WO2020021831A1 - Plasma generation device - Google Patents

Plasma generation device Download PDF

Info

Publication number
WO2020021831A1
WO2020021831A1 PCT/JP2019/020094 JP2019020094W WO2020021831A1 WO 2020021831 A1 WO2020021831 A1 WO 2020021831A1 JP 2019020094 W JP2019020094 W JP 2019020094W WO 2020021831 A1 WO2020021831 A1 WO 2020021831A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
flow path
plasma generator
parallel
plasma
Prior art date
Application number
PCT/JP2019/020094
Other languages
French (fr)
Japanese (ja)
Inventor
章 堀越
昭平 中村
茂 高辻
河野 元宏
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020021831A1 publication Critical patent/WO2020021831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor

Definitions

  • the present invention relates to a technique for generating a plasma to act on the surface of an object to be treated and performing the surface treatment, and particularly relates to a plasma generator which can be used in the atmosphere.
  • a technique for irradiating the surface of a processing object with plasma for the purpose of surface processing or modification of the processing object is known.
  • those utilizing atmospheric pressure plasma which does not require a vacuum chamber can be suitably applied, for example, to a resist stripping process in a semiconductor substrate manufacturing process.
  • a plasma generator having a wide irradiation range is required.
  • those capable of irradiating wide plasma from a slit-shaped discharge port are preferable.
  • the plasma irradiation apparatus in this technique is for irradiating an aqueous solution with plasma to generate active species in the liquid.
  • an alternating voltage is applied to electrodes provided at both ends of a slit-shaped gas flow path, so that the gas in the flow path is turned into plasma and blown out from an ejection port.
  • the above-described conventional technique turns on plasma by passing an electric current through a gas flowing through a flow path.
  • a current may flow through the processing target to damage the processing target.
  • the electrode since the electrode is exposed to the plasma generation space, the constituent material of the electrode may contaminate the processing target. For this reason, there is a demand for a plasma generator that does not cause a current to flow through a processing target and does not cause a problem of contamination by an electrode substance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma generator capable of irradiating a wide range of plasma without causing a problem of damage due to electric current and contamination by an electrode material.
  • a flow path for flowing gas along a predetermined flow direction is formed, and at a downstream end of the flow path in the flow direction.
  • a flow path forming part having an opening for discharging the gas, a first electrode having a pair of parallel opposing surfaces disposed to face each other with the flow path interposed therebetween, and the first electrode is disposed in the flow direction.
  • a second electrode having a pair of parallel opposing surfaces spaced apart from each other with the flow path interposed therebetween and a power supply unit for applying an AC voltage between the first electrode and the second electrode; And each of the opposed surfaces of the first electrode is a plane parallel to the flow direction and opposed to the other first electrode, and a gap between the opposed surface of the first electrode and the flow path is provided.
  • Each of the opposed surfaces of the second electrode which is separated by a dielectric, Parallel the other of the second electrode facing the plane direction, between the channel and the facing surface of the second electrode are separated by a dielectric.
  • an electric field is formed between the first electrode and the second electrode separated in the gas flow direction by applying an AC voltage between the first and second electrodes.
  • the first electrode and the second electrode are disposed between the first electrode and the second electrode in the flow path.
  • a particularly strong electric field is formed at the site where it is located. Due to this electric field, discharge occurs in the gas flowing through the flow path, and the gas is turned into plasma. The plasma generated in this manner is discharged from the opening of the flow path forming portion together with the gas.
  • the discharge at this time is a dielectric barrier discharge because the first electrode and the second electrode are separated from the flow path by the dielectric. For this reason, there is no problem that a current flows through the processing target or that the constituent materials of the first electrode and the second electrode adhere to the processing target.
  • plasma is generated by the dielectric barrier discharge for the gas present in the flow path. Therefore, it is possible to perform plasma irradiation without causing a problem of damage due to electric current and contamination by an electrode material.
  • the range of plasma spread in a direction perpendicular to the gas flow direction is not limited in principle, and can be controlled by the shapes of the flow path and the electrodes. Therefore, it is possible to irradiate a wide range with plasma.
  • FIG. 1 is an external perspective view showing a principle configuration of a plasma generator according to the present invention. It is the figure which looked at the plasma generator from another direction. It is the figure which looked at the plasma generator from another direction. It is the figure which looked at the plasma generator from another direction. It is the figure which looked at the plasma generator from another direction.
  • FIG. 4 is a diagram illustrating an electrical behavior in the plasma generator.
  • FIG. 4 is a diagram illustrating an electrical behavior in the plasma generator.
  • FIG. 2 is a partial exploded view of the plasma generator. It is a top view of a plasma generator. It is sectional drawing of a plasma generator. It is sectional drawing of a plasma generator.
  • This plasma generator can be applied to surface treatment in processing steps of various substrates such as a semiconductor substrate and a glass substrate. Further, for example, the present invention is also applicable to a surface modification treatment such as a hydrophilic treatment, a resist stripping treatment, and the like. In addition, the present invention can be used for, for example, surface modification of a print medium in a printing apparatus.
  • a surface modification treatment such as a hydrophilic treatment, a resist stripping treatment, and the like.
  • the present invention can be used for, for example, surface modification of a print medium in a printing apparatus.
  • FIG. 1 is an external perspective view showing the basic configuration of the plasma generator according to the present invention.
  • 2A to 2C are views of the plasma generator viewed from another direction. More specifically, FIG. 2A is a top view of the plasma generator, FIG. 2B is a side view thereof, and FIG. 2C is a cross-sectional view taken along line AA of FIG. 2A. Although the electrode plates 13a and 13b on the line AA appear in FIG. 2C, the sectional view taken along the line BB of FIG. 2A also shows that the electrode plates appearing on the cross section are replaced by the electrode plates 14a and 14b. If the shape is the same.
  • an XYZ orthogonal coordinate system is set as shown in FIG. 1 in order to unify the directions in each drawing.
  • the XY plane can be considered as a horizontal plane
  • the Z axis can be considered as a vertical axis.
  • the (-Z) direction is assumed to be vertically downward. That is, in the following, when simply referring to “up”, it means the (+ Z) direction. In addition, when simply saying “down”, it means the ( ⁇ Z) direction.
  • the main surface of the plasma generator 1 is made coincident with the XY plane, but the posture of the plasma generator 1 in actual use is not limited to this and is arbitrary.
  • the main parts of the plasma generator 1 are the dielectric plates 11 and 12, the electrode plates 13a, 13b, 14a and 14b, the power supply unit 15, and the gas supply unit 19.
  • the pair of dielectric plates 11 and 12 are opposed to each other in parallel with a predetermined gap G therebetween. More specifically, the dielectric plates 11 and 12 are flat plates formed of a plasma-resistant dielectric material such as quartz or ceramic. These are opposed to each other via spacers 16a and 16b defining a gap G to form a parallel plate structure.
  • the spacer 16a extends in the Y direction at the ( ⁇ X) side end of the dielectric plates 11 and 12.
  • the spacer 16b extends in the Y direction at the (+ X) side end of the dielectric plates 11 and 12.
  • quartz, ceramic, or the like can be used for example, quartz, ceramic, or the like can be used.
  • the gas flow path P is formed. That is, the gap space surrounded by the lower surface of the upper dielectric plate 11, the upper surface of the lower dielectric plate 12, and the side surfaces of the spacers 16a and 16b has a flat rectangular cross section in the X direction and extends in the Y direction. Road P.
  • An appropriate gas is supplied from the gas supply unit 19 to the opening at the ( ⁇ Y) side end of the flow path P.
  • the gas sent into the flow path P flows in the flow path P in the (+ Y) direction, and is discharged outside through the slit-shaped opening 17 at the (+ Y) side end. Therefore, the gas flow direction in this example is the (+ Y) direction.
  • the outline arrows indicate the flow direction of the gas sent from the gas supply unit 19 to the flow path P and discharged to the outside through the flow path P.
  • electrode plates 13a and 14a are provided on the upper surface of the dielectric 11 so as to be separated from each other in the Y direction.
  • each of the electrode plates 13a and 14a is a plate-shaped conductor plate extending along the X direction to the outside of both ends of the flow path P, and the electrode plate 14a is (+ Y ) Direction, are provided at predetermined intervals.
  • a flat electrode plate 13b is provided on the lower surface of the dielectric plate 12 at the same position as the electrode plate 13a in the XY directions. Further, a flat electrode plate 14b is provided on the lower surface of the dielectric plate 12 at the same position as the electrode plate 14a in the XY directions.
  • a pair of the electrode plates 13a and 13b is referred to as a “first electrode” and is denoted by reference numeral 13.
  • a pair of the electrode plates 14a and 14b is referred to as a "second electrode” and is denoted by reference numeral 14.
  • each of the first electrode 13 and the second electrode 14 is a parallel plate electrode, that is, an electrode having a structure in which a pair of plate-like electrode plates are arranged in parallel.
  • the electrode plates 13a and 14a are parallel to each other, and they are on the same plane.
  • the electrode plates 13b, 14b are parallel to each other and are coplanar.
  • the flow path P is formed between the electrode plates 13a, 13b, 14a, 14b having such a positional relationship.
  • the electrode plates 13a and 13b constituting the first electrode 13 are electrically connected.
  • the electrode plates 14a and 14b constituting the second electrode 14 are electrically connected.
  • the power supply unit 15 is electrically connected between the first electrode 13 and the second electrode 14.
  • the power supply unit 15 outputs an AC voltage having an appropriate waveform such as a sine wave, a rectangular wave, or a pulse wave, and the AC voltage is applied between the first electrode 13 and the second electrode 14.
  • the output voltage waveform of the power supply unit 15 may include a DC component.
  • FIGS. 3A to 3C are diagrams showing electrical behavior in the plasma generator.
  • 3A and 3B are diagrams schematically showing an electric field formed by applying a voltage.
  • 3A is a diagram viewed from the X direction
  • FIG. 3B is a diagram viewed from the Y direction.
  • the broken lines in FIG. 3A indicate lines of electric force when a voltage is applied to each electrode plate.
  • an electric field is generated in a space between the first electrode 13 (electrode plates 13a and 13b) and the second electrode 14 (electrode plates 14a and 14b) to which a potential difference is given. Since both sides of the flow path P are sandwiched between electrode plates having the same potential, the density of electric lines of force in the flow path P becomes particularly high, and a strong electric field is formed. By the electric field formed in this way, plasma of the gas supplied into the flow path P is generated.
  • the gas supply unit 19 supplies an inert gas such as a rare gas (eg, argon gas), a nitrogen gas, or air to the flow path P, plasma is generated in the flow path P by these gases.
  • the flow path P having a cross section elongated in the X direction is sandwiched between the electrode plates 13a and 13b (or the electrode plates 14a and 14b) extending to the outside of the flow path P at both ends of X. . Since the electrode plate 13a and the electrode plate 13b (or the electrode plate 14a and the electrode plate 14b) have the same potential, the electric field E generated in the flow path P is substantially uniform in the X direction. Since the applied voltage is an AC voltage, the magnitude and direction of the electric field E periodically change. Due to such an electric field distribution, the plasma PL generated in the flow path P also has a substantially uniform density in the X direction.
  • the plasma PL extends further outside the region sandwiched between the electrode plates. If a portion of the plasma PL extends outside the opening 17 at the (+ Y) side end of the flow path P, the plasma generator 1 functions as a plasma ejection device that ejects plasma from the opening 17. I do. By irradiating the processing object such as the substrate with the plasma ejected from the opening 17 in this manner, it becomes possible to perform the surface treatment on the substrate and the like.
  • the plasma PL generated in the flow path P has high uniformity in the X direction
  • the plasma ejected from the opening 17 is also elongated in the X direction. Therefore, it is possible to perform substantially uniform plasma irradiation on a band-shaped region extending in the X direction on the surface of the processing target.
  • the width of the flow path P in the X direction (reference a shown in FIG. 3B) is 15 mm
  • the distance between the electrodes in the Y direction reference b in FIG. 3C) is 10 mm
  • the flow direction of the gas In FIG. 3, the distance from the electrode plate 14a, 14b on the downstream side, that is, the (+ Y) side to the opening 17 (reference numeral c shown in FIG. 3C) is 3.5 mm
  • the thickness of the dielectric plates 11, 12 reference numeral d shown in FIG. ) Is 0.3 mm and the size of the gap G (symbol e shown in FIG. 3C) is 1.5 mm, it was confirmed that a wide plasma extending in the X direction was emitted from the opening 17.
  • the plasma generating apparatus 1 has an alternating current between the first electrode 13 and the second electrode 14 whose positions are different from each other along the flow direction (Y direction) of the gas flow path P. Apply voltage. Thereby, a discharge is generated in the flow path P, and the gas is turned into plasma.
  • the discharge at this time is a dielectric barrier discharge, and the electrodes 13 and 14 are isolated from the plasma generated in the flow path P by the dielectric. Therefore, even if the opening 17 is brought close to the conductive processing target, the discharge current does not flow through the processing target. Therefore, it is possible to prevent the processing target from being damaged by the electric current. Further, the electrode material is not mixed into the plasma, and the contamination of the processing target by the constituent material of the electrode is prevented.
  • Each of the two sets of electrodes 13 and 14 spaced apart in the Y direction has a pair of electrode plates facing each other across the flow path P and given the same potential.
  • Each of the electrode plates 13a, 13b, 14a, and 14b has opposing surfaces along the X and Y directions, and the pair of electrode plates is arranged so that the opposing surfaces are parallel to each other.
  • the width direction of the flow path P which is perpendicular to the Y direction, which is the gas flow direction, and parallel to each of the opposing surfaces, that is, in the X direction, each electrode plate extends outside both ends of the flow path P. For this reason, the electric field formed in the flow path P becomes substantially uniform in the X direction.
  • each electrode plate of the plasma generator 1 has a rectangular flat plate shape.
  • the opposing surfaces of the paired electrode plates need only be flat and parallel to each other, and the electrode shape of the other portions is arbitrary.
  • an electrode having a semicircular cross-sectional shape may be used.
  • the shape of the other portions may be different between the paired electrode plates as long as the shape of the opposing surface is the same.
  • the shape of the plasma generator can be variously changed.
  • the structure for forming a flow path sandwiched between a pair of electrode plates is different from the above-described principle diagram, the basic operation principle is the same as the above-described configuration. Therefore, the same components as those described above are denoted by the same reference numerals, description thereof will be omitted, and the features of each modification will be mainly described using a cross-sectional view taken along the XZ plane corresponding to the line AA in FIG. 2A. .
  • the structure which is not described here it is possible to use the same thing as the plasma generator 1 mentioned above.
  • FIGS. 4A to 4E are diagrams showing modified examples of the plasma generator.
  • the gas flow path P is formed by an integral and continuous dielectric member. That is, the plasma generator 2 includes a single flow path forming member 21 integrally formed of a dielectric material as a configuration corresponding to the dielectric plates 11 and 12 and the spacers 16a and 16b in the plasma generator 1 described above. Have.
  • the flow path forming member 21 corresponds to a configuration in which a through-hole 22 having a flat cross section whose longitudinal direction is in the X direction is provided so as to penetrate the side surface of the rectangular parallelepiped block 20 made of a dielectric material in the Y direction.
  • the plasma generator 2 having such a configuration also has a function similar to that of the plasma generator 1 described above.
  • the flow path forming member 21 may be configured to be dividable into several pieces.
  • FIG. 4B is a modification of the plasma generator 3 shown in FIG. 4B in which the flow path P in the above-described plasma generator 1 is divided into a plurality in the X direction by spacers 36a, 36b, and 36c.
  • the plasma generated in each of the divided flow paths is spatially synthesized outside the apparatus, so that the plasma spreading in the X direction is ejected similarly to the above-described plasma generator 1. Is possible.
  • FIG. 4C is a modification of the plasma generator 4 shown in FIG. 4C in which the flow path in the above-described plasma generator 3 is configured by a flow path forming member 41 integrally formed like the plasma generator 2.
  • the ejected plasma can be equivalent to that of the plasma generator 3.
  • the flow path forming member 41 may be configured to be able to be divided into several pieces as shown by the dotted lines.
  • the plasma generator 5 of the modification shown in FIG. 4D has a through-hole provided in the flow path forming member 51 in which the cross-sectional shape is elliptical, and is different from the above-described plasma generator 4 having a through-hole having a rectangular cross-sectional shape. Is different. As described above, the shape of the through hole constituting the flow path may be appropriately changed.
  • a plurality of tubes 61 made of a dielectric material are arranged in the X direction between an electrode plate 13a (14a) and an electrode plate 13b (14b). It has a structure.
  • the internal space of the pipe 61 functions as the flow path P.
  • the distribution of the electric field formed by the AC voltage applied to the electrodes is common to the above examples.
  • the plasma generated individually in each tube 61 by the action of the electric field is finally combined, so that the same plasma as in the above example can be ejected.
  • the flow rate of the gas can be controlled for each divided flow path.
  • various modifications of the gas flow path can be considered.
  • FIGS. 5A to 6C are views showing an embodiment of the plasma generator according to the present invention. More specifically, FIG. 5A is a perspective view showing an appearance of the plasma generator 100 of the present embodiment, and FIG. 5B is a partially exploded view thereof.
  • FIG. 6A is a top view of the plasma generator 100. 6B and 6C are a sectional view taken along line AA and a sectional view taken along line BB of FIG. 6A, respectively.
  • the main surface of the plasma generator 100 is assumed to be parallel to the XY plane, but the posture of the plasma generator 100 in an actual use state is arbitrary.
  • the plasma generator 100 includes a pair of flow path forming members 110 and 120 and a pair of cover members 150 and 160.
  • the flow path forming members 110 and 120 are integrally formed of a dielectric material having plasma resistance such as quartz or ceramic, respectively, and correspond to the dielectric plates 11 and 12 in the above-described principle configuration. That is, the flow path forming members 110 and 120 mainly have a function of forming a gas flow path.
  • the flow path forming member 120 is provided adjacent to a thin plate-shaped thin portion 121 along the XY plane and a ( ⁇ Y) direction side end thereof. Thick portion 122.
  • the thin portion 121 corresponds to the dielectric plate 12 in the above-described principle configuration.
  • the central portion 121b is a step portion that is further thinned as compared with both end portions 121a in the X direction of the thin portion 121.
  • the thick portion 122 is provided with a groove 124 that functions as the manifold 104 that regulates the flow of the gas introduced from the inlet 103.
  • the groove portion 124 is connected to the step portion 121b of the thin portion 121.
  • the other flow path forming member 110 has the same structure, specifically, a structure in which the flow path forming member 120 is turned upside down. These are superposed to form a gas flow path. That is, as shown in FIGS. 6A to 6C, the thin portion 111 of the flow path forming member 110 and the thin portion 121 of the flow path forming member 120 are overlapped with each other, so that a gap therebetween is formed in the X direction and the Y direction.
  • An extending channel 106 is formed.
  • the (+ Y) side end of the channel 106 serves as an opening 107 for discharging the gas sent through the channel 106.
  • the shape of the opening 107 is a slit shape whose longitudinal direction is in the X direction, that is, thin in the Z direction and wide in the X direction.
  • the thick portion 112 of the flow path forming member 110 and the thick portion 122 of the flow path forming member 120 are overlapped, they communicate with each other from the ( ⁇ Y) direction side to the (+ Y) direction side.
  • An inlet 103 and a manifold 104 are formed.
  • the manifold 104 communicates with the flow path 106.
  • a gas flow path from the inlet 103 at the ( ⁇ Y) side end of the flow path forming members 110 and 120 to the opening 107 at the (+ Y) side end is formed.
  • the flow of the gas introduced from the inlet 103 is made uniform in the X direction by passing through the manifold 104, and is sent into the flow path 106.
  • the first electrode 130 and the second electrode 140 are arranged with the gas flow channel 106 interposed therebetween. Specifically, the first electrode 130 is provided on the upstream side in the (+ Y) direction, which is the gas flow direction, and the second electrode 140 is provided on the downstream side.
  • the first electrode 130 is connected to the electrode plate 131 attached to the upper surface of the thin portion 111 of the upper flow path forming member 110 at the same position in the XY direction at the lower flow path. And an electrode plate 132 attached to the lower surface of the thin portion 121 of the path forming member 120. As described above, the electrode plates 131 and 132 are arranged to face each other with the flow path 106 interposed therebetween through the flow path forming members 110 and 120.
  • the second electrode 140 is located on the (+ Y) direction side of the electrode plate 131 and the electrode plate 141 attached to the upper surface of the thin portion 111 of the upper flow path forming member 110 at the same position in the XY direction. And an electrode plate 142 attached to the lower surface of the thin portion 121 of the lower flow path forming member 120. In this manner, the electrode plates 141 and 142 are also arranged to face each other with the flow path 106 interposed therebetween through the flow path forming members 110 and 120.
  • the (+ X) direction end portions 133 of the electrode plates 131 and 132 extend to the outside of the flow path forming members 110 and 120, and are electrically connected to the side of the flow path forming members 110 and 120. It is connected to the. A part thereof further extends to the (+ X) direction side.
  • the ( ⁇ X) direction end portions 143 of the electrode plates 141 and 142 extend to the outside of the flow path forming members 110 and 120, and a part thereof further extends in the ( ⁇ X) direction. Extending to the side.
  • the electrode plates 141 and 142 are also electrically connected to the sides of the flow path forming members 110 and 120.
  • Cover members 150 and 160 are provided to cover the thin portions 111 and 121 of the flow path forming members 110 and 120 and the first and second electrodes 130 and 140.
  • the extending portions 133 and 143 of the first and second electrodes 130 and 140 extend to the outside of the cover members 150 and 160, and the extending portions 133 and 143 function as connection terminals with a power supply unit that outputs an AC voltage. I do.
  • the cover members 150 and 160 are provided for the purpose of increasing the mechanical strength of the plasma generator 100 and suppressing the exposure of the electrodes. By reducing the thickness of the dielectric layer at the portion where the electrode is provided, the voltage required for plasma generation can be suppressed. On the other hand, the mechanical strength is reduced by making the dielectric thinner. By reinforcing the thin portions 111 and 121 with the cover members 150 and 160, damage to the device can be prevented. Further, exposure of the electrodes 130 and 140 can be minimized to prevent electric shock and abnormal discharge.
  • an appropriate gas for example, an argon gas is introduced from the inlet 103, and an airflow in the (+ Y) direction is formed in the flow path 106.
  • the air flow is thinned in a flow path 106 that is narrow in the Z direction and wide in the X direction.
  • the flow path 106 has a flat cross-sectional shape whose longitudinal direction is the X direction, and the opening 107 has the same slit-shaped opening shape as the cross-sectional shape.
  • the first and second electrodes 130 and 140 are provided beyond the width of the flow path 106 in the X direction. For this reason, the electric field formed in the flow path 106 is substantially uniform in the X direction.
  • plasma having a substantially uniform density is generated in the X direction, and the plasma gas discharged from the opening 107 spreads in the X direction.
  • a processing target such as a substrate or a printing medium
  • a pair of electrode plates constituting the first electrode pair is electrically connected in parallel to the power supply unit, so that both are at the same potential.
  • a power supply unit may be individually connected to a pair of electrode plates, and the outputs of the power supply units may be synchronized so that both electrode plates have the same potential. The same applies to the second electrode pair.
  • the cross-sectional shape of the flow channel in the above embodiment is constant with respect to the gas flow direction.
  • the cross-sectional shape of the flow path may be gradually changed in the gas flow direction.
  • each of the first electrode pair and the second electrode pair may be formed in an annular shape with the Y axis as the axial direction and surrounding the flow path.
  • the power supply unit is connected between the first electrode and the second electrode, but any one of the electrodes may be grounded.
  • the opposing surfaces between the first electrode and the second electrode may be parallel to each other as described in the specific embodiments. According to such a configuration, a uniform electric field can be formed in a flow path passing between the first electrode and the second electrode in a direction parallel to the opposing surface, and the plasma density spreading in the same direction can be made uniform. It can be.
  • the respective structures of the first electrode and the second electrode may be parallel flat plates. According to such a configuration, a device for irradiating a wide range of plasma can be realized with a simple electrode structure.
  • the first electrode and the second electrode may extend to the outside of the flow path in a direction perpendicular to the flow direction and parallel to the facing surface. According to such a configuration, it is possible to prevent the disturbance of the electric field near the end of the electrode from affecting the inside of the flow path, and to generate more uniform plasma in the flow path.
  • the cross section of the flow path in a cross section perpendicular to the flow direction may have a flat cross section whose longitudinal direction is parallel to the facing surface.
  • the flow path forming section may have a configuration having a plurality of flow paths arranged along a direction perpendicular to the flow direction and parallel to the facing surface.
  • the flow path may be a gap space sandwiched between a pair of wall surfaces that are opposed to each other in parallel and close to each other.
  • the wall surface may be formed of a pair of parallel plate-like dielectrics.
  • a configuration may be provided that includes a gas supply unit that supplies gas to the upstream end in the flow direction of the flow path. According to such a configuration, it is possible to actively control the type and amount of gas in the flow path.
  • the present invention can be suitably applied to the technical field of treating the surface of various processing objects with plasma.
  • wide plasma can be emitted into the air atmosphere with a simple configuration, it is particularly suitable for surface treatment of, for example, a substrate or a print medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

This plasma generation device is provided with: a flow path formation section forming a flow path for causing a gas to flow in a predetermined flow direction, and having an opening for discharging the gas at the downstream end of the flow path in the flow direction; first electrodes having a pair of facing surfaces parallelly disposed so as to face each other across the flow path; second electrodes disposed separately from the first electrodes in the flow direction and having a pair of facing surfaces parallelly disposed so as to face each other across the flow path; and a power supply unit for applying an alternating-current voltage across the first and second electrodes. The facing surface of each first electrode is a flat surface that is parallel to the flow direction and that faces the other first electrode, and the facing surfaces of the first electrodes are separated from the flow path by a dielectric material. The facing surface of each second electrode is a flat surface that is parallel to the flow direction and that faces the other second electrode, and the facing surfaces of the second electrodes are separated from the flow path by a dielectric material. With this configuration, it is possible to expose a wide area to plasma without causing problems such as damage from electric current and contamination by an electrode material.

Description

プラズマ発生装置Plasma generator
 この発明は、プラズマを発生させて処理対象物の表面に作用させその表面処理を行う技術に関するものであり、特に大気中で使用可能なプラズマ発生装置に関する。 {Circle over (1)} The present invention relates to a technique for generating a plasma to act on the surface of an object to be treated and performing the surface treatment, and particularly relates to a plasma generator which can be used in the atmosphere.
 処理対象物の表面加工や改質等を目的として、処理対象物の表面にプラズマを照射する技術が知られている。中でも、真空チャンバーを必要としない大気圧プラズマを利用するものは、例えば半導体基板製造プロセスにおけるレジスト剥離処理に好適に適用可能である。この場合、大面積の基板等の処理対象物を効率よく処理するためには、照射範囲の広いプラズマ発生装置が必要となる。例えば、スリット状の吐出口から幅広のプラズマを照射できるものが好適である。 技術 A technique for irradiating the surface of a processing object with plasma for the purpose of surface processing or modification of the processing object is known. Above all, those utilizing atmospheric pressure plasma which does not require a vacuum chamber can be suitably applied, for example, to a resist stripping process in a semiconductor substrate manufacturing process. In this case, in order to efficiently process a processing target such as a large-area substrate, a plasma generator having a wide irradiation range is required. For example, those capable of irradiating wide plasma from a slit-shaped discharge port are preferable.
 このような幅広のプラズマ照射が可能な技術としては、例えば特許文献1に記載の技術がある。この技術におけるプラズマ照射装置は、水溶液にプラズマを照射して液中に活性種を発生させるためのものである。この技術では、スリット状のガス流路の両端部に設けられた電極に交流電圧を印加することで、流路内のガスをプラズマ化して噴出口から吹き出させる。 技術 As a technique capable of performing such broad plasma irradiation, there is a technique described in Patent Document 1, for example. The plasma irradiation apparatus in this technique is for irradiating an aqueous solution with plasma to generate active species in the liquid. In this technique, an alternating voltage is applied to electrodes provided at both ends of a slit-shaped gas flow path, so that the gas in the flow path is turned into plasma and blown out from an ejection port.
特開2016-169164号公報JP 2016-169164 A
 上記従来技術は、流路を流れるガスに電流を流すことでプラズマを点灯させるものである。ここで、処理対象物表面が半導体や金属パターンなどの導電体を含む場合、電流が処理対象物に流れることで処理対象物にダメージを与えるおそれがある。また、電極がプラズマ発生空間に露出していることから、電極の構成物質が処理対象物を汚染することもあり得る。このことから、処理対象物に電流を流すことがなく、また電極物質による汚染の問題も生じないプラズマ発生装置が求められている。 (4) The above-described conventional technique turns on plasma by passing an electric current through a gas flowing through a flow path. Here, when the surface of the processing target includes a conductor such as a semiconductor or a metal pattern, a current may flow through the processing target to damage the processing target. Further, since the electrode is exposed to the plasma generation space, the constituent material of the electrode may contaminate the processing target. For this reason, there is a demand for a plasma generator that does not cause a current to flow through a processing target and does not cause a problem of contamination by an electrode substance.
 この発明は上記課題に鑑みなされたものであり、電流によるダメージや電極材料による汚染の問題を生じさせることなく、広範囲にプラズマを照射することのできるプラズマ発生装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma generator capable of irradiating a wide range of plasma without causing a problem of damage due to electric current and contamination by an electrode material.
 この発明に係るプラズマ発生装置の一の態様は、上記目的を達成するため、気体を所定の流通方向に沿って流通させる流路を形成し、前記流通方向における前記流路の下流側端部に、前記気体を吐出する開口を有する流路形成部と、前記流路を挟んで対向配置された互いに平行な1対の対向面を有する第1電極と、前記第1電極とは前記流通方向に離隔して、前記流路を挟んで対向配置された互いに平行な1対の対向面を有する第2電極と、前記第1電極と前記第2電極との間に交流電圧を印加する電源部とを備え、前記第1電極の前記対向面の各々は、前記流通方向に平行で他方の前記第1電極と対向する平面であり、前記第1電極の前記対向面と前記流路との間が誘電体により隔離され、前記第2電極の前記対向面の各々は、前記流通方向に平行で他方の前記第2電極と対向する平面であり、前記第2電極の前記対向面と前記流路との間が誘電体により隔離されている。 In one aspect of the plasma generator according to the present invention, in order to achieve the above object, a flow path for flowing gas along a predetermined flow direction is formed, and at a downstream end of the flow path in the flow direction. A flow path forming part having an opening for discharging the gas, a first electrode having a pair of parallel opposing surfaces disposed to face each other with the flow path interposed therebetween, and the first electrode is disposed in the flow direction. A second electrode having a pair of parallel opposing surfaces spaced apart from each other with the flow path interposed therebetween and a power supply unit for applying an AC voltage between the first electrode and the second electrode; And each of the opposed surfaces of the first electrode is a plane parallel to the flow direction and opposed to the other first electrode, and a gap between the opposed surface of the first electrode and the flow path is provided. Each of the opposed surfaces of the second electrode, which is separated by a dielectric, Parallel the other of the second electrode facing the plane direction, between the channel and the facing surface of the second electrode are separated by a dielectric.
 このように構成された発明では、気体の流通方向に離隔した第1電極と第2電極との間に交流電圧が印加されることで両者の間に電界が形成される。詳しくは後述するが、第1電極および第2電極のそれぞれが気体の流路を挟んで対をなすように構成されていることから、流路のうち第1電極と第2電極との間に位置する部位において特に強い電界が形成される。この電界により、流路を流れる気体において放電が生じ気体がプラズマ化する。こうして生成されたプラズマが気体とともに流路形成部の開口から吐出される。このときの放電は、第1電極および第2電極と流路とが誘電体により隔離されていることから誘電体バリア放電となる。このため、処理対象物に電流が流れたり、第1電極および第2電極の構成物質が処理対象物に付着したりする問題は生じない。 In the invention configured as described above, an electric field is formed between the first electrode and the second electrode separated in the gas flow direction by applying an AC voltage between the first and second electrodes. Although described in detail later, since each of the first electrode and the second electrode is configured to form a pair with the gas flow path therebetween, the first electrode and the second electrode are disposed between the first electrode and the second electrode in the flow path. A particularly strong electric field is formed at the site where it is located. Due to this electric field, discharge occurs in the gas flowing through the flow path, and the gas is turned into plasma. The plasma generated in this manner is discharged from the opening of the flow path forming portion together with the gas. The discharge at this time is a dielectric barrier discharge because the first electrode and the second electrode are separated from the flow path by the dielectric. For this reason, there is no problem that a current flows through the processing target or that the constituent materials of the first electrode and the second electrode adhere to the processing target.
 また、第1電極ではそれらの対向面同士が平行であり、1対の第2電極でも同様に、それらの対向面同士は平行である。このように平行に対向する対向面を気体の流通方向に垂直な方向に延長すれば、当該方向において一様な電界分布を得られる範囲を拡張することが可能である。したがって、当該方向に長く延びる領域で一様なプラズマを発生させることができる。このため、当該方向においてプラズマの照射範囲を広くすることができる。 In the first electrode, their opposing surfaces are parallel to each other, and similarly for the pair of second electrodes, their opposing surfaces are parallel to each other. By extending the opposing surfaces parallel to each other in the direction perpendicular to the gas flow direction, it is possible to expand the range in which a uniform electric field distribution can be obtained in the direction. Therefore, uniform plasma can be generated in a region extending long in the direction. Therefore, the irradiation range of the plasma in the direction can be widened.
 上記のように、本発明では、流路に存在する気体に対し誘電体バリア放電によりプラズマを発生させる。このため、電流によるダメージや電極材料による汚染の問題を生じさせることのないプラズマ照射が可能である。また、気体の流通方向に垂直な方向におけるプラズマの広がり範囲については原理的に制限がなく、流路および電極の形状により制御可能である。このため、広い範囲にプラズマを照射することが可能である。 As described above, in the present invention, plasma is generated by the dielectric barrier discharge for the gas present in the flow path. Therefore, it is possible to perform plasma irradiation without causing a problem of damage due to electric current and contamination by an electrode material. In addition, the range of plasma spread in a direction perpendicular to the gas flow direction is not limited in principle, and can be controlled by the shapes of the flow path and the electrodes. Therefore, it is possible to irradiate a wide range with plasma.
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。 The above and other objects and novel features of the present invention will become more fully apparent from the following detailed description when read in conjunction with the accompanying drawings. However, the drawings are for explanation only, and do not limit the scope of the present invention.
本発明に係るプラズマ発生装置の原理的構成を示す外観斜視図である。FIG. 1 is an external perspective view showing a principle configuration of a plasma generator according to the present invention. プラズマ発生装置を他の方向から見た図である。It is the figure which looked at the plasma generator from another direction. プラズマ発生装置を他の方向から見た図である。It is the figure which looked at the plasma generator from another direction. プラズマ発生装置を他の方向から見た図である。It is the figure which looked at the plasma generator from another direction. プラズマ発生装置における電気的挙動を示す図である。FIG. 4 is a diagram illustrating an electrical behavior in the plasma generator. プラズマ発生装置における電気的挙動を示す図である。FIG. 4 is a diagram illustrating an electrical behavior in the plasma generator. プラズマ発生装置における電気的挙動を示す図である。FIG. 4 is a diagram illustrating an electrical behavior in the plasma generator. プラズマ発生装置の変形例を示す図である。It is a figure which shows the modification of a plasma generator. プラズマ発生装置の変形例を示す図である。It is a figure which shows the modification of a plasma generator. プラズマ発生装置の変形例を示す図である。It is a figure which shows the modification of a plasma generator. プラズマ発生装置の変形例を示す図である。It is a figure which shows the modification of a plasma generator. プラズマ発生装置の変形例を示す図である。It is a figure which shows the modification of a plasma generator. 本実施形態のプラズマ発生装置の外観を示す斜視図である。It is a perspective view showing the appearance of the plasma generator of this embodiment. プラズマ発生装置の部分分解図である。FIG. 2 is a partial exploded view of the plasma generator. プラズマ発生装置の上面図であるIt is a top view of a plasma generator. プラズマ発生装置の断面図である。It is sectional drawing of a plasma generator. プラズマ発生装置の断面図である。It is sectional drawing of a plasma generator.
 本発明に係るプラズマ発生装置の実施形態について説明する。このプラズマ発生装置は、半導体基板やガラス基板のような、各種基板の加工工程における表面処理に適用可能である。また例えば、親水化処理のような表面改質処理、レジスト剥離処理等にも適用可能である。この他、例えば印刷装置における印刷媒体の表面改質にも利用可能である。まず、図を参照して本発明に係るプラズマ発生装置の原理的な構成およびその動作について説明する。 実 施 An embodiment of the plasma generator according to the present invention will be described. This plasma generator can be applied to surface treatment in processing steps of various substrates such as a semiconductor substrate and a glass substrate. Further, for example, the present invention is also applicable to a surface modification treatment such as a hydrophilic treatment, a resist stripping treatment, and the like. In addition, the present invention can be used for, for example, surface modification of a print medium in a printing apparatus. First, the principle configuration and operation of the plasma generator according to the present invention will be described with reference to the drawings.
 図1は本発明に係るプラズマ発生装置の原理的構成を示す外観斜視図である。また、図2Aないし図2Cはこのプラズマ発生装置を他の方向から見た図である。より具体的には、図2Aはこのプラズマ発生装置の上面図、図2Bはその側面図、図2Cは図2AのA-A線断面図である。なお、図2CにはA-A線上にある電極板13a,13bが現れているが、図2AのB-B線断面図も、断面に現れる電極板が電極板14a,14bに代わることを除けば形状は同じである。 FIG. 1 is an external perspective view showing the basic configuration of the plasma generator according to the present invention. 2A to 2C are views of the plasma generator viewed from another direction. More specifically, FIG. 2A is a top view of the plasma generator, FIG. 2B is a side view thereof, and FIG. 2C is a cross-sectional view taken along line AA of FIG. 2A. Although the electrode plates 13a and 13b on the line AA appear in FIG. 2C, the sectional view taken along the line BB of FIG. 2A also shows that the electrode plates appearing on the cross section are replaced by the electrode plates 14a and 14b. If the shape is the same.
 ここで、各図における方向を統一的に示すために、図1に示すようにXYZ直交座標系を設定する。例えばXY平面を水平面、Z軸を鉛直軸と考えることができる。以下においては(-Z)方向を鉛直下向きとする。すなわち、以下においては単に「上」というとき、それは(+Z)方向を意味する。また、単に「下」というとき、それは(-Z)方向を意味する。なお、以下では説明の便宜のためプラズマ発生装置1の主要な面をXY平面と一致させているが、実使用時のプラズマ発生装置1の姿勢はこれに限定されず任意である。 Here, an XYZ orthogonal coordinate system is set as shown in FIG. 1 in order to unify the directions in each drawing. For example, the XY plane can be considered as a horizontal plane, and the Z axis can be considered as a vertical axis. In the following, the (-Z) direction is assumed to be vertically downward. That is, in the following, when simply referring to “up”, it means the (+ Z) direction. In addition, when simply saying “down”, it means the (−Z) direction. In the following, for convenience of explanation, the main surface of the plasma generator 1 is made coincident with the XY plane, but the posture of the plasma generator 1 in actual use is not limited to this and is arbitrary.
 プラズマ発生装置1の主要部は、誘電体板11,12と、電極板13a,13b,14a,14bと、電源部15と、気体供給部19とである。1対の誘電体板11,12は、所定のギャップGを隔てて、互いに平行に対向配置されている。より具体的には、誘電体板11,12は、例えば石英、セラミック等のプラズマ耐性を有する誘電体材料で形成された平板である。これらはギャップGを規定するスペーサ16a,16bを介して対向配置されて平行平板構造をなしている。スペーサ16aは誘電体板11,12の(-X)側端部にY方向に延設される。またスペーサ16bは誘電体板11,12の(+X)側端部にY方向に延設される。スペーサ16a,16bの材料についても例えば石英、セラミック等を用いることができる。 主要 The main parts of the plasma generator 1 are the dielectric plates 11 and 12, the electrode plates 13a, 13b, 14a and 14b, the power supply unit 15, and the gas supply unit 19. The pair of dielectric plates 11 and 12 are opposed to each other in parallel with a predetermined gap G therebetween. More specifically, the dielectric plates 11 and 12 are flat plates formed of a plasma-resistant dielectric material such as quartz or ceramic. These are opposed to each other via spacers 16a and 16b defining a gap G to form a parallel plate structure. The spacer 16a extends in the Y direction at the (−X) side end of the dielectric plates 11 and 12. The spacer 16b extends in the Y direction at the (+ X) side end of the dielectric plates 11 and 12. For the material of the spacers 16a and 16b, for example, quartz, ceramic, or the like can be used.
 このような構成により、気体の流路Pが形成される。すなわち、上側の誘電体板11の下面、下側の誘電体板12の上面およびスペーサ16a,16bの側面で囲まれた間隙空間が、X方向に扁平な矩形断面を有しY方向に延びる流路Pとなる。流路Pの(-Y)側端部の開口には、気体供給部19から適宜の気体が供給される。流路Pに送り込まれた気体は、流路P内を(+Y)方向に流通し、(+Y)側端部のスリット状の開口17から外部へ放出される。したがって、この例における気体の流通方向は(+Y)方向である。図1以降の各図において白抜き矢印は、気体供給部19から流路Pに送り込まれ、流路Pを経て外部へ放出される気体の流通方向を示している。 気 体 With such a configuration, the gas flow path P is formed. That is, the gap space surrounded by the lower surface of the upper dielectric plate 11, the upper surface of the lower dielectric plate 12, and the side surfaces of the spacers 16a and 16b has a flat rectangular cross section in the X direction and extends in the Y direction. Road P. An appropriate gas is supplied from the gas supply unit 19 to the opening at the (−Y) side end of the flow path P. The gas sent into the flow path P flows in the flow path P in the (+ Y) direction, and is discharged outside through the slit-shaped opening 17 at the (+ Y) side end. Therefore, the gas flow direction in this example is the (+ Y) direction. In each of the drawings after FIG. 1, the outline arrows indicate the flow direction of the gas sent from the gas supply unit 19 to the flow path P and discharged to the outside through the flow path P.
 図1および図2Aに示すように、誘電体11の上面には、電極板13a,14aがY方向に離隔して設けられている。具体的には、電極板13a,14aのそれぞれは、X方向に沿って流路Pの両端部よりも外側まで延びる平板状の導体板であり、電極板14aは電極板13aに対して(+Y)方向に所定の間隔だけ離間して設けられている。 As shown in FIGS. 1 and 2A, electrode plates 13a and 14a are provided on the upper surface of the dielectric 11 so as to be separated from each other in the Y direction. Specifically, each of the electrode plates 13a and 14a is a plate-shaped conductor plate extending along the X direction to the outside of both ends of the flow path P, and the electrode plate 14a is (+ Y ) Direction, are provided at predetermined intervals.
 また、図2Bおよび図2Cに示すように、誘電体板12の下面でXY方向において電極板13aと同一の位置に、平板状の電極板13bが設けられている。さらに、誘電体板12の下面でXY方向において電極板14aと同一の位置に、平板状の電極板14bが設けられている。以下、電極板13a,13bの対を「第1電極」と称し符号13を付す。同様に、電極板14a,14bの対を「第2電極」と称し符号14を付す。 2B and 2C, a flat electrode plate 13b is provided on the lower surface of the dielectric plate 12 at the same position as the electrode plate 13a in the XY directions. Further, a flat electrode plate 14b is provided on the lower surface of the dielectric plate 12 at the same position as the electrode plate 14a in the XY directions. Hereinafter, a pair of the electrode plates 13a and 13b is referred to as a “first electrode” and is denoted by reference numeral 13. Similarly, a pair of the electrode plates 14a and 14b is referred to as a "second electrode" and is denoted by reference numeral 14.
 このように、第1電極13を構成する電極板13a,13bは互いに平行である。また、第2電極14を構成する電極板14a,14bも互いに平行である。したがって、第1電極13および第2電極14はそれぞれ平行平板電極、すなわち1対の平板状の電極板を平行配置した構造の電極となっている。そして、電極板13a,14aは互いに平行であり、かつこれらは同一平面にある。同様に、電極板13b,14bは互いに平行であり、かつこれらは同一平面にある。このような位置関係にある電極板13a,13b,14a,14bの間に、流路Pが形成されている。 Thus, the electrode plates 13a and 13b constituting the first electrode 13 are parallel to each other. The electrode plates 14a and 14b constituting the second electrode 14 are also parallel to each other. Therefore, each of the first electrode 13 and the second electrode 14 is a parallel plate electrode, that is, an electrode having a structure in which a pair of plate-like electrode plates are arranged in parallel. The electrode plates 13a and 14a are parallel to each other, and they are on the same plane. Similarly, the electrode plates 13b, 14b are parallel to each other and are coplanar. The flow path P is formed between the electrode plates 13a, 13b, 14a, 14b having such a positional relationship.
 第1電極13を構成する電極板13a,13bは電気的に接続されている。また第2電極14を構成する電極板14a,14bは電気的に接続されている。そして、第1電極13と第2電極14との間に電源部15が電気的に接続される。電源部15は正弦波、矩形波、パルス波等の適宜の波形の交流電圧を出力し、該交流電圧は第1電極13と第2電極14との間に印加される。なお、電源部15の出力電圧波形は直流成分を含むものであってもよい。 電極 The electrode plates 13a and 13b constituting the first electrode 13 are electrically connected. The electrode plates 14a and 14b constituting the second electrode 14 are electrically connected. Then, the power supply unit 15 is electrically connected between the first electrode 13 and the second electrode 14. The power supply unit 15 outputs an AC voltage having an appropriate waveform such as a sine wave, a rectangular wave, or a pulse wave, and the AC voltage is applied between the first electrode 13 and the second electrode 14. The output voltage waveform of the power supply unit 15 may include a DC component.
 このような構成では、Z方向から流路Pを挟むように設けられた第1電極13において対をなす電極板13a,13bの間に電位差は生じない。第2電極14において対をなす電極板14a,14bの間においても同じである。一方、電極13と電極14との間には、印加される交流電圧による電位差が発生し、これらの間に電界が形成される。 In such a configuration, a potential difference does not occur between the pair of electrode plates 13a and 13b in the first electrode 13 provided so as to sandwich the flow path P from the Z direction. The same applies to the pair of electrode plates 14a and 14b in the second electrode 14. On the other hand, a potential difference is generated between the electrode 13 and the electrode 14 due to the applied AC voltage, and an electric field is formed therebetween.
 図3Aないし図3Cはプラズマ発生装置における電気的挙動を示す図である。図3Aおよび図3Bは電圧印加により形成される電界を模式的に示す図である。このうち、図3AはX方向、図3BはY方向から見た図である。図3Aの破線は各電極板に電圧が印加されたときの電気力線を示している。 FIGS. 3A to 3C are diagrams showing electrical behavior in the plasma generator. 3A and 3B are diagrams schematically showing an electric field formed by applying a voltage. 3A is a diagram viewed from the X direction, and FIG. 3B is a diagram viewed from the Y direction. The broken lines in FIG. 3A indicate lines of electric force when a voltage is applied to each electrode plate.
 図3Aに示すように、電位差が与えられた第1電極13(電極板13a,13b)と第2電極14(電極板14a,14b)との間の空間に電界が発生する。流路Pの両側が同電位の電極板で挟まれているため、流路P内で電気力線の密度が特に高くなり、強い電界が形成される。こうして形成される電界により、流路P内に供給される気体のプラズマが生成される。例えば気体供給部19が、不活性ガスである希ガス(例えばアルゴンガス)、窒素ガスまたは空気を流路Pに供給する場合、流路P内にはこれらのガスによるプラズマが発生する。 (3) As shown in FIG. 3A, an electric field is generated in a space between the first electrode 13 ( electrode plates 13a and 13b) and the second electrode 14 ( electrode plates 14a and 14b) to which a potential difference is given. Since both sides of the flow path P are sandwiched between electrode plates having the same potential, the density of electric lines of force in the flow path P becomes particularly high, and a strong electric field is formed. By the electric field formed in this way, plasma of the gas supplied into the flow path P is generated. For example, when the gas supply unit 19 supplies an inert gas such as a rare gas (eg, argon gas), a nitrogen gas, or air to the flow path P, plasma is generated in the flow path P by these gases.
 図3Bに示すように、X方向に細長い断面形状を有する流路Pは、Xの両端において流路Pよりも外側まで延びる電極板13a,13b(または電極板14a,14b)に挟まれている。電極板13aと電極板13b(または電極板14aと電極板14b)は互いに同電位であるため、流路Pに生じる電界EはX方向において概ね均一なものとなる。なお印加電圧が交流電圧であるため、電界Eの大きさおよび方向は周期的に変化する。このような電界分布により、流路Pにおいて発生するプラズマPLも、X方向において概ね一様な密度を有するものとなる。 As shown in FIG. 3B, the flow path P having a cross section elongated in the X direction is sandwiched between the electrode plates 13a and 13b (or the electrode plates 14a and 14b) extending to the outside of the flow path P at both ends of X. . Since the electrode plate 13a and the electrode plate 13b (or the electrode plate 14a and the electrode plate 14b) have the same potential, the electric field E generated in the flow path P is substantially uniform in the X direction. Since the applied voltage is an AC voltage, the magnitude and direction of the electric field E periodically change. Due to such an electric field distribution, the plasma PL generated in the flow path P also has a substantially uniform density in the X direction.
 各部の寸法関係を適宜に設定することで、図3Cに示すように、流路Pのうち電極板13a,13bと電極板14a,14bとの間の空間のみならず、Y方向におけるその両外側にまで延びるプラズマPLを発生させることが可能である。電極板で挟まれた領域よりもさらに外側までプラズマPLが延びる場合もある。このようなプラズマPLの一部が流路Pの(+Y)側端部の開口17よりも外側まで延びるようにすれば、このプラズマ発生装置1は開口17からプラズマを噴出させるプラズマ噴出装置として機能する。こうして開口17から噴出するプラズマを基板等の処理対象物に照射することで、基板等に対する表面処理を実行することが可能となる。 By appropriately setting the dimensional relationship of each part, as shown in FIG. 3C, not only the space between the electrode plates 13a and 13b and the electrode plates 14a and 14b in the flow path P but also the outer sides thereof in the Y direction. Can be generated. In some cases, the plasma PL extends further outside the region sandwiched between the electrode plates. If a portion of the plasma PL extends outside the opening 17 at the (+ Y) side end of the flow path P, the plasma generator 1 functions as a plasma ejection device that ejects plasma from the opening 17. I do. By irradiating the processing object such as the substrate with the plasma ejected from the opening 17 in this manner, it becomes possible to perform the surface treatment on the substrate and the like.
 上記のように、流路P内に発生するプラズマPLはX方向において高い均一性を有するため、開口17から噴出されるプラズマもX方向に沿って細長いものとなる。したがって、処理対象物の表面のうちX方向に延びる帯状の領域に対し、略一様なプラズマ照射を行うことが可能である。 As described above, since the plasma PL generated in the flow path P has high uniformity in the X direction, the plasma ejected from the opening 17 is also elongated in the X direction. Therefore, it is possible to perform substantially uniform plasma irradiation on a band-shaped region extending in the X direction on the surface of the processing target.
 本願発明者らの実験によれば、流路PのX方向における幅(図3Bに示す符号a)を15mm、Y方向における電極間距離(図3Cに示す符号b)を10mm、気体の流通方向において下流側、すなわち(+Y)側の電極板14a,14bから開口17までの距離(図3Cに示す符号c)を3.5mm、誘電体板11,12の厚さ(図3Cに示す符号d)をそれぞれ0.3mm、ギャップGの大きさ(図3Cに示す符号e)を1.5mmとしたとき、開口17からX方向に広がる幅広のプラズマが出射されることが確認された。 According to the experiments of the present inventors, the width of the flow path P in the X direction (reference a shown in FIG. 3B) is 15 mm, the distance between the electrodes in the Y direction (reference b in FIG. 3C) is 10 mm, and the flow direction of the gas. In FIG. 3, the distance from the electrode plate 14a, 14b on the downstream side, that is, the (+ Y) side to the opening 17 (reference numeral c shown in FIG. 3C) is 3.5 mm, and the thickness of the dielectric plates 11, 12 (reference numeral d shown in FIG. ) Is 0.3 mm and the size of the gap G (symbol e shown in FIG. 3C) is 1.5 mm, it was confirmed that a wide plasma extending in the X direction was emitted from the opening 17.
 このように、本発明に係るプラズマ発生装置1は、気体の流路Pの流通方向(Y方向)に沿って互いに位置を異ならせた第1電極13と第2電極14との間に、交流電圧を印加する。これにより、流路P内で放電を生じさせ気体をプラズマ化する。このときの放電は誘電体バリア放電であり、電極13,14は流路P内で発生するプラズマから誘電体により隔離されている。このため、仮に開口17を導電性の処理対象物に近づけたとしても、放電電流が処理対象物に流れることはない。したがって電流による処理対象物へのダメージを防止することができる。また、プラズマに電極材料が混入することはなく、電極の構成物質による処理対象物の汚染も防止される。 As described above, the plasma generating apparatus 1 according to the present invention has an alternating current between the first electrode 13 and the second electrode 14 whose positions are different from each other along the flow direction (Y direction) of the gas flow path P. Apply voltage. Thereby, a discharge is generated in the flow path P, and the gas is turned into plasma. The discharge at this time is a dielectric barrier discharge, and the electrodes 13 and 14 are isolated from the plasma generated in the flow path P by the dielectric. Therefore, even if the opening 17 is brought close to the conductive processing target, the discharge current does not flow through the processing target. Therefore, it is possible to prevent the processing target from being damaged by the electric current. Further, the electrode material is not mixed into the plasma, and the contamination of the processing target by the constituent material of the electrode is prevented.
 Y方向に離隔配置された2組の電極13,14のそれぞれは、流路Pを挟んで対向し同電位が与えられる1対の電極板を有している。各電極板13a,13b,14a,14bはXY方向に沿った対向面を有しており、対となる電極板は対向面同士が互いに平行となるように配置されている。気体の流通方向であるY方向に垂直かつ各対向面と平行な流路Pの幅方向、つまりX方向において、各電極板は流路Pの両端部よりも外側まで延びている。このため、流路Pに形成される電界はX方向において略一様となる。 Each of the two sets of electrodes 13 and 14 spaced apart in the Y direction has a pair of electrode plates facing each other across the flow path P and given the same potential. Each of the electrode plates 13a, 13b, 14a, and 14b has opposing surfaces along the X and Y directions, and the pair of electrode plates is arranged so that the opposing surfaces are parallel to each other. In the width direction of the flow path P, which is perpendicular to the Y direction, which is the gas flow direction, and parallel to each of the opposing surfaces, that is, in the X direction, each electrode plate extends outside both ends of the flow path P. For this reason, the electric field formed in the flow path P becomes substantially uniform in the X direction.
 これらの構成により、流路P内にはX方向およびY方向に幅広く広がるプラズマが発生する。このようなプラズマを流路Pの下流側端部に設けられたスリット状の開口17から噴出させることで、処理対象物に対し幅方向に均一なプラズマ照射を実現することができる。 (4) With these configurations, plasma that spreads widely in the X direction and the Y direction is generated in the flow path P. By ejecting such plasma from the slit-shaped opening 17 provided at the downstream end of the flow path P, uniform plasma irradiation in the width direction can be realized on the processing target.
 なお、上記したプラズマ発生装置1の構造は、本発明の技術思想に基づく原理的なものであり、装置として実現するのに際しては種々の改変を加えることが可能である。例えば上記プラズマ発生装置1の各電極板はいずれも矩形平板状の形状を有している。しかしながら、対をなす電極板同士で対向面が平面かつ互いに平行であればよく、他の部分の電極形状は任意である。例えば半円状の断面形状を有する電極が用いられてもよい。また対をなす電極板の間では対向面の形状が同じであれば他の部分の形状は異なっていてもよい。 The structure of the above-described plasma generator 1 is based on a principle based on the technical idea of the present invention, and can be variously modified when it is realized as an apparatus. For example, each electrode plate of the plasma generator 1 has a rectangular flat plate shape. However, the opposing surfaces of the paired electrode plates need only be flat and parallel to each other, and the electrode shape of the other portions is arbitrary. For example, an electrode having a semicircular cross-sectional shape may be used. The shape of the other portions may be different between the paired electrode plates as long as the shape of the opposing surface is the same.
 また以下に示すように、これ以外にもプラズマ発生装置の形状は種々の変更が可能である。以下に説明する各変形例は、対をなす電極板間に挟まれる流路を形成するための構造が上記原理図とは異なるものの、基本的な動作原理はいずれも上記構成と同じである。そこで、上記と共通する構成については同一符号を付して説明を省略し、図2AのA-A線に相当するXZ平面での断面図を用いて各変形例の特徴部分について主に説明する。ここに記載されない構成については、上記したプラズマ発生装置1と共通のものを用いることが可能である。 As described below, the shape of the plasma generator can be variously changed. In each of the modified examples described below, although the structure for forming a flow path sandwiched between a pair of electrode plates is different from the above-described principle diagram, the basic operation principle is the same as the above-described configuration. Therefore, the same components as those described above are denoted by the same reference numerals, description thereof will be omitted, and the features of each modification will be mainly described using a cross-sectional view taken along the XZ plane corresponding to the line AA in FIG. 2A. . About the structure which is not described here, it is possible to use the same thing as the plasma generator 1 mentioned above.
 図4Aないし図4Eはプラズマ発生装置の変形例を示す図である。図4Aに示す変形例のプラズマ発生装置2においては、気体の流路Pが一体の連続した誘電体部材により形成されている。すなわち、このプラズマ発生装置2は、上記のプラズマ発生装置1における誘電体板11,12およびスペーサ16a,16bに相当する構成として、誘電体材料で一体形成された単一の流路形成部材21を備えている。流路形成部材21は、誘電体材料による直方体形状のブロック20の側面をY方向に貫くように、X方向を長手方向とする扁平な断面の貫通孔22を設けた構成に相当する。このような構成を有するプラズマ発生装置2も、上記したこのプラズマ発生装置1と同様の機能を有するものである。なお、図4Aにおいて点線で示すように、流路形成部材21はいくつかのピースに分割可能に構成されてもよい。 FIGS. 4A to 4E are diagrams showing modified examples of the plasma generator. In the modified example of the plasma generator 2 shown in FIG. 4A, the gas flow path P is formed by an integral and continuous dielectric member. That is, the plasma generator 2 includes a single flow path forming member 21 integrally formed of a dielectric material as a configuration corresponding to the dielectric plates 11 and 12 and the spacers 16a and 16b in the plasma generator 1 described above. Have. The flow path forming member 21 corresponds to a configuration in which a through-hole 22 having a flat cross section whose longitudinal direction is in the X direction is provided so as to penetrate the side surface of the rectangular parallelepiped block 20 made of a dielectric material in the Y direction. The plasma generator 2 having such a configuration also has a function similar to that of the plasma generator 1 described above. In addition, as shown by a dotted line in FIG. 4A, the flow path forming member 21 may be configured to be dividable into several pieces.
 図4Bに示す変形例のプラズマ発生装置3は、上記のプラズマ発生装置1における流路Pを、スペーサ36a,36b,36cによりX方向において複数に分割したものである。このような構成では、分割された個々の流路で発生したプラズマが装置の外で空間的に合成されることで、上記したプラズマ発生装置1と同様に、X方向に広がるプラズマを噴出することが可能である。 4B is a modification of the plasma generator 3 shown in FIG. 4B in which the flow path P in the above-described plasma generator 1 is divided into a plurality in the X direction by spacers 36a, 36b, and 36c. In such a configuration, the plasma generated in each of the divided flow paths is spatially synthesized outside the apparatus, so that the plasma spreading in the X direction is ejected similarly to the above-described plasma generator 1. Is possible.
 図4Cに示す変形例のプラズマ発生装置4は、上記したプラズマ発生装置3における流路を、プラズマ発生装置2と同様に一体形成された流路形成部材41により構成したものである。この場合、噴出されるプラズマはプラズマ発生装置3と同等とすることができる。この場合においても、点線で示すように流路形成部材41がいくつかのピースに分割可能に構成されてもよい。 4C is a modification of the plasma generator 4 shown in FIG. 4C in which the flow path in the above-described plasma generator 3 is configured by a flow path forming member 41 integrally formed like the plasma generator 2. In this case, the ejected plasma can be equivalent to that of the plasma generator 3. Also in this case, the flow path forming member 41 may be configured to be able to be divided into several pieces as shown by the dotted lines.
 図4Dに示す変形例のプラズマ発生装置5は、流路形成部材51に設けられた貫通孔の断面形状が楕円形であり、矩形の断面形状の貫通孔を有する上記のプラズマ発生装置4とは異なっている。このように、流路を構成する貫通孔の形状は適宜変更されてよい。 The plasma generator 5 of the modification shown in FIG. 4D has a through-hole provided in the flow path forming member 51 in which the cross-sectional shape is elliptical, and is different from the above-described plasma generator 4 having a through-hole having a rectangular cross-sectional shape. Is different. As described above, the shape of the through hole constituting the flow path may be appropriately changed.
 また、図4Eに示す変形例のプラズマ発生装置6は、電極板13a(14a)と電極板13b(14b)との間に、誘電体材料により形成された複数の管61がX方向に配列された構造を有している。この構成では、管61の内部空間が流路Pとして機能する。このような構成であっても、電極に印加される交流電圧により形成される電界の分布は上記各例と共通である。電界の作用により各管61内で個別に発生したプラズマが最終的に合成されることで、上記例と同様のプラズマを噴出させることが可能である。 4E, a plurality of tubes 61 made of a dielectric material are arranged in the X direction between an electrode plate 13a (14a) and an electrode plate 13b (14b). It has a structure. In this configuration, the internal space of the pipe 61 functions as the flow path P. Even with such a configuration, the distribution of the electric field formed by the AC voltage applied to the electrodes is common to the above examples. The plasma generated individually in each tube 61 by the action of the electric field is finally combined, so that the same plasma as in the above example can be ejected.
 また、このように流路が複数に分割されている場合、分割された流路ごとに気体の流量を制御することも可能となる。このように、電極の1種類の配置に対して、気体の流路については種々の変形例を考えることができる。 In addition, when the flow path is divided into a plurality of parts, the flow rate of the gas can be controlled for each divided flow path. Thus, for one type of arrangement of the electrodes, various modifications of the gas flow path can be considered.
 次に、上記した原理に基づくプラズマ発生装置の、より実用的な実施形態について図5Aないし図6Cを参照して説明する。 Next, a more practical embodiment of the plasma generator based on the above principle will be described with reference to FIGS. 5A to 6C.
 図5Aないし図6Cは本発明に係るプラズマ発生装置の一実施形態を示す図である。より詳しくは、図5Aは本実施形態のプラズマ発生装置100の外観を示す斜視図であり、図5Bはその部分分解図である。また、図6Aはプラズマ発生装置100の上面図である。また、図6B、図6Cはそれぞれ図6AのA-A線断面図、B-B線断面図である。なお、ここでも便宜的にプラズマ発生装置100の主要な面をXY平面に平行と仮定するが、実使用状態におけるプラズマ発生装置100の姿勢については任意である。 FIGS. 5A to 6C are views showing an embodiment of the plasma generator according to the present invention. More specifically, FIG. 5A is a perspective view showing an appearance of the plasma generator 100 of the present embodiment, and FIG. 5B is a partially exploded view thereof. FIG. 6A is a top view of the plasma generator 100. 6B and 6C are a sectional view taken along line AA and a sectional view taken along line BB of FIG. 6A, respectively. Here, for the sake of convenience, the main surface of the plasma generator 100 is assumed to be parallel to the XY plane, but the posture of the plasma generator 100 in an actual use state is arbitrary.
 プラズマ発生装置100は、1対の流路形成部材110,120と、1対のカバー部材150,160とを備えている。流路形成部材110,120は、石英またはセラミックなどのプラズマ耐性を有する誘電体材料でそれぞれ一体的に形成されており、上記した原理的構成における誘電体板11,12に相当するものである。すなわち流路形成部材110,120は、主として気体の流路を形成する機能を担う。 The plasma generator 100 includes a pair of flow path forming members 110 and 120 and a pair of cover members 150 and 160. The flow path forming members 110 and 120 are integrally formed of a dielectric material having plasma resistance such as quartz or ceramic, respectively, and correspond to the dielectric plates 11 and 12 in the above-described principle configuration. That is, the flow path forming members 110 and 120 mainly have a function of forming a gas flow path.
 具体的には、図5Bおよび図6Bに示すように、流路形成部材120は、XY平面に沿った薄板状の薄肉部121と、その(-Y)方向側端部に隣接して設けられた厚肉部122とを有している。このうち薄肉部121が、上記した原理的構成における誘電体板12に相当する。図5Bに示すように、薄肉部121のうちX方向における両端部121aに比べて、中央部121bはさらに肉薄に仕上げられた段差部となっている。 Specifically, as shown in FIGS. 5B and 6B, the flow path forming member 120 is provided adjacent to a thin plate-shaped thin portion 121 along the XY plane and a (−Y) direction side end thereof. Thick portion 122. Of these, the thin portion 121 corresponds to the dielectric plate 12 in the above-described principle configuration. As shown in FIG. 5B, the central portion 121b is a step portion that is further thinned as compared with both end portions 121a in the X direction of the thin portion 121.
 また、流路形成部材120の厚肉部122のうち(-Y)側端部には、気体供給部19からの気体を受け入れるための導入口103となる切り欠き123が1つまたは複数設けられている。また、厚肉部122には、導入口103から導入される気体の流れを整えるマニホールド104として機能する溝部124が設けられている。溝部124は薄肉部121の段差部121bに接続されている。 At the (−Y) side end of the thick portion 122 of the flow path forming member 120, one or a plurality of cutouts 123 serving as the inlet 103 for receiving gas from the gas supply unit 19 are provided. ing. The thick portion 122 is provided with a groove 124 that functions as the manifold 104 that regulates the flow of the gas introduced from the inlet 103. The groove portion 124 is connected to the step portion 121b of the thin portion 121.
 もう一方の流路形成部材110も同じ構造、具体的には流路形成部材120を上下に返した構造を有している。これらが重ね合わせられることにより、気体の流路が形成される。すなわち、図6Aないし図6Cに示すように、流路形成部材110の薄肉部111と流路形成部材120の薄肉部121とが重ね合わされることで、両者の隙間に、X方向およびY方向に延びる流路106が形成される。流路106の(+Y)側端部は、流路106を通送された気体を吐出する開口107となる。開口107の形状は、X方向を長手方向とする、つまりZ方向に薄くX方向に幅広いスリット状である。 The other flow path forming member 110 has the same structure, specifically, a structure in which the flow path forming member 120 is turned upside down. These are superposed to form a gas flow path. That is, as shown in FIGS. 6A to 6C, the thin portion 111 of the flow path forming member 110 and the thin portion 121 of the flow path forming member 120 are overlapped with each other, so that a gap therebetween is formed in the X direction and the Y direction. An extending channel 106 is formed. The (+ Y) side end of the channel 106 serves as an opening 107 for discharging the gas sent through the channel 106. The shape of the opening 107 is a slit shape whose longitudinal direction is in the X direction, that is, thin in the Z direction and wide in the X direction.
 また、流路形成部材110の厚肉部112と流路形成部材120の厚肉部122とが重ね合わされることで、(-Y)方向側から(+Y)方向側に向けて、互いに連通する導入口103およびマニホールド104が形成される。マニホールド104は流路106に連通する。このようにして、流路形成部材110,120の(-Y)側端部の導入口103から(+Y)側端部の開口107に至る気体の流路が形成される。導入口103から導入される気体の流れは、マニホールド104を通過することでその流速がX方向において均一化され、流路106に送り込まれる。 In addition, since the thick portion 112 of the flow path forming member 110 and the thick portion 122 of the flow path forming member 120 are overlapped, they communicate with each other from the (−Y) direction side to the (+ Y) direction side. An inlet 103 and a manifold 104 are formed. The manifold 104 communicates with the flow path 106. In this manner, a gas flow path from the inlet 103 at the (−Y) side end of the flow path forming members 110 and 120 to the opening 107 at the (+ Y) side end is formed. The flow of the gas introduced from the inlet 103 is made uniform in the X direction by passing through the manifold 104, and is sent into the flow path 106.
 気体が流通する流路106を挟んで、第1電極130および第2電極140が配置される。具体的には、気体の流通方向である(+Y)方向における上流側に第1電極130が、これよりも下流側に第2電極140が設けられる。 第 The first electrode 130 and the second electrode 140 are arranged with the gas flow channel 106 interposed therebetween. Specifically, the first electrode 130 is provided on the upstream side in the (+ Y) direction, which is the gas flow direction, and the second electrode 140 is provided on the downstream side.
 先の原理説明にもある通り、第1電極130は、上側の流路形成部材110の薄肉部111の上面に取り付けられた電極板131と、XY方向においてこれと同じ位置で、下側の流路形成部材120の薄肉部121の下面に取り付けられた電極板132とを有している。このように、電極板131,132は、流路形成部材110,120を介して流路106を挟むように対向配置されている。 As described in the principle description, the first electrode 130 is connected to the electrode plate 131 attached to the upper surface of the thin portion 111 of the upper flow path forming member 110 at the same position in the XY direction at the lower flow path. And an electrode plate 132 attached to the lower surface of the thin portion 121 of the path forming member 120. As described above, the electrode plates 131 and 132 are arranged to face each other with the flow path 106 interposed therebetween through the flow path forming members 110 and 120.
 同様に、第2電極140は、電極板131よりも(+Y)方向側で、上側の流路形成部材110の薄肉部111の上面に取り付けられた電極板141と、XY方向においてこれと同じ位置で、下側の流路形成部材120の薄肉部121の下面に取り付けられた電極板142とを有している。このように、電極板141,142も、流路形成部材110,120を介して流路106を挟むように対向配置されている。 Similarly, the second electrode 140 is located on the (+ Y) direction side of the electrode plate 131 and the electrode plate 141 attached to the upper surface of the thin portion 111 of the upper flow path forming member 110 at the same position in the XY direction. And an electrode plate 142 attached to the lower surface of the thin portion 121 of the lower flow path forming member 120. In this manner, the electrode plates 141 and 142 are also arranged to face each other with the flow path 106 interposed therebetween through the flow path forming members 110 and 120.
 図6Cに示すように、電極板131,132の(+X)方向側端部133は流路形成部材110,120よりも外側まで延びており、流路形成部材110,120の側方で電気的に接続されている。その一部はさらに(+X)方向側まで延びている。一方、図6Aに示すように、電極板141,142の(-X)方向側端部143は流路形成部材110,120よりも外側まで延びており、その一部はさらに(-X)方向側まで延びている。電極板141,142についても、流路形成部材110,120の側方で電気的に接続されている。 As shown in FIG. 6C, the (+ X) direction end portions 133 of the electrode plates 131 and 132 extend to the outside of the flow path forming members 110 and 120, and are electrically connected to the side of the flow path forming members 110 and 120. It is connected to the. A part thereof further extends to the (+ X) direction side. On the other hand, as shown in FIG. 6A, the (−X) direction end portions 143 of the electrode plates 141 and 142 extend to the outside of the flow path forming members 110 and 120, and a part thereof further extends in the (−X) direction. Extending to the side. The electrode plates 141 and 142 are also electrically connected to the sides of the flow path forming members 110 and 120.
 流路形成部材110,120の薄肉部111,121と、第1および第2電極130,140とを覆うように、カバー部材150,160が設けられている。第1および第2電極130,140の延伸部133,143はカバー部材150,160の外部まで延長されており、この延伸部133,143が、交流電圧を出力する電源部との接続端子として機能する。 カ バ ー Cover members 150 and 160 are provided to cover the thin portions 111 and 121 of the flow path forming members 110 and 120 and the first and second electrodes 130 and 140. The extending portions 133 and 143 of the first and second electrodes 130 and 140 extend to the outside of the cover members 150 and 160, and the extending portions 133 and 143 function as connection terminals with a power supply unit that outputs an AC voltage. I do.
 カバー部材150,160は、プラズマ発生装置100の機械的強度を高めるとともに電極の露出を抑制する目的で設けられている。電極が設けられる部位において誘電体層の厚さを小さくすることで、プラズマ発生に必要な電圧を低く抑えることが可能となる。反面、誘電体を薄くすることで機械的な強度は低下する。カバー部材150,160によって薄肉部111,121を補強することで、装置の損壊を防止することができる。また、電極130,140の露出を最小限に抑えて、感電や異常放電等を防止することができる。 The cover members 150 and 160 are provided for the purpose of increasing the mechanical strength of the plasma generator 100 and suppressing the exposure of the electrodes. By reducing the thickness of the dielectric layer at the portion where the electrode is provided, the voltage required for plasma generation can be suppressed. On the other hand, the mechanical strength is reduced by making the dielectric thinner. By reinforcing the thin portions 111 and 121 with the cover members 150 and 160, damage to the device can be prevented. Further, exposure of the electrodes 130 and 140 can be minimized to prevent electric shock and abnormal discharge.
 このように構成されたプラズマ発生装置100では、導入口103から適宜の気体、例えばアルゴンガスが導入され、流路106に(+Y)方向の気流が形成される。気流は、Z方向に狭くX方向に広い流路106内で薄層化されている。 In the plasma generator 100 configured as described above, an appropriate gas, for example, an argon gas is introduced from the inlet 103, and an airflow in the (+ Y) direction is formed in the flow path 106. The air flow is thinned in a flow path 106 that is narrow in the Z direction and wide in the X direction.
 この状態で第1および第2電極130,140の間に適宜の大きさの交流電圧が印加されると、上記した原理により、流路106内で誘電体バリア放電が発生する。これにより流路内にプラズマが生じ、プラズマ化した気体が開口107から外部へ吐出される。流路106はX方向を長手方向とする扁平な断面形状を有し、開口107はその断面形状と同じスリット状の開口形状を有している。そして、第1および第2電極130,140はX方向において流路106の幅を超えて設けられている。このため、流路106内に形成される電界はX方向においてほぼ一様である。 In this state, when an AC voltage of an appropriate magnitude is applied between the first and second electrodes 130 and 140, a dielectric barrier discharge occurs in the flow path 106 according to the above-described principle. As a result, plasma is generated in the flow path, and the gasified into plasma is discharged from the opening 107 to the outside. The flow path 106 has a flat cross-sectional shape whose longitudinal direction is the X direction, and the opening 107 has the same slit-shaped opening shape as the cross-sectional shape. The first and second electrodes 130 and 140 are provided beyond the width of the flow path 106 in the X direction. For this reason, the electric field formed in the flow path 106 is substantially uniform in the X direction.
 したがって、流路106内ではX方向においてほぼ一様な密度のプラズマが発生し、開口107から吐出されるプラズマ化気体はX方向に沿って広がったものとなる。このようなプラズマを基板や印刷媒体などの処理対象物に照射することで、処理対象物の表面を効率的に処理することが可能である。 Therefore, in the flow path 106, plasma having a substantially uniform density is generated in the X direction, and the plasma gas discharged from the opening 107 spreads in the X direction. By irradiating such a plasma to a processing target such as a substrate or a printing medium, the surface of the processing target can be efficiently processed.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、第1電極対を構成する1対の電極板が電源部に対し電気的に並列接続されることで両者が同電位となるように構成されている。これに代えて、1対の電極板に対し個別に電源部が接続され、それらの電源部の出力を同期させることで両電極板を同電位とするようにしてもよい。第2電極対についても同様である。 The present invention is not limited to the above-described embodiment, and various changes other than those described above can be made without departing from the gist of the present invention. For example, in the above-described embodiment, a pair of electrode plates constituting the first electrode pair is electrically connected in parallel to the power supply unit, so that both are at the same potential. Instead, a power supply unit may be individually connected to a pair of electrode plates, and the outputs of the power supply units may be synchronized so that both electrode plates have the same potential. The same applies to the second electrode pair.
 また、上記実施形態における流路の断面形状は、気体の流通方向に対して一定である。しかしながら、例えば気体の流速や吐出範囲を制御するために、気体の流通方向において流路の断面形状が次第に変化する構成であってもよい。 In addition, the cross-sectional shape of the flow channel in the above embodiment is constant with respect to the gas flow direction. However, for example, in order to control the gas flow rate and the discharge range, the cross-sectional shape of the flow path may be gradually changed in the gas flow direction.
 また例えば、第1電極対および第2電極対のそれぞれは、Y軸を軸方向とし流路を取り囲む環状に形成されていてもよい。また例えば、上記実施形態においては第1電極と第2電極との間に電源部が接続されているが、いずれかの電極が接地されていてもよい。 Also, for example, each of the first electrode pair and the second electrode pair may be formed in an annular shape with the Y axis as the axial direction and surrounding the flow path. Further, for example, in the above embodiment, the power supply unit is connected between the first electrode and the second electrode, but any one of the electrodes may be grounded.
 以上、具体的な実施形態を例示して説明してきたように、本発明のプラズマ発生装置においては、例えば、第1電極と第2電極との間で対向面が互いに平行であってもよい。このような構成によれば、第1電極と第2電極との間を通る流路に、対向面に平行な方向において均一な電界を形成することができ、同方向に広がるプラズマ密度を一様とすることができる。 As described above, in the plasma generator of the present invention, for example, the opposing surfaces between the first electrode and the second electrode may be parallel to each other as described in the specific embodiments. According to such a configuration, a uniform electric field can be formed in a flow path passing between the first electrode and the second electrode in a direction parallel to the opposing surface, and the plasma density spreading in the same direction can be made uniform. It can be.
 また例えば、第1電極および第2電極のそれぞれの構造が平行平板であってもよい。このような構成によれば、幅広いプラズマを照射するための装置を簡単な電極構造によって実現することが可能である。 Further, for example, the respective structures of the first electrode and the second electrode may be parallel flat plates. According to such a configuration, a device for irradiating a wide range of plasma can be realized with a simple electrode structure.
 また例えば、第1電極および第2電極が、流通方向に垂直かつ対向面に平行な方向において流路よりも外側まで延びていてもよい。このような構成によれば、電極の端部付近における電界の乱れが流路内に影響を及ぼすのを防止することができ、より一様なプラズマを流路内に発生させることができる。 Also, for example, the first electrode and the second electrode may extend to the outside of the flow path in a direction perpendicular to the flow direction and parallel to the facing surface. According to such a configuration, it is possible to prevent the disturbance of the electric field near the end of the electrode from affecting the inside of the flow path, and to generate more uniform plasma in the flow path.
 また例えば、流通方向に垂直な切断面における流路の断面は、対向面に平行な方向を長手方向とする扁平な断面形状を有するものであってもよい。また、流路形成部は、流通方向に垂直かつ対向面に平行な方向に沿って配列された複数の流路を有する構成であってもよい。 Also, for example, the cross section of the flow path in a cross section perpendicular to the flow direction may have a flat cross section whose longitudinal direction is parallel to the facing surface. Further, the flow path forming section may have a configuration having a plurality of flow paths arranged along a direction perpendicular to the flow direction and parallel to the facing surface.
 また例えば流路は、互いに平行にかつ近接して対向配置された1対の壁面で挟まれた間隙空間であってもよい。そして、この壁面が互いに平行な1対の平板状の誘電体により構成されていてもよい。 Furthermore, for example, the flow path may be a gap space sandwiched between a pair of wall surfaces that are opposed to each other in parallel and close to each other. The wall surface may be formed of a pair of parallel plate-like dielectrics.
 また例えば、流路の流通方向における上流側端部に気体を供給する気体供給部を備える構成であってもよい。このような構成によれば、流路に気体の種類や量を能動的に制御することが可能である。 Also, for example, a configuration may be provided that includes a gas supply unit that supplies gas to the upstream end in the flow direction of the flow path. According to such a configuration, it is possible to actively control the type and amount of gas in the flow path.
 この発明は、各種の処理対象物の表面にプラズマにより処理する技術分野に好適に適用可能である。特に、簡単な構成で大気雰囲気中へ幅広のプラズマを出射することが可能となっているので、例えば基板や印刷媒体等の表面処理に特に好適である。 The present invention can be suitably applied to the technical field of treating the surface of various processing objects with plasma. In particular, since wide plasma can be emitted into the air atmosphere with a simple configuration, it is particularly suitable for surface treatment of, for example, a substrate or a print medium.
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 Although the invention has been described with reference to specific embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the disclosed embodiment, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description of the invention. It is therefore contemplated that the appended claims will cover any such modifications or embodiments without departing from the true scope of the invention.
 1,100 プラズマ発生装置
 11,12 誘電体板(流路形成部)
 13(13a,13b),130(131,132) 第1電極
 14(14a,14b),140(141,142) 第2電極
 15 電源部
 16a,16b スペーサ(流路形成部)
 17,107 開口
 19 気体供給部
 106,P 流路
 110,120 流路形成部材(流路形成部)
1,100 Plasma generator 11,12 Dielectric plate (flow path forming part)
13 (13a, 13b), 130 (131, 132) First electrode 14 (14a, 14b), 140 (141, 142) Second electrode 15 Power supply section 16a, 16b Spacer (flow path forming section)
17, 107 opening 19 gas supply section 106, P flow path 110, 120 flow path forming member (flow path forming section)

Claims (9)

  1.  気体を所定の流通方向に沿って流通させる流路を形成し、前記流通方向における前記流路の下流側端部に、前記気体を吐出する開口を有する流路形成部と、
     前記流路を挟んで対向配置された互いに平行な1対の対向面を有する第1電極と、
     前記第1電極とは前記流通方向に離隔して、前記流路を挟んで対向配置された互いに平行な1対の対向面を有する第2電極と、
     前記第1電極と前記第2電極との間に交流電圧を印加する電源部と
    を備え、
     前記第1電極の前記対向面の各々は、前記流通方向に平行で他方の前記第1電極と対向する平面であり、前記第1電極の前記対向面と前記流路との間が誘電体により隔離され、
     前記第2電極の前記対向面の各々は、前記流通方向に平行で他方の前記第2電極と対向する平面であり、前記第2電極の前記対向面と前記流路との間が誘電体により隔離される、プラズマ発生装置。
    Forming a flow path for flowing the gas along a predetermined flow direction, at a downstream end of the flow path in the flow direction, a flow path forming unit having an opening for discharging the gas,
    A first electrode having a pair of opposing surfaces parallel to each other and arranged opposite to each other across the flow path;
    A second electrode having a pair of parallel opposing surfaces that are spaced apart from the first electrode in the flow direction and that are arranged to oppose each other across the flow path;
    A power supply unit for applying an AC voltage between the first electrode and the second electrode,
    Each of the facing surfaces of the first electrode is a plane parallel to the flow direction and facing the other first electrode, and a gap between the facing surface of the first electrode and the flow path is made of a dielectric material. Isolated,
    Each of the opposed surfaces of the second electrode is a plane parallel to the flow direction and opposed to the other second electrode, and a gap between the opposed surface of the second electrode and the flow path is made of a dielectric. An isolated plasma generator.
  2.  前記第1電極の前記対向面と前記第2電極の前記対向面とが互いに平行である、請求項1に記載のプラズマ発生装置。 The plasma generator according to claim 1, wherein the opposed surface of the first electrode and the opposed surface of the second electrode are parallel to each other.
  3.  前記第1電極および前記第2電極のそれぞれが平行平板構造を有する請求項2に記載のプラズマ発生装置。 3. The plasma generator according to claim 2, wherein each of the first electrode and the second electrode has a parallel plate structure.
  4.  前記第1電極および前記第2電極が、前記流通方向に垂直かつ前記対向面に平行な方向において前記流路よりも外側まで延びている請求項1ないし3のいずれかに記載のプラズマ発生装置。 4. The plasma generator according to claim 1, wherein the first electrode and the second electrode extend outside the flow path in a direction perpendicular to the flow direction and parallel to the facing surface. 5.
  5.  前記流通方向に垂直な切断面における前記流路の断面は、前記対向面に平行な方向を長手方向とする扁平な断面形状を有する請求項1ないし3のいずれかに記載のプラズマ発生装置。 4. The plasma generator according to claim 1, wherein a cross section of the flow path in a cross section perpendicular to the flow direction has a flat cross section whose longitudinal direction is parallel to the facing surface. 5.
  6.  前記流路は、互いに平行にかつ近接して対向配置された1対の壁面で挟まれた間隙空間である請求項5に記載のプラズマ発生装置。 The plasma generating apparatus according to claim 5, wherein the flow path is a gap space sandwiched between a pair of wall surfaces that are opposed to each other in parallel and close to each other.
  7.  前記流路形成部では、互いに平行な1対の平板状の誘電体が前記壁面を構成する請求項6に記載のプラズマ発生装置。 The plasma generator according to claim 6, wherein in the flow path forming portion, a pair of parallel plate-shaped dielectrics constitute the wall surface.
  8.  前記流路形成部は、前記流通方向に垂直かつ前記対向面に平行な方向に沿って配列された複数の前記流路を有する請求項1ないし4のいずれかに記載のプラズマ発生装置。 The plasma generator according to any one of claims 1 to 4, wherein the flow path forming section has a plurality of the flow paths arranged in a direction perpendicular to the flow direction and parallel to the facing surface.
  9.  前記流路の前記流通方向における上流側端部に前記気体を供給する、気体供給部を備える請求項1ないし8のいずれかに記載のプラズマ発生装置。 The plasma generator according to any one of claims 1 to 8, further comprising a gas supply unit that supplies the gas to an upstream end of the flow path in the flow direction.
PCT/JP2019/020094 2018-07-26 2019-05-21 Plasma generation device WO2020021831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139928 2018-07-26
JP2018139928A JP2020017419A (en) 2018-07-26 2018-07-26 Plasma generator

Publications (1)

Publication Number Publication Date
WO2020021831A1 true WO2020021831A1 (en) 2020-01-30

Family

ID=69182222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020094 WO2020021831A1 (en) 2018-07-26 2019-05-21 Plasma generation device

Country Status (3)

Country Link
JP (1) JP2020017419A (en)
TW (1) TW202019243A (en)
WO (1) WO2020021831A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049504A (en) * 2020-09-16 2022-03-29 株式会社東芝 Dielectric barrier discharge device
US11702207B2 (en) 2018-11-29 2023-07-18 Safran Seats Usa Llc Business class seats for a passenger vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798053B1 (en) * 2020-02-04 2020-12-09 富士フイルム株式会社 Non-contact communication media, magnetic tape cartridges, non-contact communication media operating methods, and programs
JP7351245B2 (en) 2020-03-13 2023-09-27 ウシオ電機株式会社 Dielectric barrier type plasma generation device and plasma discharge starting method of dielectric barrier type plasma generation device
JP2023040527A (en) * 2021-09-10 2023-03-23 ウシオ電機株式会社 Dielectric barrier discharge plasma generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323928A (en) * 2003-04-25 2004-11-18 Konica Minolta Opto Inc Atmospheric pressure plasma treatment method, and system used therefor
JP2009064993A (en) * 2007-09-07 2009-03-26 Kawai Musical Instr Mfg Co Ltd Processing method for solution layer
WO2012057271A1 (en) * 2010-10-27 2012-05-03 京セラ株式会社 Ion wind generator and ion wind generating device
JP2013089537A (en) * 2011-10-20 2013-05-13 Kyocera Corp Plasma generating body and plasma generator
JP2013229335A (en) * 2013-05-07 2013-11-07 Toshiba Corp Inner-tube flow control method, tube channel element, fluid apparatus, and fluid apparatus system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323928A (en) * 2003-04-25 2004-11-18 Konica Minolta Opto Inc Atmospheric pressure plasma treatment method, and system used therefor
JP2009064993A (en) * 2007-09-07 2009-03-26 Kawai Musical Instr Mfg Co Ltd Processing method for solution layer
WO2012057271A1 (en) * 2010-10-27 2012-05-03 京セラ株式会社 Ion wind generator and ion wind generating device
JP2013089537A (en) * 2011-10-20 2013-05-13 Kyocera Corp Plasma generating body and plasma generator
JP2013229335A (en) * 2013-05-07 2013-11-07 Toshiba Corp Inner-tube flow control method, tube channel element, fluid apparatus, and fluid apparatus system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702207B2 (en) 2018-11-29 2023-07-18 Safran Seats Usa Llc Business class seats for a passenger vehicle
JP2022049504A (en) * 2020-09-16 2022-03-29 株式会社東芝 Dielectric barrier discharge device

Also Published As

Publication number Publication date
JP2020017419A (en) 2020-01-30
TW202019243A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
WO2020021831A1 (en) Plasma generation device
KR100552378B1 (en) Electrode Structure of The Plasma Surface Treatment Device
CN112166650B (en) Active gas generating device
US20150228461A1 (en) Plasma treatment apparatus and method
US10971338B2 (en) Active gas generating apparatus
JPWO2008123142A1 (en) Plasma processing equipment
US10793953B2 (en) Activated gas generation apparatus and film-formation treatment apparatus
US10889896B2 (en) Active gas-generating device and film formation apparatus
JP2007280641A (en) Plasma treatment device and plasma treatment method
JP4283520B2 (en) Plasma deposition system
JP4861387B2 (en) Plasma processing equipment
JP2008004488A (en) Ion generating element to supply space with ion having uniform concentration, ion generating unit, and destaticizer
JP2018056115A (en) Static eliminator
JP2005302697A (en) Electrode structure of plasma treating apparatus
JP7144753B2 (en) Plasma device
WO2024057424A1 (en) Active gas generation device
JP7273671B2 (en) Plasma generator
KR101771667B1 (en) Electrode assembly for dielectric barrier discharge and plasma processing device using the same
JP2005116901A (en) Film forming apparatus using plasma
JP6009220B2 (en) Deposition equipment
KR101909467B1 (en) Linear type plasma source for high-speed surface treatment with securing stability
JP7382877B2 (en) Negative ion generator
JP2011146251A (en) Plasma gas generating device
JP2005243408A (en) Ion generating discharge element and ion generating method
KR20030097488A (en) Atmospheric pressure plasma generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842226

Country of ref document: EP

Kind code of ref document: A1