JP3783443B2 - Ethylene / tetrafluoroethylene copolymer composition with improved moldability - Google Patents

Ethylene / tetrafluoroethylene copolymer composition with improved moldability Download PDF

Info

Publication number
JP3783443B2
JP3783443B2 JP00668799A JP668799A JP3783443B2 JP 3783443 B2 JP3783443 B2 JP 3783443B2 JP 00668799 A JP00668799 A JP 00668799A JP 668799 A JP668799 A JP 668799A JP 3783443 B2 JP3783443 B2 JP 3783443B2
Authority
JP
Japan
Prior art keywords
etfe
ethylene
composition
polymerization
tetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00668799A
Other languages
Japanese (ja)
Other versions
JP2000204205A (en
Inventor
直子 酒井
篤 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP00668799A priority Critical patent/JP3783443B2/en
Publication of JP2000204205A publication Critical patent/JP2000204205A/en
Application granted granted Critical
Publication of JP3783443B2 publication Critical patent/JP3783443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は成形性を改良したエチレン/テトラフルオロエチレン系共重合体組成物に関し、さらに詳しくは速い速度で成形しても良好な外観を有する成形物を得ることのできるエチレン/テトラフルオロエチレン系共重合体組成物に関するものである。
【0002】
【従来の技術】
エチレン/テトラフルオロエチレン系共重合体(以下、ETFEという)は耐熱性、耐薬品性、耐溶剤性等が優れた高分子材料であることから、その特徴を生かして種々の用途に用いられている。特に溶融成形が可能であるため押出成形、射出成形、圧縮成形、粉体塗装などの種々の成形方法を利用して、チューブ、被覆電線、フィルム、ポンプケーシング、ライニングなどに多く用いられている。
一般に、溶融成形可能な樹脂を押出成形する際、成形速度をある値以上に上げようとすると成形物の表面に凹凸の肌荒れが生じる。成形速度は、成形時に樹脂にかかる剪断速度に対応する。すなわち、成形時に肌荒れが生じる限界の剪断速度(臨界剪断速度)が大きいほど、成形速度を上げることができ成形性が優れる。臨界剪断速度を上げるためには、一般的に重合体の重合度を下げて溶融粘度を小さくする方法があるが、重合体の重合度を下げると機械強度が低下する欠点がある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、成形物の機械強度を低下させることなく優れた成形加工性を有するエチレン/テトラフルオロエチレン系共重合体組成物を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ETFEに比較的に低い溶融粘度を有するEFTEを含有させることにより、成形物の機械強度を低下させることなく優れた成形加工性を有するEFTE組成物が得られることを見い出し,その知見に基づいて本発明を完成させるに至った。
すなわち、本発明は、297℃における溶融粘度が5,000以上〜100,000以下ポイズであるETFE(A)と、297℃における溶融粘度が100以上〜5,000未満ポイズであるETFE(B)とを含み、ETFE(B)の含有量がETFE(A)に対し0.1〜50重量%であることを特徴とするETFE組成物を提供するものである
下、本発明を詳細に説明する。
【0005】
【発明の実施の形態】
ETFE(A)は、エチレンに基づく重合単位とテトラフルオロエチレンに基づく重合単位を有するものであり、好適な具体例としては、エチレンに基づく重合単位/テトラフルオロエチレンに基づく重合単位のモル比が20/80〜80/20であり、必要に応じこれらと共重合可能な一つ以上のビニルモノマーに基づく重合単位をエチレンに基づく重合単位とテトラフルオロエチレンに基づく重合単位の合計量に対して0.01〜10モル%含む共重合体が挙げられる。かかるビニルモノマーとしてはCF2=CFRf(Rfは炭素数が1〜8のポリフルオロアルキル基であり、好ましくはパーフルオロアルキル基である)、CF2=CHRf、CH2=CHRf、CH2=CFRfなどのフルオロアルキルエチレン類、CF2=CFORf、CF2=CFO(CF2nC(O)X(Xは水素原子、水酸基、ハロゲン原子またはアルコキシル基である)などのフルオロアルキルビニルエーテル類などが例示される。
【0006】
ETFE(A)の溶融粘度は、297℃で5,000以上〜100,000以下ポイズであり、好ましくは10,000以上〜50,000以下ポイズである。溶融粘度が高すぎるとETFE(A)にETFE(B)を添加した組成物の溶融粘度も高くなり、成形性が悪くなる。また溶融粘度が低すぎるとETFE(A)にETFE(B)を添加した組成物の溶融粘度も小さくなり機械強度が低下してしまう。
ETFE(B)は成形性改良のために添加するものであり、その溶融粘度は297℃で100以上〜5,000未満ポイズであり、好ましくは200以上〜2,000以下ポイズである。粘度が高すぎると成形性改良に効果がなく、粘度が低すぎると成形時に発泡しやすくなり好ましくない。
【0007】
ETFE(B)は、エチレンに基づく重合単位とテトラフルオロエチレンに基づく重合単位を有するものであり、好適な具体例としては、エチレンに基づく重合単位/テトラフルオロエチレンに基づく重合単位のモル比が20/80〜80/20であり、必要に応じこれらと共重合可能なビニルモノマーに基づく重合単位をエチレンに基づく重合単位とテトラフルオロエチレンに基づく重合単位の合計量に対して0.01〜20モル%含む共重合体が挙げられる
【0008】
上記の共重合可能なビニルモノマーとしては、フッ化ビニリデン、ヘキサフルオロプロピレンなどのフルオロオレフィン類、CF2=CFRf、CF2=CHRf、CH2=CHRf、CH2=CFRfなどのフルオロアルキルエチレン類、CF2=CFORf、CF2=CFO(CF2nC(O)X(Xは水素原子、水酸基、ハロゲン原子またはアルコキル基である)などのフルオロアルキルビニルエーテル類、酢酸ビニルなどのカルボン酸ビニルエステル類、アクリル酸メチル、メタクリル酸メチルなどのアクリル酸エステル類やメタクリル酸エステル類、メチルビニルエーテルなどのビニルエーテル類などが例示される。
【0009】
本発明におけるETFE(A)およびETFE(B)の製造にあたり、重合は特に限定されず乳化重合、懸濁重合、溶液重合など種々の方法で行うことができる。目的とする溶融粘度を有する共重合体は、重合に用いる連鎖移動剤の濃度を調節することや重合圧力を調節することにより得られる。用いる連鎖移動剤の種類としてはヘキサン、シクロヘキサンなどの炭化水素類、メタノール、エタノールなどのアルコール類、トリクロロフルオロメタン、ジクロロペンタフルオロプロパンなどのハロゲン化炭化水素類などが挙げられる。
ETFE(B)は溶融粘度の比較的高い共重合体を熱的に、機械的にあるいは放射線の照射により低分子量化させることにより得ることもできる。
【0010】
本発明のETFE組成物は通常ETFE(A)とETFE(B)を混合することにより得られる。その混合方法は特に限定されず、ETFE(A)を溶融し、そこにETFE(B)を撹拌しながら混合する方法、単軸または2軸の混練押出機にETFE(A)とETFE(B)を同時に供給し混練する方法などが挙げられるが、簡便さから混練押出機により混合する方法が好ましい。混合前のETFE(A)およびETFE(B)の形態も特に限定されず、ペレット、ビーズ、粉末、クラム等が用いられる。
製造の簡便さからは、好ましくは平均粒径1〜3mmのビーズ状のETFE(A)と好ましくは平均粒径1〜3μmのビーズ状または好ましくは平均粒径1〜5mmのクラム状のETFE(B)を混合し、混練押出機に投入し溶融混練することが好ましい。ビーズは溶液重合または懸濁重合で得られる重合体を造粒して得られる。クラムは乳化重合で得られる重合体を凝集、洗浄して得られる。
【0011】
本発明のETFE組成物におけるETFE(B)の含有量は、ETFE(A)に対して0.1〜50重量%であり、好ましくは1〜30重量%であり、さらに好ましくは3〜20重量%である。この含有量が少なすぎると成形性を改良する効果が無く、また多すぎると機械強度が低下してしまう。
本発明のETFE組成物には、その性能を損なわない範囲において、充填剤、顔料、紫外線吸収剤、光安定剤、酸化防止剤、その他の用途に応じて任意の添加剤などの各種添加剤を配合させてもよい。充填剤としては、無機質粉末、ガラス繊維、炭素繊維、金属酸化物、カーボンなどの種々の充填剤が挙げられる。
本発明のETFE組成物は、押出成形、射出成形、圧縮成形、インフレーション成形、コーティング、金型などを用いるトランスファー成形などの種々の成形方法により成形可能である。
本発明のETFE組成物を使用して得られる成形物としては、たとえばチューブ、被覆電線、フィルム、ポンプケーシングなどが挙げられる。
【0012】
【実施例】
次に,本発明を実施例により具体的に説明する。なお、これらの例は本発明を何ら限定するものではない。
実施例における試験方法は下記の方法により行った。
[溶融粘度]
高化式フローテスター(株式会社島津製作所製)を用いて、試料を297℃で5分保持した後7kg荷重で内径2.1mm、長さ8mmのオリフィスを通して押出したときの容量流速Q1(mm/s)を測定し、405,400/Q1の値を溶融粘度(ポイズ)とする。
【0013】
[臨界剪断速度]
高化式フローテスター(株式会社島津製作所製)を用いて、試料を325℃で5分保持した後、種々荷重で内径2.1mm、長さ8mmのオリフィスを通して押出したときの容量流速Q2(mm3/s)を測定し、また押出成形物を観察し、肌荒れの発生しない限界の剪断速度を臨界剪断速度とする。剪断速度(1/s)は容量流速Q2(mm3/s)×1.10の値により求められる。
[成形時の肌荒れ]
剪断速度を200(1/s)にして押出成形を行い、得られたストランドの表面を観察し、肌荒れの状態を目視で観察し、肌荒れを評価した。
[引張強度]
ASTM D3159記載の方法により測定した。すなわち、厚み1.5mmのシートサンプルをプレス成形にて作成し,規定の形状に打ち抜き引張試験用サンプルとした。測定は株式会社エーアンドデイ社製のテンシロンを用い、室温で引張速度50mm/minで行った。
【0014】
(重合例1)
内容積1.3リットルのステンレス製反応容器を脱気し、1,050gのC614、314gのCF2ClCF2CHClF(以下、HCFC225cbという)、5gのCH2=CH−C49、160gのテトラフルオロエチレン、14gのエチレンを仕込んだ。温度を66℃に保持して、重合開始剤としてt−ブチルパーオキシピバレートの1wt%C614溶液を5cc仕込み、反応を開始させた。反応中、系内のガス組成を一定に保つようにテトラフルオロエチレンとエチレンを導入し、反応圧力を16.0kg/cm2 に保持した。テトラフルオロエチレンとエチレンの導入量が合計100gになった時点で反応を終了させ、生成した共重合体を造粒して106gの白色のETFE(A1)のビーズ(平均粒径:2.5mm)を得た。該ETFE(A1)の平均組成はテトラフルオロエチレンに基づく重合単位50.5モル%、エチレンに基づく重合単位48.5モル%、CH2=CH−C49に基づく重合単位1.0モル%であり、溶融粘度は41,800ポイズ、臨界剪断速度は143(1/s)であった。
【0015】
(重合例2)
重合例1においてC614は用いず、1350gのHCFC225cbを仕込み、重合開始剤としてt−ブチルパーオキシピバレートの1wt%C614溶液を15cc仕込む以外は重合例1と同様に重合を行い、造粒して101gの白色のETFE(B1)のビーズ(平均粒径:2.5mm)を得た。該ETFE(B1)の平均組成はテトラフルオロエチレンに基づく重合単位50.3モル%、エチレンに基づく重合単位48.6モル%、CH2=CH−C49に基づく重合単位 1.1モル%であり、溶融粘度は524ポイズであった。
【0016】
参考重合例3)
内容積1.3リットルのステンレス製反応容器を脱気し、305gの水、2.7gのラウリル硫酸ナトリウム、11gのリン酸水素2ナトリウム・12H2O、68gのテトラフルオロエチレン、4gのプロピレンを仕込んだ。温度を65℃に保持して、重合開始剤として過硫酸アンモニウム(APS)を8g仕込み、反応を開始させた。反応中、系内のガス組成を一定に保つようにテトラフルオロエチレンとプロピレンを導入し、反応圧力を20.0kg/cm2 に保持した。テトラフルオロエチレンとプロピレンの導入量が合計280gになった時点で反応を終了させ、得られたラテックスを塩化カルシウム水溶液にて凝集、洗浄し275gの白色含フッ素重合体(B2)のクラム(平均粒径:3mm)を得た。該含フッ素重合体の平均組成はテトラフルオロエチレンに基づく重合単位55.1モル%、プロピレンに基づく重合単位44.9モル%であり、溶融粘度は1,450ポイズであった。
【0017】
(重合例4)
1040gのC614、325gのHCFC225cbを仕込む以外は重合例1のETFE(A1)の重合と同様に重合を行い、造粒して105gの白色のETFE(A2)のビーズ(平均粒径:2.5mm)を得た。該ETFE(A2)の平均組成はテトラフルオロエチレンに基づく重合単位50.5モル%、エチレンに基づく重合単位48.5モル%、CH2=CH−C49に基づく重合単位1.0モル%であり、溶融粘度は32,100ポイズ、臨界剪断速度は175(1/s)であった。
【0018】
(実施例1)
ETFE(A1)のビーズ(平均粒径:2.5mm)とETFE(B1)のビーズ(平均粒径:2.5mm)を重量比で95/5の割合で混合し押出機により300℃で5分溶融混合し、ETFE組成物のペレット(長さ約3mm)を得た。得られたETFE組成物のペレットを使用して、各物性を測定した。
(実施例2)
ETFE(A1)のビーズ(平均粒径:2.5mm)とETFE(B1)のビーズ(平均粒径:2.5mm)を重量比で90/10の割合で混合し押出機により300℃で5分溶融混合し、ETFE組成物のペレット(長さ約3mm)を得た。得られたETFE組成物のペレットを使用して、各物性を測定した。
【0019】
参考例3)
ETFE(A1)のビーズ(平均粒径:2.5mm)と含フッ素重合体(B2)のクラム(平均粒径:3mm)を重量比で90/10の割合で混合し押出機により300℃で5分溶融混合し、ETFE組成物のペレット(長さ約3mm)を得た。得られたETFE組成物のペレットを使用して、各物性を測定した。
【0020】
(比較例1)
重合例1で得たETFE(A1)のビーズのみを使用して、各物性を測定した。
(比較例2)
重合例2で得たETFE(B1)のビーズのみを使用して、各物性を測定した。
(比較例3)
重合例4で得たETFE(A2)のみを使用して、各物性を測定した。
【0021】
表1

Figure 0003783443
【0022】
【発明の効果】
本発明のETFE組成物は、成形物の機械強度が低下することなく成形性が改良されており、電線被覆やチューブの成形に適している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ethylene / tetrafluoroethylene copolymer composition having improved moldability, more particularly be molded at a high speed can be obtained a molded product having a good appearance ethylene / tetrafluoroethylene copolymer The present invention relates to a polymer composition.
[0002]
[Prior art]
Since ethylene / tetrafluoroethylene copolymer (hereinafter referred to as ETFE) is a polymer material with excellent heat resistance, chemical resistance, solvent resistance, etc., it is used for various applications taking advantage of its characteristics. Yes. In particular, since melt molding is possible, it is widely used for tubes, covered electric wires, films, pump casings, linings and the like by utilizing various molding methods such as extrusion molding, injection molding, compression molding, and powder coating.
Generally, when extruding a resin that can be melt-molded, if the molding speed is increased to a certain value or more, rough surfaces of the molded product are generated. The molding speed corresponds to the shear rate applied to the resin during molding. That is, the larger the limit shear rate (critical shear rate) at which roughening occurs during molding, the higher the molding rate and the better the moldability. In order to increase the critical shear rate, there is generally a method in which the degree of polymerization of the polymer is lowered to reduce the melt viscosity. However, there is a drawback that the mechanical strength is lowered when the degree of polymerization of the polymer is lowered.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an ethylene / tetrafluoroethylene copolymer composition having excellent molding processability without reducing the mechanical strength of the molded product.
[0004]
[Means for Solving the Problems]
As a result of intensive research to achieve the above object, the present inventors have made ETFE an excellent molding without reducing the mechanical strength of the molded product by containing EFTE having a relatively low melt viscosity. It has been found that an EFTE composition having processability can be obtained, and the present invention has been completed based on the findings.
That is, the present invention includes a ETFE (A) a melt viscosity of 5,000 or more to 100,000 or less poise at 297 ° C., is 5,000 less than poise 100 above the melting viscosity at 297 ℃ ETFE (B) The ETFE composition is characterized in that the content of ETFE (B) is 0.1 to 50% by weight based on ETFE (A) .
Below, the present invention will be described in detail.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
ETFE (A) has a polymerized unit based on ethylene and a polymerized unit based on tetrafluoroethylene. As a preferred specific example, the molar ratio of polymerized units based on ethylene / polymerized units based on tetrafluoroethylene is 20 / 80 to 80/20, and if necessary, the polymerized units based on one or more vinyl monomers copolymerizable with these are added to the total amount of the polymerized units based on ethylene and the polymerized units based on tetrafluoroethylene. Examples thereof include a copolymer containing 01 to 10 mol%. Examples of such vinyl monomers include CF 2 = CFRf (Rf is a polyfluoroalkyl group having 1 to 8 carbon atoms, preferably a perfluoroalkyl group), CF 2 = CHRf, CH 2 = CHRf, CH 2 = CFRf. And fluoroalkyl vinyl ethers such as CF 2 ═CFORf, CF 2 ═CFO (CF 2 ) n C (O) X (where X is a hydrogen atom, a hydroxyl group, a halogen atom or an alkoxyl group) Illustrated.
[0006]
The melt viscosity of ETFE (A) is 5,000 to 100,000 poise at 297 ° C., preferably 10,000 to 50,000 poise. When melt viscosity is too high, the melt viscosity of the composition which added ETFE (B) to ETFE (A) will also become high, and a moldability will worsen. Moreover, when melt viscosity is too low, the melt viscosity of the composition which added ETFE (B) to ETFE (A) will also become small, and mechanical strength will fall.
ETFE (B) is added for improving the moldability, and its melt viscosity is ≥100 to 5,000 poise at 297 ° C., preferably 200 to 2,000 poise. If the viscosity is too high, there is no effect in improving moldability, and if the viscosity is too low, foaming tends to occur during molding, which is not preferable.
[0007]
ETFE (B ) has polymerized units based on ethylene and polymerized units based on tetrafluoroethylene. As a preferred specific example, the molar ratio of polymerized units based on ethylene / polymerized units based on tetrafluoroethylene is 20 / 80 to 80/20, and if necessary, 0.01 to 20 mol of polymer units based on vinyl monomers copolymerizable with these with respect to the total amount of polymer units based on ethylene and polymer units based on tetrafluoroethylene % Containing copolymer .
[0008]
Examples of the copolymerizable vinyl monomer include fluoroolefins such as vinylidene fluoride and hexafluoropropylene, fluoroalkylethylenes such as CF 2 = CFRf, CF 2 = CHRf, CH 2 = CHRf, and CH 2 = CFRf, Fluoroalkyl vinyl ethers such as CF 2 = CFORf, CF 2 = CFO (CF 2 ) n C (O) X (X is a hydrogen atom, a hydroxyl group, a halogen atom or an alkoxy group), and a carboxylic acid vinyl ester such as vinyl acetate , Acrylic esters such as methyl acrylate and methyl methacrylate, methacrylic esters, and vinyl ethers such as methyl vinyl ether.
[0009]
In the production of ETFE (A) and ETFE (B) in the present invention, the polymerization is not particularly limited and can be carried out by various methods such as emulsion polymerization, suspension polymerization, and solution polymerization. A copolymer having the desired melt viscosity can be obtained by adjusting the concentration of the chain transfer agent used for the polymerization or by adjusting the polymerization pressure. Examples of the chain transfer agent used include hydrocarbons such as hexane and cyclohexane, alcohols such as methanol and ethanol, and halogenated hydrocarbons such as trichlorofluoromethane and dichloropentafluoropropane.
ETFE (B) can also be obtained by lowering the molecular weight of a copolymer having a relatively high melt viscosity thermally, mechanically or by irradiation with radiation.
[0010]
The ETFE composition of the present invention is usually obtained by mixing ETFE (A) and ETFE (B). The mixing method is not particularly limited, and ETFE (A) is melted and mixed while stirring ETFE (B), and ETFE (A) and ETFE (B) are mixed in a single or biaxial kneading extruder. May be mentioned, and a method of mixing with a kneading extruder is preferred for simplicity. The form of ETFE (A) and ETFE (B) before mixing is not particularly limited, and pellets, beads, powder, crumbs, and the like are used.
From the standpoint of ease of production, bead-like ETFE (A) preferably having an average particle size of 1 to 3 mm and bead-like FEFE having an average particle size of 1 to 3 μm or crumb-like ETFE having an average particle size of 1 to 5 mm is preferable. It is preferable that B) is mixed, put into a kneading extruder and melt kneaded. The beads are obtained by granulating a polymer obtained by solution polymerization or suspension polymerization. Crumb is obtained by agglomerating and washing a polymer obtained by emulsion polymerization.
[0011]
The content of ETFE (B) in the ETFE composition of the present invention is 0.1 to 50% by weight, preferably 1 to 30% by weight, more preferably 3 to 20% by weight with respect to ETFE (A). %. If the content is too small, there is no effect of improving the moldability, and if it is too much, the mechanical strength is lowered.
In the ETFE composition of the present invention, various additives such as a filler, a pigment, an ultraviolet absorber, a light stabilizer, an antioxidant, and other additives depending on other applications are used within a range not impairing the performance. You may mix | blend. Examples of the filler include various fillers such as inorganic powder, glass fiber, carbon fiber, metal oxide, and carbon.
The ETFE composition of the present invention can be molded by various molding methods such as extrusion molding, injection molding, compression molding, inflation molding, coating, transfer molding using a mold and the like.
Examples of the molded article obtained using the ETFE composition of the present invention include a tube, a covered electric wire, a film, and a pump casing.
[0012]
【Example】
Next, the present invention will be specifically described with reference to examples. In addition, these examples do not limit this invention at all.
The test method in an Example was performed with the following method.
[Melt viscosity]
Using a Koka type flow tester (manufactured by Shimadzu Corporation), the sample was held at 297 ° C. for 5 minutes and then extruded through an orifice with an inner diameter of 2.1 mm and a length of 8 mm under a 7 kg load, Q1 (mm 3 / S) is measured, and the value of 405,400 / Q1 is taken as the melt viscosity (poise).
[0013]
[Critical shear rate]
Using a Koka type flow tester (manufactured by Shimadzu Corporation), the sample was held at 325 ° C. for 5 minutes, and then the volume flow rate Q2 (mm) when extruded through an orifice having an inner diameter of 2.1 mm and a length of 8 mm under various loads. 3 / s) is measured, and the extruded product is observed. The critical shear rate is defined as the shear rate at which no rough skin occurs. The shear rate (1 / s) is determined by the value of the capacity flow rate Q2 (mm 3 /s)×1.10.
[Rough skin during molding]
Extrusion was performed at a shear rate of 200 (1 / s), the surface of the obtained strand was observed, the state of rough skin was visually observed, and rough skin was evaluated.
[Tensile strength]
It was measured by the method described in ASTM D3159. That is, a sheet sample having a thickness of 1.5 mm was prepared by press molding, and a punching test sample was formed into a specified shape. The measurement was performed using Tensilon manufactured by A & D Co., Ltd. at room temperature and a tensile speed of 50 mm / min.
[0014]
(Polymerization example 1)
A stainless steel reaction vessel having an internal volume of 1.3 liters was degassed, and 1,050 g of C 6 F 14 , 314 g of CF 2 ClCF 2 CHClF (hereinafter referred to as HCFC225cb), 5 g of CH 2 ═CH—C 4 F 9 160 g of tetrafluoroethylene and 14 g of ethylene were charged. While maintaining the temperature at 66 ° C., 5 cc of a 1 wt% C 6 F 14 solution of t-butyl peroxypivalate as a polymerization initiator was charged to initiate the reaction. During the reaction, tetrafluoroethylene and ethylene were introduced so as to keep the gas composition in the system constant, and the reaction pressure was maintained at 16.0 kg / cm 2 . The reaction was terminated when the total amount of tetrafluoroethylene and ethylene introduced reached 100 g, and the resulting copolymer was granulated to yield 106 g of white ETFE (A1) beads (average particle size: 2.5 mm) Got. The average composition of the ETFE (A1) is 50.5 mol% of polymer units based on tetrafluoroethylene, 48.5 mol% of polymer units based on ethylene, 1.0 mol of polymer units based on CH 2 ═CH—C 4 F 9. %, The melt viscosity was 41,800 poise, and the critical shear rate was 143 (1 / s).
[0015]
(Polymerization example 2)
Polymerization was conducted in the same manner as in Polymerization Example 1 except that C 6 F 14 was not used in Polymerization Example 1 but 1350 g of HCFC225cb was charged and 15 cc of a 1 wt% C 6 F 14 solution of t-butylperoxypivalate was charged as a polymerization initiator. And granulated to obtain 101 g of white ETFE (B1) beads (average particle size: 2.5 mm). The average composition of the ETFE (B1) is 50.3 mol% of polymer units based on tetrafluoroethylene, 48.6 mol% of polymer units based on ethylene, 1.1 mol of polymer units based on CH 2 ═CH—C 4 F 9 %, And the melt viscosity was 524 poise.
[0016]
( Reference Polymerization Example 3)
A stainless steel reaction vessel with an internal volume of 1.3 liters was degassed, and 305 g of water, 2.7 g of sodium lauryl sulfate, 11 g of disodium hydrogen phosphate · 12H 2 O, 68 g of tetrafluoroethylene, 4 g of propylene were added. Prepared. While maintaining the temperature at 65 ° C., 8 g of ammonium persulfate (APS) was charged as a polymerization initiator to start the reaction. During the reaction, tetrafluoroethylene and propylene were introduced so as to keep the gas composition in the system constant, and the reaction pressure was maintained at 20.0 kg / cm 2 . The reaction was terminated when the total amount of tetrafluoroethylene and propylene introduced reached 280 g, and the resulting latex was agglomerated and washed with an aqueous calcium chloride solution, and 275 g of white fluorinated polymer (B2) crumb (average particle size) (Diameter: 3 mm). The fluorinated average composition of the polymer based on tetrafluoroethylene polymerized units 55.1 mol%, and polymerized units 44.9 mol% based on propylene, melt viscosity of 1,450 poise.
[0017]
(Polymerization example 4)
Polymerization was conducted in the same manner as the polymerization of ETFE (A1) in Polymerization Example 1 except that 1040 g of C 6 F 14 and 325 g of HCFC225cb were charged, and granulated to give 105 g of white ETFE (A2) beads (average particle size: 2.5 mm) was obtained. Average composition polymerized units 50.5 mol% based on tetrafluoroethylene of the ETFE (A2), polymerized units 48.5 mol% based on ethylene, polymerized units 1.0 mol based on CH 2 = CH-C 4 F 9 %, The melt viscosity was 32,100 poise, and the critical shear rate was 175 (1 / s).
[0018]
Example 1
ETFE (A1) beads (average particle size: 2.5 mm) and ETFE (B1) beads (average particle size: 2.5 mm) were mixed at a ratio of 95/5 by weight, and 5 times at 300 ° C. by an extruder. The mixture was melted and mixed to obtain ETFE composition pellets (length: about 3 mm). Each physical property was measured using the pellet of the obtained ETFE composition.
(Example 2)
ETFE (A1) beads (average particle size: 2.5 mm) and ETFE (B1) beads (average particle size: 2.5 mm) were mixed at a ratio of 90/10 by weight, and 5 times at 300 ° C. by an extruder. The mixture was melted and mixed to obtain ETFE composition pellets (length: about 3 mm). Each physical property was measured using the pellet of the obtained ETFE composition.
[0019]
( Reference Example 3)
ETFE (A1) beads (average particle size: 2.5 mm) and fluorinated polymer (B2) crumb (average particle size: 3 mm) were mixed at a weight ratio of 90/10, and the mixture was mixed at 300 ° C. with an extruder. The mixture was melted and mixed for 5 minutes to obtain ETFE composition pellets (about 3 mm in length). Each physical property was measured using the pellet of the obtained ETFE composition.
[0020]
(Comparative Example 1)
Each physical property was measured using only the beads of ETFE (A1) obtained in Polymerization Example 1.
(Comparative Example 2)
Each physical property was measured using only the beads of ETFE (B1) obtained in Polymerization Example 2.
(Comparative Example 3)
Each physical property was measured by using only ETFE (A2) obtained in Polymerization Example 4.
[0021]
[ Table 1 ]
Figure 0003783443
[0022]
【The invention's effect】
The ETFE composition of the present invention has improved moldability without lowering the mechanical strength of the molded product, and is suitable for forming an electric wire coating or a tube.

Claims (1)

297℃における溶融粘度が5,000以上〜100,000以下ポイズであるエチレン/テトラフルオロエチレン系共重合体(A)と、297℃における溶融粘度が100以上〜5,000未満ポイズであるエチレン/テトラフルオロエチレン系共重合体(B)とを含み、エチレン/テトラフルオロエチレン系共重合体(B)の含有量がエチレン/テトラフルオロエチレン系共重合体(A)に対し0.1〜50重量%であることを特徴とするエチレン/テトラフルオロエチレン系共重合体組成物。Melt viscosity at 297 ° C. of 5,000 or more to 100,000 or less poise ethylene / tetrafluoroethylene copolymer polymer (A), ethylene melt viscosity at 297 ° C. is 100 or more and 5,000 less than poise / A tetrafluoroethylene copolymer (B), and the ethylene / tetrafluoroethylene copolymer (B) content is 0.1 to 50 wt.% Relative to the ethylene / tetrafluoroethylene copolymer (A). % Ethylene / tetrafluoroethylene copolymer composition.
JP00668799A 1999-01-13 1999-01-13 Ethylene / tetrafluoroethylene copolymer composition with improved moldability Expired - Lifetime JP3783443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00668799A JP3783443B2 (en) 1999-01-13 1999-01-13 Ethylene / tetrafluoroethylene copolymer composition with improved moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00668799A JP3783443B2 (en) 1999-01-13 1999-01-13 Ethylene / tetrafluoroethylene copolymer composition with improved moldability

Publications (2)

Publication Number Publication Date
JP2000204205A JP2000204205A (en) 2000-07-25
JP3783443B2 true JP3783443B2 (en) 2006-06-07

Family

ID=11645279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00668799A Expired - Lifetime JP3783443B2 (en) 1999-01-13 1999-01-13 Ethylene / tetrafluoroethylene copolymer composition with improved moldability

Country Status (1)

Country Link
JP (1) JP3783443B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792681B2 (en) * 2001-02-13 2011-10-12 ダイキン工業株式会社 Polymerization initiator composition and method for producing fluorine-containing polymer using the same
EP1842863B1 (en) * 2006-04-03 2008-09-10 Asahi Glass Company, Limited Ethylene/tetrafluorethylene copolymer composition
JP5051517B2 (en) * 2006-04-03 2012-10-17 旭硝子株式会社 Ethylene / tetrafluoroethylene copolymer composition
JP5233381B2 (en) * 2008-03-06 2013-07-10 旭硝子株式会社 Nonwoven fabric of ethylene / tetrafluoroethylene copolymer
JP2015003985A (en) * 2013-06-20 2015-01-08 日立金属株式会社 Fluorine-containing elastomer composition, and insulated electric wire and insulated cable each using the same

Also Published As

Publication number Publication date
JP2000204205A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US4552925A (en) Tetrafluoroethylene/hexafluoropropylene copolymer having improved extrudability
US7947775B2 (en) Fluoropolymer blending process
JP5232653B2 (en) Core / shell polymer
EP1948734B1 (en) Fluoropolymer composition
US7009018B2 (en) Tetrafluoroethylene copolymer
CA2320130A1 (en) Mixtures of thermoplastic fluoropolymers
JP2009528425A (en) Composition comprising melt-processable thermoplastic fluoropolymer and method of making the same
JPH043765B2 (en)
WO2009009361A2 (en) Methods for melt-processing thermoplastic fluoropolymers
JP3669172B2 (en) Tetrafluoroethylene copolymer, production method thereof and use thereof
EP2092016B1 (en) Improved heat aged perfluoropolymer
EP1568720B1 (en) Tetrafluoroethylene copolymer, process for producing the same and paste extrudate
KR100548630B1 (en) Acrylic copolymer composition, method for preparing the same and vinyl chloride-based resin composition comprising the same
JP3783443B2 (en) Ethylene / tetrafluoroethylene copolymer composition with improved moldability
JP3791223B2 (en) Ethylene / tetrafluoroethylene copolymer composition
JP5051517B2 (en) Ethylene / tetrafluoroethylene copolymer composition
EP0774473B1 (en) Tetrafluoroethylene polymer for improved paste extrusion
US20110092614A1 (en) Applications of ethylene/terafluoroethylene copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term