature of 380 ° C. and a load of 20 kg using a Koka type flow tester.
/ Cm 2 is the volume of the polymer that melts and flows out from a nozzle having a diameter of 2 mm and a length of 8 mm and flows out per unit time.
JP15246596A 1996-06-13 1996-06-13 Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition Expired - Fee Related JP3458601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15246596A JP3458601B2 (en) 1996-06-13 1996-06-13 Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15246596A JP3458601B2 (en) 1996-06-13 1996-06-13 Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition

Publications (2)

Publication Number Publication Date
JPH101585A JPH101585A (en) 1998-01-06
JP3458601B2 true JP3458601B2 (en) 2003-10-20

Family

ID=15541112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15246596A Expired - Fee Related JP3458601B2 (en) 1996-06-13 1996-06-13 Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition

Country Status (1)

Country Link
JP (1) JP3458601B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653379B2 (en) 2001-07-12 2003-11-25 3M Innovative Properties Company Fluoropolymers resistant to stress cracking
CN1886434B (en) * 2003-11-26 2011-01-19 大金工业株式会社 Fluororesin and coated electric wire

Also Published As

Publication number Publication date
JPH101585A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
EP1053284B1 (en) Mixtures of thermoplastic fluoropolymers
US7947775B2 (en) Fluoropolymer blending process
JP3559062B2 (en) Tetrafluoroethylene / fluoroalkoxytrifluoroethylene copolymer composition
JP5111855B2 (en) Polyvinylidene fluoride resin powder for melt molding and method for producing a molded body using the resin powder
JPH027963B2 (en)
JP7335685B2 (en) Hot-melt fluororesin composition and injection-molded article made from the same
JPH05186532A (en) Particle of modified polytetrafluoroethylene copolymer
EP2092016B1 (en) Improved heat aged perfluoropolymer
JP3458601B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer composition
JP3527538B2 (en) Core resin composition and method for producing hollow molded article using the same
JP3521643B2 (en) Tube molding
JPH0841267A (en) Tetrafluoroethylene/perfluoro(alkylvinylether) copolymer composition
JP2015507062A (en) Core / shell fluoropolymer
JPH09316266A (en) Tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer composition
JP3480070B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, process for producing the same, and molded product thereof
JPH0873689A (en) Production of perfluorocopolymer composition
JP2012503677A (en) Application of ethylene / tetrafluoroethylene copolymer
JP2000212365A (en) Fluorine-containing copolymer composition
JPH11210941A (en) Tube
JP3627497B2 (en) Fluoropolymer composition and molded article thereof
JP2000204205A (en) Fluorine-containing polymer composition improved in moldability
JP2000319471A (en) Polymer composition and molded article thereof
JPH11210942A (en) Tube
JP3049107B2 (en) Flex-resistant polyarylene sulfide sheet-like molded product
JPH03220254A (en) Nitrile polymer composition, molded article, and preparation of thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees