JP3723794B2 - Electrode structure of plasma surface treatment equipment - Google Patents

Electrode structure of plasma surface treatment equipment Download PDF

Info

Publication number
JP3723794B2
JP3723794B2 JP2002294127A JP2002294127A JP3723794B2 JP 3723794 B2 JP3723794 B2 JP 3723794B2 JP 2002294127 A JP2002294127 A JP 2002294127A JP 2002294127 A JP2002294127 A JP 2002294127A JP 3723794 B2 JP3723794 B2 JP 3723794B2
Authority
JP
Japan
Prior art keywords
electrode
plasma
dielectric
surface treatment
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002294127A
Other languages
Japanese (ja)
Other versions
JP2004127853A (en
JP2004127853A5 (en
Inventor
裕也 北畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002294127A priority Critical patent/JP3723794B2/en
Publication of JP2004127853A publication Critical patent/JP2004127853A/en
Publication of JP2004127853A5 publication Critical patent/JP2004127853A5/ja
Application granted granted Critical
Publication of JP3723794B2 publication Critical patent/JP3723794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プラズマによって被処理物のエッチング、成膜、表面改質、洗浄等の表面処理を行なうプラズマ表面処理装置におけるプラズマ発生用の電極の構造に関し、特に所謂リモート式のプラズマ表面処理装置における電極構造に関する。
【0002】
【従来の技術】
プラズマ表面処理装置では、一対の電極間(プラズマ空間)に処理ガスを導入するとともに電界を印加してプラズマを発生させ、これを被処理物に当てて所望の表面処理を行なう。一対の電極は、例えば2つの金属導体平板を平行に配置してなり、これら平板どうしの対向面には、セラミック等からなる固体誘電体が溶射等で被膜されている(例えば、特許文献1参照)。
また、一対の電極の外に被処理物を配置し、これに向けてプラズマ化した処理ガスを吹き付ける所謂リモート式のプラズマ表面処置装置も公知である(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開平11−236676号公報(第5頁段落0049、第9図)
【特許文献2】
特開平11−251304号公報(第1頁、第2図)
【0004】
【発明が解決しようとする課題】
従来のプラズマ表面処理装置では、一対の電極間に処理ガスを通すとともにプラズマ化させるための空間を確保するために、電極間の間隔を所定に維持するスペーサ等の間隔維持手段が別途必要であった。また、電極間のプラズマ空間ひいてはその下流端の処理ガス吹き出し口が、例えばスリット状に延びている場合には、この延び方向に処理ガスを分散、均一化させたうえでプラズマ空間に導入するための分散、均一化手段が別途必要であった。
【0005】
【課題を解決するための手段】
上記問題点を解決するために、本発明は、対向配置された一対の電極どうし間のプラズマ空間に処理ガスを導入するとともに印加電界によりプラズマ化(活性化)して被処理物(基材、ワーク)へ吹き出す所謂リモート式のプラズマ表面処理装置において、上記一対の電極の各々が、電極本体と、この電極本体の少なくとも他方の電極との対向面に設けられた固体誘電体層としての誘電板とを備え、双方の誘電板が、合掌状態に突き合わされるとともに双方の電極本体によって挟まれ、少なくとも一方の誘電板の突き合わせ面に上記プラズマ空間となる凹溝が形成されており、一対の誘電板における被処理物側を向くべき先端面どうしの境に上記凹溝が開口して、上記プラズマ空間の下流端の吹き出し口を形成していることを特徴とする。これによって、電極間の間隔を所定に維持するための別途の間隔維持手段が不要となり、部品点数を少なくでき、構造のコンパクト化を図ることができる。
【0006】
更に、上記一対の誘電板の間に、上記処理ガスを上記境に沿う方向に均一化させるガス均一化路が形成されていることが望ましい。これによって、別途のガス均一化手段も不要となり、部品点数の一層の削減を図ることができる。この場合、一対の誘電板を被処理物とは逆側を向く基端側へ電極本体より延出させ、この延出部に上記ガス均一化路を形成し、このガス均一化路に上記空間が連なるようにしてもよい。更に、上記延出部には、互いの対向面にガス均一化路を半割りにした凹部を形成し、一対の延出部どうしを突き合わせ、上記半割り凹部を合わせることによって、ガス均一化路が形成されるようにしてもよい。
【0007】
上記凹溝が、上記電極の被処理物とは逆側を向くべき基端部から被処理物側へ向くべき先端部へ近づくにしたがって上記一対の誘電板の先端面どうしの境に沿って広がるように枝分かれしていることが望ましい。これによって、処理ガスを上記空間の通過過程で分散させて吹き出すことができ、構成の一層のコンパクト化を図ることができる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して説明する。
図1及び図2は、本発明の第1実施形態に係るプラズマ表面処理装置M1を示したものである。装置M1は、処理ガス源1と、パルス電源2(電界印加手段)と、電極ユニット10とを備えている。処理ガス源1には、プラズマ表面処理の目的に応じた処理ガスが貯えられている。パルス電源4(電界印加手段)は、電極本体21にパルス電圧を出力するようになっている。このパルスの立上がり時間及び/又は立下り時間は、10μs以下、電界強度は1〜1000kV/cm、周波数は0.5kHz以上であることが望ましい。
【0009】
詳細な図示は省略するが、電極ユニット10は、ノズルヘッドに収容された状態で架台に支持されている。電極ユニット10の下方には、大面積の板状の基材(被処理物)Wがセットされており、、この基材Wに成膜、エッチング、表面改質等の表面処理が施されるようになっている。
【0010】
電極ユニット10は、互いに別体をなす一対の電極20,30で構成され、これら電極20,30が、前後(図1において左右)に対向するとともに、突き合されて一体化されている。電極20,30は、それぞれ導電金属製の電極本体21,31と、この電極本体31における他方の電極との対向面に設けられた固体誘電体層としての誘電板25とを備えている。後側の電界印加電極20の本体21は、断面四角形状をなして左右(図1において紙面と直交する方向)へ長く延びている。この電界印加電極本体21に、上記パルス電源2が給電線2aを介して接続されている。前側の接地電極30の本体31は、上記電界印加電極本体21と同一形状をなして左右に長く延びている。この接地電極本体31から接地線3aが延び、接地されている。
【0011】
電界印加電極20の誘電板25は、セラミック等の固体誘電体の板で構成され、長尺の電極本体21に合わせて左右に長く延びている。図2に示すように、誘電板25には、上端縁の中央部から出発して下方(被処理物側へ向くべき先端部)に向かうにしたがって左右長手方向に(誘電板25,35の先端面どうしの境に沿って)広がるように複数段階にわたって枝分かれするツリー状の溝25xと、このツリー状溝25xの末端の多数の枝に連なる凹部25yとが形成されている。凹部25yは、誘電板25の略全長にわたって延びるとともに下端面へ達している。ツリー溝25xと凹部25yとによって、「プラズマ空間となるべき凹溝」が構成されている。
【0012】
同様に、接地電極30の誘電板35は、固体誘電体の板で構成され、接地電極本体31に合わせて左右に長く延びている。詳細な図示は省略するが、誘電板32にも、電界印加電極20の誘電板25と同一形状のツリー状溝35x及び凹部35yが形成されている(図1参照)。
【0013】
そして、双方の誘電板25,35が、合掌状態に突き合されて互いに貼り合わされるとともに、双方の電極本体21,31によって前後両側から挟まれている。これにより、誘電板25,35のツリー状溝25x,35xどうしが合わさってツリー状通路(ガス均一化路、ガス分散路)10xが形成されている。ツリー状通路10xの上流端は、誘電板25,35の上面どうしの境に開口され、供給口10xINとなっている。この供給口10xINにガス供給管1aを介して上記処理ガス源1が接続されている。
また、凹部25y,35yどうしが合わさって、上記通路10xに連なるガス吹出し通路10yが形成されている。通路10yの下端は、ケース本体22,32の下面どうしの境へ開口し、吹き出し口10yOUTを構成している。
これら通路10x,10yは、略全体が電極本体21,31の間に介在され、「プラズマ空間」となっている。
【0014】
上記構成のプラズマ表面処理装置M1の動作を説明する。
処理ガス源1からの処理ガスは、ガス供給管1aを経て、供給口10xINからツリー状通路10xに導入される。そして、このツリー状通路10xによって長手方向へ順次均一に分散されながら下へ向かい、通路10yへ流れて行く。一方、パルス電源2によって電極本体21,31間に電界が印加される。これによって、通路10x、10y内でグロー放電が発生する。この結果、処理ガスが、ツリー状通路10xでの分散流通の過程で順次プラズマ化され、ガス吹き出し通路10yにおいても更にプラズマ化された後、下端の吹き出し口10yOUTから基材Wへ向けて吹出される。これによって、基材Wの長手方向に一度に、しかも均一に所望の表面処理を施すことができる。
【0015】
このように、装置M1によれば、誘電板25,35どうしを合掌状態で突き当て、更にこれを電極本体21,31で挟持したことによって、電極本体21,31間の間隔を所定に維持することができる。したがって、別途の間隔維持手段が不要であり、部品点数を削減でき、構造のコンパクト化を図ることができる。また、誘電板25,35どうしを合掌させることによって、ガス通路10x,10yを構成することができ、この通路10x、10y内において処理ガスを分散、均一化させながらプラズマ化させることができる。したがって、別途のガス分散・均一化手段が不要であり、部品点数の一層の削減を図ることができ、構成の一層のコンパクト化を図ることができる。
【0016】
次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の実施形態と同様の構成に関しては、図面に同一符号を付して説明を簡略化する。
図3及び図4は、本発明の第2実施形態を示したものである。この実施形態に係るプラズマ表面処理装置M2では、上記装置M1と同様に、電極ユニット20が、互いに別体をなす一対の電界印加電極20及び接地電極30で構成され、これら電極20,30どうしが、突き合されることによって一体化されている。各電極20,30は、長尺の電極本体21,31と誘電ケース22,32を備えている。
【0017】
電界印加電極20の誘電ケース22は、長尺の電極本体21に合わせて左右に長く延びるケース本体23と蓋24を備えている。これらケース本体23及び蓋245は、セラミック等の固体誘電体で構成されている。ケース本体23には、接地電極30とは逆側の背面へ開口する内部空間23aが形成されている。この内部空間23aに、電界印加電極本体21が着脱可能に収容され、内部空間23aの背面開口が蓋24で塞がれている。ケース本体23において、内部空間23aの奥壁を構成するとともに接地電極30と対向すべき対向壁25A(誘電板)には、上記第1実施形態と同様のツリー状溝25x及び凹部25yが形成されている(図4)。
なお、誘電ケース22は、電界印加電極本体21を包む固体誘電体層としての機能を有している。したがって、対向壁25Aは、電界印加電極本体21の接地電極30との対向面に設けられるべき固体誘電体層としての機能を有している。給電線2aは、ケース本体23を通して引き出してもよく、蓋24を通して引き出してもよい。
【0018】
同様に、接地電極30の誘電ケース32は、接地電極本体31に合わせて左右に長く延びる固体誘電体製のケース本体33及び蓋34を備えている。ケース本体33には、電界印加電極20とは逆側の背面へ開口する内部空間33aが形成されている。内部空間33aには接地電極本体31が着脱可能に収容され、内部空間33aの背面開口が蓋34で塞がれている。ケース本体33において、内部空間33aの奥壁を構成するとともに電界印加電極20と対向すべき対向壁35A(誘電板)には、上記対向壁25Aと同様のツリー状溝35x及び凹部35yが形成されている(図3参照)。
なお、誘電ケース32は、接地電極本体31を包む固体誘電体層としての機能を有している。したがって、対向壁35Aは、接地電極本体31の電界印加電極20との対向面に設けられるべき固体誘電体層としての機能を有している。接地線3aは、ケース本体33を通して引き出してもよく、蓋34を通して引き出してもよい。
【0019】
そして、双方の電極20,30の対向面どうし、すなわち、対向壁25A,35Aどうしが、合掌状態に突き合されて互いに貼り合わされている。(対向壁25A,35Aが、電極本体21,31によって前後両側から挟まれた状態になっている。)これにより、対向壁25A,35Aのツリー状溝25x,35xどうしが合わさってツリー状通路(ガス均一化路、ガス分散路)10xが形成され、凹部25y,35yどうしが合わさって、上記通路10xに連なるガス吹出し通路10yが形成されている。
【0020】
この第2実施形態に係るプラズマ表面処理装置M2によれば、各電極本体21,31の全体が、固体誘電体層としての誘電ケース22,32で覆われているため、互いの対向面では勿論、背面やエッジにおいても異常放電を防止できる。また、ケース22,32に膜等の汚れが付着した場合には、電極本体21,31を取り出し、ケース22,32だけを例えば強酸等の薬液に漬ける等して洗浄することができ、メンテナンスを容易化できる。
【0021】
図5及び図6は、本発明の第3実施形態を示したものである。この実施形態に係るプラズマ表面処理装置M3では、ケース本体23,33が、それぞれ電極本体21,31より上へ延出されている。一対のケース本体23,33のこれら上側延出部どうしによってガス均一化部11が構成され、下側部どうしによって電極対向配置部12が構成されている。
【0022】
電界印加側のケース本体23の上側部(ガス均一化部11)は、水平な隔壁26によって仕切られた上下2つの半割り膨張室23b,23dを有して、大略E字状の断面をなしている。半割り膨張室23b,23dは、接地側のケース本体33へ向けて開口されている。同様に、接地側のケース本体33の上側部(ガス均一化部11)は、水平隔壁36によって仕切られるとともに電界印加側ケース本体23へ向けて開口する上下2つの半割り膨張室33b,33dを有している。
【0023】
電界印加側のケース本体23の下側部(電極対向配置部12)には、接地電極30とは逆側の背面へ開口する内部空間23aが形成されている。内部空間23aには電界印加電極本体21が着脱可能に収容され、内部空間23aの背面開口が蓋24で塞がれている。ケース本体23において、内部空間23aの奥壁を構成するとともに接地電極30と対向すべき対向壁25A(誘電板)には、電極30との対向面に凹部(凹溝)25aが形成されている。凹部25aは、ケース本体23の略全長にわたって延びるとともにケース本体23の下端面(被処理物を向くべき先端面)へ達している。
【0024】
同様に、接地側のケース本体33の下側部(電極対向配置部12)には、電界印加電極20とは逆側の背面へ開口する内部空間33aが形成されている。内部空間33aには接地電極本体31が着脱可能に収容され、内部空間33aの背面開口が蓋34で塞がれている。ケース本体33において、内部空間33aの奥壁を構成するとともに電界印加電極20と対向すべき対向壁35A(誘電板)には、電極20との対向面に凹部35aが形成されている。凹部35aは、ケース本体33の略全長にわたって延びるとともにケース本体33の下端面(被処理物を向くべき先端面)へ達している。
【0025】
そして、一対のケース本体23,33の上側及び左右両側の対向縁どうしが、突き合されている。これにより、双方のガス均一化部11において、上側の半割り膨張室23b,33bどうしが合わさって第1膨張室11bが形成され、下側の半割り膨張室23d,33dどうしが合わさって下側の第2膨張室11dが形成されている。これら膨張室11b,11dは、それぞれ左右に延びるとともに、前後幅方向にも広がり、十分に大きな容積を有している。
【0026】
一対のケース本体23,33の上板には、互いの対向縁の長手方向の中央部に供給口11aが形成されている。この供給口11aにガス供給管1aを介して上記処理ガス源1が接続されている。また、供給口11aに第1膨張室11bが連なっている。
【0027】
一対のケース本体23,33の隔壁26,36の対向縁どうし間にはスリット状の隙間11c(圧損形成路)が形成されている。この隙間11cを介して上下の膨張室11b,11dどうしが連なっている。
一対のケース本体23,33において、ガス均一化部11と電極対向配置部12との境板27,37の対向縁どうし間にはスリット状の隙間11e(プラズマ空間への導入路)が形成されている。この隙間11eを介して、第2膨張室11dが後記プラズマ空間12aに連なっている。供給口11a、膨張室11b、隙間11c、膨張室11d、隙間11eによって「ガス均一化路」が構成されている。
【0028】
更に、双方のケース本体23,33の電極対向配置部12において、凹部25a,35aどうしが合わさってプラズマ空間12aが形成されている。プラズマ空間12aは、ケース本体23,33の下面へ開口し、左右に細長い吹き出し口12aOUTを構成している。
【0029】
第3実施形態のプラズマ表面処理装置M3では、処理ガス源1からの処理ガスが、ガス供給管1aを経て供給口11aへ供給される。そして、第1膨張室11bに導入されて膨張(高コンダクタンス化)された後、隙間11cで絞られて圧損を生じ(低コンダクタンス化され)、次に第2膨張室11dに導入されて再び膨張される。更に、隙間11eで絞られて再び圧損を生じる。このように、膨張と絞りを交互に加えることにより、処理ガスを左右長手方向に十分に均一化させた後、プラズマ空間12aへ導入することができる。そして、電極本体21,31間に電界を印加することによって、処理ガスがプラズマ化される。このプラズマ化された処理ガスが、下端の吹き出し口12aOUTから基材Wへ吹き付けられる。
【0030】
装置M3によれば、ケース22,32にガス均一化部11が一体に組み込まれているので、別途のガス均一化手段が不要であり、部品点数の一層の削減を図ることができる。
なお、ガス均一化部の膨張室は、第1、第2の二段だけに限られず、3段以上設けてもよい。これら膨張室どうしを連ねる圧損形成路は、隙間11c,11eのようなスリット状に代えて、スポット(貫通小孔)状になるように構成していもよい。
【0031】
本発明は、上記実施形態に限定されず、種々の改変が可能である。
例えば、「プラズマ空間となる凹溝」は、少なくとも一方の誘電板の対向面に形成されていればよく、他方の誘電板の対向面はフラットになっていてもよい。或いは、途中までは一方の誘電板に形成され、そこから先は他方の誘電板に形成されていてもよい。
本発明は、常圧下、減圧下の何れのプラズマ表面処理にも適用できる。
【0032】
【発明の効果】
以上説明したように、本発明によれば、プラズマ表面処理装置における電極間の間隔を所定に維持するための別途の間隔維持手段が不要となり、部品点数を少なくでき、構造のコンパクト化を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るプラズマ表面処理装置の概略構成を示す側面断面図である。
【図2】図1のII−IIに沿う上記装置の電極ユニットの電界印加電極誘電板の正面図である。
【図3】本発明の第2実施形態に係るプラズマ表面処理装置の概略構成を示す側面断面図である。
【図4】図3のIV−IVに沿う上記第2実施形態に係る装置の電極ユニットの電界印加電極誘電ケースの正面図である。
【図5】本発明の第3実施形態に係るプラズマ表面処理装置の概略構成を示す側面断面図である。
【図6】図5のVI−VIに沿う上記第3実施形態に係る装置の電極ユニットの電界印加電極誘電ケースの正面図である。
【符号の説明】
M1,M2,M3 プラズマ表面処理装置
W 基材(被処理物)
10x ツリー状通路(プラズマ空間)
10y ガス吹き出し通路(プラズマ空間)
11 ガス均一化部
12a プラズマ空間
21,31 電極本体
25,35 誘電板
25A,35A 対向壁(誘電板)
25a 凹部(凹溝)
25x ツリー状溝(凹溝)
25y 凹部(凹溝)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of an electrode for plasma generation in a plasma surface treatment apparatus that performs surface treatment such as etching, film formation, surface modification, and cleaning of an object to be processed by plasma, and particularly in a so-called remote type plasma surface treatment apparatus. The present invention relates to an electrode structure.
[0002]
[Prior art]
In a plasma surface treatment apparatus, a treatment gas is introduced between a pair of electrodes (plasma space) and an electric field is applied to generate plasma, which is applied to an object to be treated to perform a desired surface treatment. The pair of electrodes includes, for example, two metal conductor flat plates arranged in parallel, and a solid dielectric made of ceramic or the like is coated on the opposing surfaces of these flat plates by thermal spraying or the like (see, for example, Patent Document 1). ).
A so-called remote type plasma surface treatment apparatus is also known in which an object to be processed is arranged outside a pair of electrodes and a processing gas that is turned into plasma is sprayed toward the object (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP 11-236676 A (paragraph 0049 on page 5, FIG. 9)
[Patent Document 2]
JP 11-251304 A (first page, FIG. 2)
[0004]
[Problems to be solved by the invention]
In the conventional plasma surface processing apparatus, in order to secure a space for passing the processing gas between the pair of electrodes and generating the plasma, a space maintaining means such as a spacer for maintaining a predetermined space between the electrodes is required separately. It was. In addition, when the plasma space between the electrodes and the processing gas blowout port at the downstream end thereof extend in a slit shape, for example, the processing gas is dispersed and uniformed in this extending direction and then introduced into the plasma space. Separately, a means for dispersing and homogenizing was necessary.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention introduces a processing gas into a plasma space between a pair of opposed electrodes and plasmaizes (activates) it by an applied electric field to form an object to be processed (base material, In the so-called remote-type plasma surface treatment apparatus that blows off to a workpiece, each of the pair of electrodes is a dielectric plate as a solid dielectric layer provided on the opposing surface of the electrode body and at least the other electrode of the electrode body The two dielectric plates are abutted in a palmed state and sandwiched between both electrode bodies, and a concave groove serving as the plasma space is formed on the abutting surface of at least one of the dielectric plates. The concave groove is opened at the boundary between the front end surfaces of the plate that should face the workpiece, forming a blowout port at the downstream end of the plasma space. This eliminates the need for a separate spacing maintaining means for maintaining the spacing between the electrodes at a predetermined level, thereby reducing the number of parts and making the structure compact.
[0006]
Further, it is desirable that a gas homogenization path for uniformizing the processing gas in the direction along the boundary is formed between the pair of dielectric plates. This eliminates the need for a separate gas uniformizing means, and can further reduce the number of parts. In this case, a pair of dielectric plates are extended from the electrode body to the base end side facing away from the object to be processed, the gas uniformizing path is formed in the extending portion, and the space in the gas uniformizing path is formed. May be continued. Furthermore, the extension part is formed with a recess in which the gas homogenization path is divided in half on the opposing surfaces, the pair of extension parts are butted together, and the gas splitting path is aligned. May be formed.
[0007]
The concave groove expands along the boundary between the distal end surfaces of the pair of dielectric plates as it approaches the distal end portion that should face the workpiece side from the base end portion that should face the opposite side of the electrode. It is desirable that the branches be branched like this. As a result, the processing gas can be dispersed and blown out in the process of passing through the space, and the configuration can be made more compact.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2 show a plasma surface treatment apparatus M1 according to a first embodiment of the present invention. The apparatus M1 includes a processing gas source 1, a pulse power source 2 (electric field applying means), and an electrode unit 10. The processing gas source 1 stores a processing gas corresponding to the purpose of the plasma surface treatment. The pulse power source 4 (electric field applying means) outputs a pulse voltage to the electrode body 21. It is desirable that the rise time and / or fall time of this pulse is 10 μs or less, the electric field strength is 1-1000 kV / cm, and the frequency is 0.5 kHz or more.
[0009]
Although detailed illustration is omitted, the electrode unit 10 is supported by the gantry while being accommodated in the nozzle head. Below the electrode unit 10, a large-area plate-like base material (object to be processed) W is set, and the base material W is subjected to surface treatment such as film formation, etching, and surface modification. It is like that.
[0010]
The electrode unit 10 includes a pair of electrodes 20 and 30 that are separate from each other. The electrodes 20 and 30 face each other in the front-rear direction (left and right in FIG. 1) and are abutted and integrated. The electrodes 20 and 30 include electrode bodies 21 and 31 made of conductive metal, respectively, and a dielectric plate 25 as a solid dielectric layer provided on a surface of the electrode body 31 facing the other electrode. The main body 21 of the electric field applying electrode 20 on the rear side has a quadrangular cross section and extends long to the left and right (in the direction orthogonal to the paper surface in FIG. 1). The pulse power source 2 is connected to the electric field applying electrode main body 21 via a feeder line 2a. A main body 31 of the ground electrode 30 on the front side has the same shape as the electric field applying electrode main body 21 and extends to the left and right. A ground wire 3a extends from the ground electrode body 31 and is grounded.
[0011]
The dielectric plate 25 of the electric field applying electrode 20 is made of a solid dielectric plate such as ceramic, and extends long to the left and right according to the long electrode body 21. As shown in FIG. 2, the dielectric plate 25 starts from the center of the upper edge and goes downward (the tip that should face the workpiece) in the left and right longitudinal direction (the tips of the dielectric plates 25 and 35). A tree-like groove 25x branching over a plurality of stages so as to expand (along the boundary between the planes) and a recess 25y connected to a number of branches at the end of the tree-like groove 25x are formed. The recess 25y extends over substantially the entire length of the dielectric plate 25 and reaches the lower end surface. The tree groove 25x and the recess 25y constitute a “concave groove to be a plasma space”.
[0012]
Similarly, the dielectric plate 35 of the ground electrode 30 is formed of a solid dielectric plate and extends long to the left and right in accordance with the ground electrode body 31. Although detailed illustration is omitted, the dielectric plate 32 is also formed with a tree-like groove 35x and a recess 35y having the same shape as the dielectric plate 25 of the electric field applying electrode 20 (see FIG. 1).
[0013]
The two dielectric plates 25 and 35 are abutted to each other and bonded together, and are sandwiched between the electrode bodies 21 and 31 from both the front and rear sides. As a result, the tree-like grooves 25x and 35x of the dielectric plates 25 and 35 are joined together to form a tree-like passage (gas homogenization path, gas dispersion path) 10x. The upstream end of the tree-like passage 10x is opened on the border of the upper surface each other of the dielectric plate 25 and 35, and has a supply port 10x IN. The process gas source 1 via the gas supply pipe 1a is connected to the supply port 10x IN.
Further, the recesses 25y and 35y are joined together to form a gas blowing passage 10y continuous with the passage 10x. The lower end of the passageway 10y is opened to the border of the lower surface to each other of the case body 22, 32 constitutes the outlet 10y OUT.
The passages 10x and 10y are substantially entirely interposed between the electrode bodies 21 and 31 to form a “plasma space”.
[0014]
The operation of the plasma surface treatment apparatus M1 having the above configuration will be described.
Process gas from the process gas source 1, via the gas supply pipe 1a, is introduced into 10x tree-like passage from the supply port 10x IN. Then, the tree-like passage 10x moves downward to the passage 10y while being uniformly dispersed in the longitudinal direction. On the other hand, an electric field is applied between the electrode bodies 21 and 31 by the pulse power source 2. As a result, glow discharge is generated in the passages 10x and 10y. As a result, process gases are sequentially plasma in the course of dispersion distribution of the tree-like passage 10x, after being further plasma even gas blowout passage 10y, toward the outlet 10y OUT at the lower end to the substrate W blowout Is done. Thus, a desired surface treatment can be performed at once in the longitudinal direction of the substrate W and uniformly.
[0015]
As described above, according to the device M1, the dielectric plates 25 and 35 are abutted with each other in a palmed state, and are further held between the electrode main bodies 21 and 31, thereby maintaining a predetermined interval between the electrode main bodies 21 and 31. be able to. Therefore, no separate spacing maintaining means is required, the number of parts can be reduced, and the structure can be made compact. Further, the gas passages 10x and 10y can be formed by bringing the dielectric plates 25 and 35 together, and the processing gas can be converted into plasma while being dispersed and uniformed in the passages 10x and 10y. Therefore, a separate gas dispersion / uniformization means is unnecessary, the number of parts can be further reduced, and the configuration can be further downsized.
[0016]
Next, another embodiment of the present invention will be described. In the following embodiments, the same configurations as those of the above-described embodiments are denoted by the same reference numerals in the drawings, and the description is simplified.
3 and 4 show a second embodiment of the present invention. In the plasma surface treatment apparatus M2 according to this embodiment, as in the apparatus M1, the electrode unit 20 includes a pair of electric field application electrodes 20 and a ground electrode 30 that are separate from each other. , It is integrated by being butted. Each electrode 20, 30 includes a long electrode body 21, 31 and a dielectric case 22, 32.
[0017]
The dielectric case 22 of the electric field applying electrode 20 includes a case main body 23 and a lid 24 that extend to the left and right according to the long electrode main body 21. The case body 23 and the lid 245 are made of a solid dielectric such as ceramic. The case body 23 is formed with an internal space 23 a that opens to the back surface opposite to the ground electrode 30. The electric field applying electrode main body 21 is detachably accommodated in the internal space 23 a, and the rear opening of the internal space 23 a is closed with a lid 24. In the case main body 23, a tree-like groove 25x and a concave portion 25y similar to those in the first embodiment are formed in the opposing wall 25A (dielectric plate) that forms the inner wall of the internal space 23a and should face the ground electrode 30. (FIG. 4).
The dielectric case 22 has a function as a solid dielectric layer surrounding the electric field applying electrode main body 21. Therefore, the facing wall 25A has a function as a solid dielectric layer to be provided on the surface of the electric field applying electrode body 21 facing the ground electrode 30. The power supply line 2 a may be drawn out through the case body 23 or through the lid 24.
[0018]
Similarly, the dielectric case 32 of the ground electrode 30 includes a case body 33 made of a solid dielectric and a lid 34 that extend to the left and right according to the ground electrode body 31. The case body 33 is formed with an internal space 33 a that opens to the back surface opposite to the electric field applying electrode 20. The ground electrode main body 31 is detachably accommodated in the internal space 33a, and the back opening of the internal space 33a is closed with a lid. In the case main body 33, a tree-like groove 35x and a recess 35y similar to the above-described opposing wall 25A are formed in the opposing wall 35A (dielectric plate) that constitutes the inner wall of the internal space 33a and should be opposed to the electric field applying electrode 20. (See FIG. 3).
The dielectric case 32 has a function as a solid dielectric layer surrounding the ground electrode body 31. Therefore, the facing wall 35A has a function as a solid dielectric layer to be provided on the surface of the ground electrode body 31 facing the electric field applying electrode 20. The ground wire 3a may be pulled out through the case body 33 or through the lid 34.
[0019]
And the opposing surfaces of both the electrodes 20 and 30, that is, the opposing walls 25A and 35A are abutted to each other and bonded together. (The opposing walls 25A, 35A are sandwiched from the front and rear sides by the electrode bodies 21, 31.) Thereby, the tree-like grooves 25x, 35x of the opposing walls 25A, 35A are joined together to form a tree-like passage ( (Gas homogenization path, gas dispersion path) 10x is formed, and the recesses 25y and 35y are joined together to form a gas outlet passage 10y connected to the passage 10x.
[0020]
According to the plasma surface treatment apparatus M2 according to the second embodiment, the entire electrode bodies 21 and 31 are covered with the dielectric cases 22 and 32 as solid dielectric layers. Also, abnormal discharge can be prevented at the back and edges. Further, when dirt such as a film adheres to the cases 22 and 32, the electrode main bodies 21 and 31 can be taken out, and only the cases 22 and 32 can be cleaned by immersing them in a chemical solution such as a strong acid. It can be simplified.
[0021]
5 and 6 show a third embodiment of the present invention. In the plasma surface treatment apparatus M3 according to this embodiment, the case main bodies 23 and 33 are extended above the electrode main bodies 21 and 31, respectively. The gas uniformizing portion 11 is constituted by these upper extending portions of the pair of case main bodies 23, 33, and the electrode facing arrangement portion 12 is constituted by the lower side portions.
[0022]
The upper part (gas homogenization part 11) of the case body 23 on the electric field application side has two upper and lower half expansion chambers 23b and 23d partitioned by a horizontal partition wall 26, and has a substantially E-shaped cross section. ing. The half expansion chambers 23b and 23d are opened toward the case main body 33 on the ground side. Similarly, the upper part (gas uniformizing part 11) of the case body 33 on the grounding side is divided into two upper and lower halved expansion chambers 33b and 33d that are partitioned by the horizontal partition wall 36 and open toward the electric field application side case body 23. Have.
[0023]
An inner space 23 a that opens to the back surface opposite to the ground electrode 30 is formed in the lower portion (electrode facing arrangement portion 12) of the case body 23 on the electric field application side. The electric field applying electrode main body 21 is detachably accommodated in the internal space 23 a, and the back opening of the internal space 23 a is closed with a lid 24. In the case main body 23, a concave wall (concave groove) 25a is formed on the surface facing the electrode 30 on the facing wall 25A (dielectric plate) that forms the inner wall of the internal space 23a and should face the ground electrode 30. . The recess 25a extends over substantially the entire length of the case main body 23 and reaches the lower end surface of the case main body 23 (the front end surface that should face the workpiece).
[0024]
Similarly, an inner space 33 a that opens to the back surface on the opposite side of the electric field applying electrode 20 is formed on the lower side (electrode facing arrangement portion 12) of the case main body 33 on the ground side. The ground electrode main body 31 is detachably accommodated in the internal space 33a, and the back opening of the internal space 33a is closed with a lid. In the case body 33, a concave wall 35 </ b> A is formed on the surface facing the electrode 20 on the facing wall 35 </ b> A (dielectric plate) that forms the inner wall of the internal space 33 a and should face the electric field applying electrode 20. The recess 35a extends over substantially the entire length of the case main body 33 and reaches the lower end surface of the case main body 33 (the front end surface that should face the object to be processed).
[0025]
The opposing edges of the upper and left and right sides of the pair of case bodies 23 and 33 are abutted. Thereby, in both gas equalization parts 11, upper half expansion chambers 23b and 33b are combined, and the 1st expansion chamber 11b is formed, and lower half expansion chambers 23d and 33d are combined and lower side The second expansion chamber 11d is formed. These expansion chambers 11b and 11d extend to the left and right, and also extend in the front-rear width direction, and have a sufficiently large volume.
[0026]
On the upper plate of the pair of case main bodies 23 and 33, a supply port 11a is formed at the center in the longitudinal direction of the opposing edges. The processing gas source 1 is connected to the supply port 11a through a gas supply pipe 1a. The first expansion chamber 11b is connected to the supply port 11a.
[0027]
Between the opposing edges of the partition walls 26 and 36 of the pair of case bodies 23 and 33, a slit-shaped gap 11c (pressure loss forming path) is formed. The upper and lower expansion chambers 11b and 11d are connected via the gap 11c.
In the pair of case bodies 23 and 33, a slit-like gap 11 e (introduction path to the plasma space) is formed between the opposing edges of the boundary plates 27 and 37 between the gas homogenizing portion 11 and the electrode facing arrangement portion 12. ing. The second expansion chamber 11d is connected to the plasma space 12a described later via the gap 11e. The supply port 11a, the expansion chamber 11b, the gap 11c, the expansion chamber 11d, and the gap 11e constitute a “gas homogenization path”.
[0028]
Further, in the electrode facing arrangement portion 12 of both case bodies 23 and 33, the concave portions 25a and 35a are joined together to form a plasma space 12a. The plasma space 12a opens to the lower surfaces of the case bodies 23 and 33, and configures a blowout port 12a OUT that is elongated to the left and right.
[0029]
In the plasma surface processing apparatus M3 of the third embodiment, the processing gas from the processing gas source 1 is supplied to the supply port 11a through the gas supply pipe 1a. After being introduced into the first expansion chamber 11b and expanded (high conductance), the gap 11c is squeezed to cause pressure loss (low conductance), and then introduced into the second expansion chamber 11d and expanded again. Is done. Furthermore, it is squeezed by the gap 11e and causes pressure loss again. Thus, by alternately expanding and constricting, the processing gas can be sufficiently introduced in the left-right longitudinal direction and then introduced into the plasma space 12a. Then, by applying an electric field between the electrode bodies 21 and 31, the processing gas is turned into plasma. This plasma-ized processing gas is blown to the base material W from the blowout port 12a OUT at the lower end.
[0030]
According to the apparatus M3, since the gas homogenizer 11 is integrally incorporated in the cases 22 and 32, a separate gas homogenizer is not required, and the number of parts can be further reduced.
In addition, the expansion chamber of the gas homogenizer is not limited to the first and second two stages, and may be provided with three or more stages. The pressure loss forming path that connects these expansion chambers may be configured to have a spot (through small hole) shape instead of a slit shape such as the gaps 11c and 11e.
[0031]
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, the “concave groove serving as the plasma space” may be formed on the opposing surface of at least one of the dielectric plates, and the opposing surface of the other dielectric plate may be flat. Alternatively, it may be formed on one dielectric plate until halfway and the other portion is formed on the other dielectric plate.
The present invention can be applied to any plasma surface treatment under normal pressure or reduced pressure.
[0032]
【The invention's effect】
As described above, according to the present invention, there is no need for a separate distance maintaining means for maintaining a predetermined distance between the electrodes in the plasma surface treatment apparatus, the number of parts can be reduced, and the structure can be made compact. Can do.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a schematic configuration of a plasma surface treatment apparatus according to a first embodiment of the present invention.
2 is a front view of an electric field applying electrode dielectric plate of the electrode unit of the above apparatus along II-II in FIG. 1. FIG.
FIG. 3 is a side sectional view showing a schematic configuration of a plasma surface treatment apparatus according to a second embodiment of the present invention.
4 is a front view of an electric field applying electrode dielectric case of the electrode unit of the device according to the second embodiment along IV-IV in FIG. 3; FIG.
FIG. 5 is a side sectional view showing a schematic configuration of a plasma surface treatment apparatus according to a third embodiment of the present invention.
6 is a front view of an electric field applying electrode dielectric case of the electrode unit of the device according to the third embodiment along VI-VI in FIG. 5; FIG.
[Explanation of symbols]
M1, M2, M3 Plasma surface treatment equipment W Base material (object to be treated)
10x tree-shaped passage (plasma space)
10y Gas blowout passage (plasma space)
11 Gas homogenizer 12a Plasma space 21, 31 Electrode body 25, 35 Dielectric plates 25A, 35A Opposite walls (dielectric plates)
25a Concave (concave groove)
25x Tree-shaped groove (concave groove)
25y recess (concave groove)

Claims (4)

対向配置された一対の電極どうし間のプラズマ空間に処理ガスを導入するとともにプラズマ化して被処理物へ吹き出すプラズマ表面処理装置において、
上記一対の電極の各々が、電極本体と、この電極本体を収容する固体誘電体からなる誘電ケースとを備え、この誘電ケースの他方の電極と対向する対向壁が、上記電極本体の他方の電極との対向面に設けられた固体誘電体層を構成しており、
双方の誘電ケースの対向壁どうしが突き合わされ、少なくとも一方の誘電ケースの対向壁の突き合わせ面に上記プラズマ空間となる凹部が形成され、一対の対向壁における被処理物側を向くべき先端面どうしの境に上記凹部が開口していることを特徴とするプラズマ表面処理装置の電極構造。
In a plasma surface treatment apparatus that introduces a processing gas into a plasma space between a pair of electrodes arranged opposite to each other and turns it into a plasma and blows it out to a workpiece,
Each of the pair of electrodes includes an electrode main body and a dielectric case made of a solid dielectric material that accommodates the electrode main body , and an opposing wall facing the other electrode of the dielectric case is the other electrode of the electrode main body. A solid dielectric layer provided on the opposite surface of the
The opposing walls of both dielectric cases are abutted, and a concave portion serving as the plasma space is formed on the abutting surface of the opposing walls of at least one of the dielectric cases, and the tip surfaces of the pair of opposing walls that should face the workpiece side An electrode structure of a plasma surface treatment apparatus, wherein the recess is opened at a boundary .
上記誘電ケースにおける上記電極本体を収容する内部空間が、他方の電極とは逆側の背面に開口されており、上記誘電ケースの上記開口の側の端部が、上記電極本体より突出されていることを特徴とする請求項1に記載のプラズマ表面処理装置の電極構造。An inner space for housing the electrode body in the dielectric case is opened on the back surface opposite to the other electrode, and an end of the dielectric case on the opening side is projected from the electrode body. The electrode structure of the plasma surface treatment apparatus according to claim 1. 上記一対の誘電ケースによって、上記処理ガスを上記境に沿う方向に均一化させるガス均一化路が形成されていることを特徴とする請求項1又は2に記載のプラズマ表面処理装置の電極構造。The electrode structure of the plasma surface treatment apparatus according to claim 1 or 2 , wherein a gas homogenizing path is formed by the pair of dielectric cases to homogenize the processing gas in a direction along the boundary. 上記対向壁の突き合わせ面には、先端部へ向かうにしたがって上記境に沿って広がるように枝分かれするツリー状溝が形成されていることを特徴とする請求項1又は2に記載のプラズマ表面処理装置の電極構造。3. The plasma surface treatment apparatus according to claim 1, wherein a tree-like groove is formed on the abutting surface of the facing wall so as to branch along the boundary toward the tip. Electrode structure.
JP2002294127A 2002-10-07 2002-10-07 Electrode structure of plasma surface treatment equipment Expired - Fee Related JP3723794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294127A JP3723794B2 (en) 2002-10-07 2002-10-07 Electrode structure of plasma surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294127A JP3723794B2 (en) 2002-10-07 2002-10-07 Electrode structure of plasma surface treatment equipment

Publications (3)

Publication Number Publication Date
JP2004127853A JP2004127853A (en) 2004-04-22
JP2004127853A5 JP2004127853A5 (en) 2005-08-11
JP3723794B2 true JP3723794B2 (en) 2005-12-07

Family

ID=32284818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294127A Expired - Fee Related JP3723794B2 (en) 2002-10-07 2002-10-07 Electrode structure of plasma surface treatment equipment

Country Status (1)

Country Link
JP (1) JP3723794B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997127A (en) * 2017-08-09 2020-04-10 春日电机株式会社 Surface modification device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398330B2 (en) * 2004-09-02 2010-01-13 株式会社イー・スクエア Plasma surface treatment equipment
US20060054279A1 (en) * 2004-09-10 2006-03-16 Yunsang Kim Apparatus for the optimization of atmospheric plasma in a processing system
JP4968883B2 (en) * 2006-03-30 2012-07-04 日本碍子株式会社 Remote plasma processing equipment
JP2008277774A (en) * 2007-04-03 2008-11-13 Sekisui Chem Co Ltd Plasma treatment device
KR101534130B1 (en) * 2008-09-05 2015-07-07 주성엔지니어링(주) Deposition apparatus for metal oxide
JP4540731B2 (en) 2008-09-29 2010-09-08 積水化学工業株式会社 Nozzle device for surface treatment
JP5121652B2 (en) * 2008-09-29 2013-01-16 積水化学工業株式会社 Nozzle device for surface treatment
JP2011134871A (en) * 2009-12-24 2011-07-07 Shin Etsu Handotai Co Ltd Epitaxial growth device, and method of manufacturing the same
JP5771372B2 (en) * 2010-08-02 2015-08-26 株式会社アルバック Plasma processing apparatus and pretreatment method
JP5413421B2 (en) * 2011-08-10 2014-02-12 パナソニック株式会社 Inductively coupled plasma processing apparatus and method
EP2960358A1 (en) * 2014-06-25 2015-12-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Plasma source and surface treatment method
US10665460B2 (en) 2016-09-05 2020-05-26 Shin-Etsu Handotai Co., Ltd. Vapor phase growth apparatus, method of manufacturing epitaxial wafer, and attachment for vapor phase growth apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319571U (en) * 1986-07-23 1988-02-09
JP2537304B2 (en) * 1989-12-07 1996-09-25 新技術事業団 Atmospheric pressure plasma reaction method and apparatus
JP2595744Y2 (en) * 1992-05-12 1999-06-02 宮城沖電気株式会社 Semiconductor manufacturing equipment
JP3147137B2 (en) * 1993-05-14 2001-03-19 セイコーエプソン株式会社 Surface treatment method and device, semiconductor device manufacturing method and device, and liquid crystal display manufacturing method
JPH0762546A (en) * 1993-08-25 1995-03-07 Shinko Electric Co Ltd Atmospheric plasma surface treating device
JP3653824B2 (en) * 1995-09-22 2005-06-02 セイコーエプソン株式会社 Surface treatment equipment
US6502530B1 (en) * 2000-04-26 2003-01-07 Unaxis Balzers Aktiengesellschaft Design of gas injection for the electrode in a capacitively coupled RF plasma reactor
JP2002176050A (en) * 2000-12-05 2002-06-21 Sekisui Chem Co Ltd Method of forming silicon oxide film and system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997127A (en) * 2017-08-09 2020-04-10 春日电机株式会社 Surface modification device
CN110997127B (en) * 2017-08-09 2021-12-21 春日电机株式会社 Surface modification device

Also Published As

Publication number Publication date
JP2004127853A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3723794B2 (en) Electrode structure of plasma surface treatment equipment
KR100552378B1 (en) Electrode Structure of The Plasma Surface Treatment Device
JP3399887B2 (en) Plasma processing equipment
WO2020021831A1 (en) Plasma generation device
EP1638377A4 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
JP4630874B2 (en) Atmospheric pressure large area glow plasma generator
JP3686647B2 (en) Electrode structure of plasma surface treatment equipment
US20100258247A1 (en) Atmospheric pressure plasma generator
JP2004124239A (en) Plasma film deposition system
JP2009540568A5 (en)
JP5961899B2 (en) Atmospheric pressure plasma generator
JP4364494B2 (en) Plasma surface treatment equipment
JP2003007497A (en) Atmospheric pressure plasma processing equipment
JP2934852B1 (en) Plasma processing equipment
JP6944066B2 (en) Plasma generator
JP5911178B2 (en) Plasma surface treatment equipment
JP3686662B1 (en) Plasma processing equipment
JPH04307978A (en) High-frequency exciting gas laser having flow in longitudinal direction
JP4361495B2 (en) Electrode structure of plasma surface treatment equipment
JP4410666B2 (en) In-tube processing apparatus, processing member, and processing method
JP4930983B2 (en) Atmospheric pressure plasma generator
JP2005251719A (en) Plasma treatment device and its manufacturing method
JP4841177B2 (en) Plasma cleaning equipment
JP7142481B2 (en) Plasma supply device, plasma generation method
JP2004149919A (en) Plasma film deposition system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Ref document number: 3723794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees