JP3723512B2 - Ultrasonic flaw detector and automatic flaw detector using the same - Google Patents

Ultrasonic flaw detector and automatic flaw detector using the same Download PDF

Info

Publication number
JP3723512B2
JP3723512B2 JP2002055789A JP2002055789A JP3723512B2 JP 3723512 B2 JP3723512 B2 JP 3723512B2 JP 2002055789 A JP2002055789 A JP 2002055789A JP 2002055789 A JP2002055789 A JP 2002055789A JP 3723512 B2 JP3723512 B2 JP 3723512B2
Authority
JP
Japan
Prior art keywords
probe
flaw detector
inspected
contact
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002055789A
Other languages
Japanese (ja)
Other versions
JP2003254952A (en
Inventor
郁司 星野
千晃 佐々木
佳央 上田
弘康 森崎
敬三 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sumitomo Metal Industries Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002055789A priority Critical patent/JP3723512B2/en
Publication of JP2003254952A publication Critical patent/JP2003254952A/en
Application granted granted Critical
Publication of JP3723512B2 publication Critical patent/JP3723512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【0001】
【発明の属する技術分野】
本発明は、超音波探傷装置に関し、特に、ガス管等の周方向溶接部をSH波を用いて自動探傷するのに好適な超音波探傷装置に関する。
【0002】
【従来の技術】
近年、SH波(Shear Horizontal Wave)を用いた超音波探傷の研究開発が進んでおり、外部の影響を受けにくい、或いはモード変換が起きないといった有利な特性から、超音波探傷法として今後の発展が期待されている。
【0003】
しかしながら、超音波SH波探触子を用いた探傷は、高粘性の特殊な接触媒質を使用する必要があり、探触子と被検査材間の接触媒質厚の変化によりエコー高さ(波高値)が変化するため、これを安定させるために所定の時間が必要であるという問題がある。従って、自動探傷には、ほとんど適用されていないのが実情である。
【0004】
ここで、特開2001−99818号公報には、上記SH波を用いた超音波探傷装置が開示されている。
【0005】
しかしながら、前記公報に開示された超音波探傷装置は、接触媒質の膜厚安定保持時間を予め記憶させておき、データ採取位置における超音波探触子の停止時間が前記膜厚安定保持時間より長くなったことを条件として測定を開始するように構成されており、エコー高さが安定するまでの探触子押し付け保持時間として数分以上を要するものである。換言すれば、エコー高さを安定させなければならないという上記SH波特有の問題点は何ら解決されておらず、被検査材を間欠的に走査して検査し得るに留まるものである。
【0006】
【発明が解決しようとする課題】
本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、エコー高さが安定するまでの探触子押し付け保持時間を必要とせず、被検査材を連続走査して探傷し得る超音波探傷装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するべく、本発明は、超音波の送受信波が通過する範囲のみが被検査材に接触するように、下方に突出した接触面を有し、SH波を送受信する探触子と、前記探触子を収納し保持する探触子ホルダーとを備えた超音波探傷装置であって、前記探触子ホルダーは、前記探触子の接触面を挟んで対向する位置に、被検査材と当接するように下方に突出した当接部と、前記探触子ホルダーの上端部と、前記探触子の前記接触面と対向する面との間に介挿され、前記探触子を被検査材に対して下方に垂直に付勢する第1の弾性部材と、前記探触子ホルダーの水平方向側面と、前記探触子の水平方向両側面との間に介挿された第2の弾性部材とを備え、前記第1の弾性部材は、前記探触子を被検査材に対して下方に垂直に5kg重以上10kg重以下で付勢することを特徴とする超音波探傷装置を提供するものである。
【0008】
斯かる発明によれば、超音波の送受信波が通過する範囲のみが被検査材に接触するように、下方に突出した接触面を有する探触子が適用される。ここで、「超音波の送受信波が通過する範囲」とは、超音波の送受信波が通過すると想定される範囲と同等の範囲、若しくは、探触子の接触面周縁での反射エコーが探傷時のノイズ要因となるのを防止するべく、前記想定される範囲を含んだ若干広い範囲を意味するものである。このように接触面積の小さい探触子を適用することにより、エコー高さの安定するまでの時間を大幅に短縮させることが可能である。
【0009】
また、本発明に係る超音波探傷装置の探触子ホルダーは、探触子の接触面を挟んで対向する位置に、被検査材と当接するように下方に突出した当接部と、探触子ホルダーの上端部と、探触子の接触面と対向する面との間に介挿され、探触子を被検査材に対して下方に垂直に付勢する第1の弾性部材とを具備する。従って、探触子と探触子ホルダーとの位置関係は、固定的ではなく、第1の弾性部材を介して、弾性的に変化し得ることになる。ここで、探触子ホルダーの当接部が被検査材に当接するように、探触子ホルダーを被検査材に対して押圧すれば、当接部に挟まれた探触子の接触面は、第1の弾性部材によって、被検査材に対して下方に垂直に付勢されるため、当接部に挟まれた範囲における被検査材表面の凹凸状態に追従して、探触子の接触面と被検査材表面とが平行状態を維持しつつ安定した検査が可能となる。
【0010】
また、本発明に係る超音波探傷装置の探触子ホルダーは、探触子ホルダーの水平方向側面と、探触子の水平方向両側面との間に介挿された第2の弾性部材を更に備えるため、探触子を被検査材表面に接触させた状態で被検査材に対して走査する(すなわち、被検査材に対して水平方向に相対的に移動させる)際にも、第2の弾性部材の付勢力によって、探触子の位置が安定した状態となるため、第1の弾性部材によって生じる探触子の接触面と被検査材表面との平行状態をより一層確実に維持することが可能である。
【0011】
さらに、前記第1の弾性部材は、前記探触子を被検査材に対して下方に垂直に5kg重以上10kg重以下で付勢するように構成されるため、瞬時にエコー高さが高くなり安定するまでの時間を大幅に短縮させることが可能である一方、探触子ホルダーや被検査材を走査するための走査装置への反力も大き過ぎず、これらの強度を過度に高める必要もないため、実用上好適な超音波探傷装置を提供することが可能である。
【0012】
以上のように、本発明によれば、接触面積の小さい探触子を適用すると共に、当該探触子の接触面と被検査材表面との平行状態を安定化させ得る探触子ホルダーの構成としたことにより、エコー高さが安定するまでの探触子押し付け保持時間を必要とせず、被検査材を連続走査して探傷し得る超音波探傷装置を提供することが可能である。
【0013】
なお、前記「下方」及び「上端」が意味する上下方向の位置関係は、本発明に係る超音波探傷装置の下方に被検査材が位置する場合を基準にして説明したものである。
【0015】
なお、本発明は、鋼管の周方向溶接部を自動探傷する自動探傷装置であって、前記超音波探傷装置と、前記鋼管の周方向溶接部から所定距離隔てた位置に、前記鋼管を囲繞するように配置された環状のガイドレールと、前記超音波探傷装置を前記鋼管の外表面に接触させた状態で当該鋼管の周方向に回転させるべく、前記超音波探傷装置を保持し、且つ、前記ガイドレールに沿ってモータ駆動により回転する回転部材とを備えることを特徴とする自動探傷装置としても提供される。
【0016】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係る超音波探傷装置の概略構成を示す図であり、(a)は縦断面図を、(b)は(a)のA−A断面図を、(c)は(a)のB−B断面図をそれぞれ示す。
【0017】
図1に示すように、本実施形態に係る超音波探傷装置1は、SH波を送受信する探触子11と、探触子11を収納し保持する探触子ホルダー12とを備えている。
【0018】
ここで、探触子11は、超音波の送受信波が通過する範囲のみが被検査材に接触するように、下方に突出した接触面111を有する。より具体的には、図2に示すように、接触面111周縁での反射エコーが探傷時のノイズ要因となるのを防止するべく、超音波の送受信波が通過すると想定される範囲Sよりも若干広い範囲を有する接触面111とされている。
【0019】
図3は、本実施形態に係る探触子11と、図7に示すように接触面積の大きな(探触子の下面全てが接触面111’とされた)従来の探触子11’とについて、所定の被検査材に接触させてからのエコー高さの推移を比較した結果であり、(a)は各探触子を5kg重で被検査材に押圧した場合の結果を、(b)は各探触子を7.5kg重で被検査材に押圧した場合の結果をそれぞれ示す。図3に示す例では、本実施形態に係る探触子11を接触面111の面積が56mm2のSH波探触子「5Z5×5A90−SH」(「5」は周波数(5MHz)、「Z」は振動子材質(ジルコン・チタン酸鉛系磁器)、「5×5」は振動子寸法(5mm×5mm)、「A」は型式(斜角)、「90」は屈折角(90°)、「SH」はSH波探触子をそれぞれ意味する)とし、従来の探触子11’を接触面111’の面積が128mm2のSH波探触子「5Z5×5A90−SH」とし、両者を比較している。
【0020】
図3に示すように、接触面積を小さくした本実施形態に係る探触子11は、従来の探触子11’に比べ、エコー高さが瞬時に所定レベルまで到達していることがわかる。これは、接触面積が従来に比べ、1/2〜1/3程度であるため、探触子と被検査材間の接触媒質が均一な薄膜上に瞬時になりやすいからだと考えられる。また、図3に示すように、探触子11を押し付ける荷重が大きいほど瞬時にエコー高さが高くなり安定するまでの時間を大幅に短縮させることが可能である。しかし、探触子11の押し付け荷重を大きくし過ぎると、これを収納し保持する探触子ホルダー12や、被検査材を走査するための走査装置への反力も大きくなり、これらの強度を過度に高める必要が生じることから、探触子11の押し付け荷重としては、5〜10kg重程度が適当であると考えられる。
【0021】
次に、前述した図1に示す探触子ホルダー12は、探触子11の接触面111を挟んで対向する位置に、被検査材と当接するように下方に突出した当接部としてのフリーベアリング121と、探触子ホルダー12の上端部122と、探触子11の接触面111と対向する面112との間に介挿され、探触子11を被検査材に対して下方に垂直に付勢する第1の弾性部材としてのバネ部材123とを備えている。
【0022】
従って、探触子11と探触子ホルダー12との位置関係は、固定的ではなく、バネ部材123を介して、弾性的に変化し得ることになる。ここで、探触子ホルダー12のフリーベアリング121が被検査材に当接するように、探触子ホルダー12を被検査材に対して押圧すれば、フリーベアリング121に挟まれた探触子11の接触面111は、バネ部材123によって、被検査材に対して下方に垂直に付勢されるため、フリーベアリング121に挟まれた範囲における被検査材表面の凹凸状態に追従して、探触子11の接触面111と被検査材表面とが平行状態を維持しつつ安定した検査が可能となる。
【0023】
なお、本実施形態に係る超音波探傷装置1には、探触子ホルダー12の外側面124に、探触子ホルダー12が軸線X周りに回動可能な状態で支持部材13が取付けられている。支持部材13の上端面131に押圧力が付加されることにより、当該押圧力が軸線Xを介して探触子ホルダー12に伝達し、さらに、探触子ホルダー12の上端部122からバネ部材123を介して探触子11に伝達することになる。
【0024】
また、本実施形態に係る超音波探傷装置1は、探触子ホルダー12が、探触子ホルダー12の内側面125と、探触子11の側面113との間に介挿された第2の弾性部材としてのゴム部材126(本実施形態では、探触子11の一方の側面113に対して4個ずつ計8個のゴム部材)を備えている。従って、探触子11を被検査材表面に接触させた状態で被検査材に対して走査する(すなわち、被検査材に対して水平方向に相対的に移動させる)際にも、ゴム部材126の付勢力によって、探触子11の位置が安定した状態となるため、バネ部材123によって生じる探触子11の接触面111と被検査材表面との平行状態をより一層確実に維持することが可能である。なお、本実施形態では、計8個のゴム部材126を備える構成について説明したが、本発明はこれに限るものではなく、バネ部材など弾性部材である限りにおいて種々の材料から構成することができる他、その個数や配置場所は、探触子11に付加する押圧力や被検査材表面の性状等に応じて適宜選択可能である。
【0025】
以上に説明したように、本実施形態に係る超音波探傷装置1によれば、接触面積の小さい探触子11を適用すると共に、探触子11の接触面111と被検査材表面との平行状態を安定化させ得る探触子ホルダー12の構成としたことにより、エコー高さが安定するまでの探触子押し付け保持時間を必要とせず、被検査材を連続走査して探傷することが可能である。
【0026】
以下、実施例を示すことにより、本発明の特徴とするところをより一層明らかにする。
【0027】
(実施例1)
厚さ6mmの平板材表面に放電加工スリットを形成した被検査材について、図1に示した超音波探傷装置1を用い、走査速度(装置1の水平方向の移動速度)を順次変更して自動探傷した。なお、接触媒質としては、日合アセチレン株式会社製「ソニコートSH−B」を用いた。
【0028】
図4に、上記の条件で自動探傷した結果を示す。図4の縦軸は、スリットからの反射エコーの高さ(静止時を100%とした相対値)を、横軸は、走査速度をそれぞれ示す。図4に示すように、静止時に比べて反射エコーの高さは低下するものの、4.5dB程度の低下に収まり、走査速度1〜10mm/sの範囲では反射エコー高さの変動はほとんどなく安定した自動探傷が可能であることが分かった。
【0029】
(実施例2)
図5に示すように、図1に示した超音波探傷装置1を、被検査材としての鋼管Pの溶接部P1から所定の距離を隔てて回転部材2に取り付け、鋼管Pを囲繞するガイドレール3に沿ってモータ駆動(手動でも可能)によって回転部材2を回転させることにより(走査速度5mm/s)自動探傷を行った。被検査材としての鋼管Pは、外径200mm、肉厚5.8mmのものを用いた。また、溶接部P1の内面に、周方向に沿って略一定間隔で、幅0.1mm、長さ6mmで、深さがそれぞれ0.3mm、0.4mm、0.5mm、0.6mm、0.8mm、1.0mmの計6個の放電加工スリットを形成した。また、接触媒質としては、日合アセチレン株式会社製「ソニコートSHN−B25」を探傷装置1の探触子11が接触する範囲全周に塗布した。
【0030】
図6に、上記の条件で自動探傷した結果(オシロスコープで観察した反射エコーの波形)を示す。図6の縦軸は、各スリットからの反射エコーの高さ(深さ0.3mmのスリットからの反射エコーの高さを100%とした相対値)を、横軸は、鋼管Pの所定位置を基準とした周方向位置をそれぞれ示す。図6に示すように、全ての放電加工スリットが極めて良好な検出能(S/N比)で検出できることが分かった。なお、図6では、最も深さの小さい0.3mmスリットの反射エコーの高さを100%として表示しているため、深さ0.4mm以上のスリットからの反射エコーは、電気的に飽和した状態となっているが、実際には、スリット深さに応じて線形なエコー高さが得られており、欠陥深さの同定にも十分な検査精度を有することが分かった。なお、本実施例で説明した自動探傷装置(超音波探傷装置1、回転部材2及びガイドレール3)は、被検査材としての鋼管Pの外径が変わった場合にも、ガイドレール3交換するのみで対応可能であり、極めて利便性に優れるものである。
【0031】
【発明の効果】
以上に説明したように、本発明に係る超音波探傷装置によれば、接触面積の小さい探触子を適用すると共に、当該探触子の接触面と被検査材表面との平行状態を安定化させ得る探触子ホルダーの構成としたことにより、エコー高さが安定するまでの探触子押し付け保持時間を必要とせず、被検査材を連続走査して探傷することが可能である。また、探触子としてSH波を送受信するSH波探触子を適用しており、SH波探触子を用いた自動探傷を実用化し得るという、極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】 図1は、本発明の一実施形態に係る超音波探傷装置の概略構成を示す図である。
【図2】 図2は、図1に示す探触子の裏面図である。
【図3】 図3は、本発明に係る探触子と、従来の探触子とについて、所定の被検査材に接触させてからのエコー高さの推移を比較した結果を示す。
【図4】 図4は、本発明の実施例1の結果を示す。
【図5】 図5は、本発明の実施例2で使用した自動探傷装置の概略構成を示す斜視図である。
【図6】 図6は、本発明の実施例2の結果を示す。
【図7】 図7は、従来の探触子の裏面図である。
【符号の説明】
1 ・・・ 超音波探傷装置 11 ・・・ 探触子
12 ・・・ 探触子ホルダー 111・・・ 接触面
121・・・ 当接部(フリーベアリング)
123・・・ 第1の弾性部材(バネ部材)
126・・・ 第2の弾性部材(ゴム部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flaw detector, and more particularly to an ultrasonic flaw detector suitable for automatically flaw-detecting circumferential welds such as gas pipes using SH waves.
[0002]
[Prior art]
In recent years, research and development of ultrasonic flaw detection using SH waves (Shear Horizontal Wave) has progressed, and future development as an ultrasonic flaw detection method because of its advantageous characteristics that it is less susceptible to external influences or mode conversion does not occur. Is expected.
[0003]
However, flaw detection using an ultrasonic SH wave probe requires the use of a high-viscosity special contact medium, and the echo height (crest value) due to the change in the contact medium thickness between the probe and the material to be inspected. ) Changes, there is a problem that a predetermined time is required to stabilize it. Therefore, the fact is that it is hardly applied to automatic flaw detection.
[0004]
Here, Japanese Patent Laid-Open No. 2001-99818 discloses an ultrasonic flaw detector using the SH wave.
[0005]
However, the ultrasonic flaw detector disclosed in the above publication stores the film thickness stable holding time of the contact medium in advance, and the stop time of the ultrasonic probe at the data collection position is longer than the film thickness stable holding time. The measurement is started on the condition that it has become, and it takes several minutes or more as the probe pressing holding time until the echo height is stabilized. In other words, the problem peculiar to the SH wave that the echo height has to be stabilized has not been solved at all, and the inspection material can be inspected intermittently by scanning it.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve such problems of the prior art, and does not require a probe pressing holding time until the echo height is stabilized, and continuously scans the material to be inspected for flaw detection. It is an object of the present invention to provide an obtained ultrasonic flaw detector.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a probe that has a contact surface that protrudes downward so that only a range through which an ultrasonic transmission / reception wave passes is in contact with an object to be inspected, and that transmits and receives an SH wave. An ultrasonic flaw detector comprising a probe holder for storing and holding the probe, wherein the probe holder is in a position to be inspected across the contact surface of the probe. The probe is inserted between a contact portion protruding downward to contact the material, an upper end portion of the probe holder, and a surface facing the contact surface of the probe. A second elastic member that is interposed between a first elastic member that urges the inspection material vertically downward, a horizontal side surface of the probe holder, and both horizontal side surfaces of the probe. comprising of an elastic member, the first elastic member, the probe or heavy 5kg vertically downwards against the inspected material 1 there is provided an ultrasonic flaw detection apparatus characterized by biasing in kg weight or less.
[0008]
According to such an invention, a probe having a contact surface protruding downward is applied so that only a range through which ultrasonic transmission / reception waves pass is in contact with the material to be inspected. Here, the “range in which the ultrasonic transmission / reception wave passes” is a range equivalent to the range in which the ultrasonic transmission / reception wave is assumed to pass, or the reflected echo at the periphery of the probe contact surface is at the time of flaw detection. In order to prevent the noise from becoming a noise factor, this means a slightly wide range including the assumed range. By applying a probe with a small contact area in this way, it is possible to significantly shorten the time until the echo height is stabilized.
[0009]
The probe holder of the ultrasonic flaw detector according to the present invention includes a contact portion protruding downward so as to contact the material to be inspected at a position facing the probe contact surface, and a probe. A first elastic member that is interposed between the upper end of the child holder and the surface facing the contact surface of the probe and urges the probe vertically downward against the material to be inspected; To do. Therefore, the positional relationship between the probe and the probe holder is not fixed and can be changed elastically via the first elastic member. Here, if the probe holder is pressed against the material to be inspected so that the contact portion of the probe holder is in contact with the material to be inspected, the contact surface of the probe sandwiched between the contact portions is Since the first elastic member urges the inspection material vertically downward, the probe contacts the surface of the inspection material in the range sandwiched between the contact portions. Stable inspection can be performed while maintaining a parallel state between the surface and the surface of the material to be inspected.
[0010]
The probe holder of the ultrasonic flaw detector according to the present invention further includes a second elastic member interposed between the horizontal side surface of the probe holder and the horizontal side surfaces of the probe. Therefore, when the probe is scanned with the probe in contact with the surface of the inspection material (that is, when the probe is moved relatively in the horizontal direction with respect to the inspection material), the second Since the position of the probe is stabilized by the urging force of the elastic member, the parallel state between the contact surface of the probe and the surface of the material to be inspected generated by the first elastic member is more reliably maintained. Is possible.
[0011]
Furthermore, since the first elastic member is configured to urge the probe vertically below the material to be inspected at 5 kg weight or more and 10 kg weight or less, the echo height increases instantaneously. While it is possible to significantly reduce the time to stabilize, the reaction force to the scanning device for scanning the probe holder and the material to be inspected is not too great, and there is no need to increase these strengths excessively. Therefore, it is possible to provide a practically suitable ultrasonic flaw detector.
[0012]
As described above, according to the present invention, a probe holder that can apply a probe with a small contact area and stabilize the parallel state between the contact surface of the probe and the surface of the material to be inspected. As a result, it is possible to provide an ultrasonic flaw detection apparatus that can perform flaw detection by continuously scanning the material to be inspected without requiring the probe pressing and holding time until the echo height is stabilized.
[0013]
Note that the positional relationship in the vertical direction, which means “downward” and “upper end”, has been described based on the case where the material to be inspected is positioned below the ultrasonic flaw detector according to the present invention.
[0015]
The present invention is an automatic flaw detection apparatus for automatically flawing a circumferential welded portion of a steel pipe, and surrounds the steel pipe at a position separated from the ultrasonic flaw detector by a predetermined distance from the circumferential welded portion of the steel pipe. An annular guide rail arranged in such a manner as to hold the ultrasonic flaw detector in order to rotate the ultrasonic flaw detector in the circumferential direction of the steel pipe while being in contact with the outer surface of the steel pipe, and The present invention also provides an automatic flaw detection apparatus comprising a rotating member that rotates by driving a motor along a guide rail.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an ultrasonic flaw detector according to an embodiment of the present invention, in which (a) is a longitudinal sectional view, (b) is an AA sectional view of (a), ( c) shows a BB cross-sectional view of (a).
[0017]
As shown in FIG. 1, the ultrasonic flaw detector 1 according to the present embodiment includes a probe 11 that transmits and receives SH waves, and a probe holder 12 that houses and holds the probe 11.
[0018]
Here, the probe 11 has a contact surface 111 that protrudes downward so that only the range through which ultrasonic transmission / reception waves pass is in contact with the material to be inspected. More specifically, as shown in FIG. 2, in order to prevent reflected echoes at the periphery of the contact surface 111 from becoming a noise factor at the time of flaw detection, the range S is assumed to be greater than the range S in which an ultrasonic wave is assumed to pass. The contact surface 111 has a slightly wide range.
[0019]
FIG. 3 shows a probe 11 according to the present embodiment and a conventional probe 11 ′ having a large contact area (all lower surfaces of the probe are contact surfaces 111 ′) as shown in FIG. (A) is a result of comparing changes in echo heights after contact with a predetermined material to be inspected, and (a) shows the results when each probe is pressed against the material to be inspected with a weight of 5 kg, (b). Shows the results when each probe is pressed against the material to be inspected with a weight of 7.5 kg. In the example shown in FIG. 3, the probe 11 according to this embodiment the area of the contact surface 111 is 56 mm 2 SH Namisagu probe "5Z5 × 5A90-SH" ( "5" frequency (5 MHz), "Z "Is the vibrator material (zircon / lead titanate-based porcelain)," 5x5 "is the vibrator dimensions (5mm x 5mm)," A "is the model (diagonal angle)," 90 "is the refraction angle (90 °) , “SH” means an SH wave probe), and the conventional probe 11 ′ is an SH wave probe “5Z5 × 5A90-SH” with an area of the contact surface 111 ′ of 128 mm 2. Are comparing.
[0020]
As shown in FIG. 3, it can be seen that the probe 11 according to the present embodiment having a small contact area has an echo height that instantaneously reaches a predetermined level as compared with the conventional probe 11 ′. This is considered to be because the contact area between the probe and the material to be inspected tends to be instantaneous on a uniform thin film because the contact area is about 1/2 to 1/3 of the conventional one. Further, as shown in FIG. 3, as the load pressing the probe 11 is increased, the echo height is instantaneously increased and the time until stabilization is significantly shortened. However, if the pressing load of the probe 11 is excessively increased, the reaction force to the probe holder 12 that stores and holds the probe 11 and the scanning device for scanning the material to be inspected also increases. Therefore, the pressing load of the probe 11 is considered to be about 5 to 10 kg.
[0021]
Next, the probe holder 12 shown in FIG. 1 described above is free as a contact portion that protrudes downward at a position facing the contact surface 111 of the probe 11 so as to contact the material to be inspected. It is inserted between the bearing 121, the upper end 122 of the probe holder 12, and the surface 112 facing the contact surface 111 of the probe 11, and the probe 11 is perpendicular to the inspection object downward. And a spring member 123 as a first elastic member for urging the spring.
[0022]
Therefore, the positional relationship between the probe 11 and the probe holder 12 is not fixed and can be elastically changed via the spring member 123. Here, if the probe holder 12 is pressed against the material to be inspected so that the free bearing 121 of the probe holder 12 contacts the material to be inspected, the probe 11 sandwiched between the free bearings 121 is Since the contact surface 111 is urged vertically downward with respect to the material to be inspected by the spring member 123, the probe follows the uneven state of the surface of the material to be inspected in the range sandwiched between the free bearings 121. Thus, it is possible to perform a stable inspection while maintaining the contact surface 111 of 11 and the surface of the material to be inspected in a parallel state.
[0023]
In the ultrasonic flaw detector 1 according to this embodiment, the support member 13 is attached to the outer surface 124 of the probe holder 12 in a state where the probe holder 12 can rotate about the axis X. . By applying a pressing force to the upper end surface 131 of the support member 13, the pressing force is transmitted to the probe holder 12 via the axis X, and further, the spring member 123 is transmitted from the upper end portion 122 of the probe holder 12. Will be transmitted to the probe 11 via.
[0024]
In the ultrasonic flaw detector 1 according to this embodiment, the probe holder 12 is inserted between the inner side surface 125 of the probe holder 12 and the side surface 113 of the probe 11. Rubber members 126 as elastic members (in this embodiment, four rubber members in total with respect to one side surface 113 of the probe 11 are provided). Accordingly, the rubber member 126 is also used when scanning the inspection material with the probe 11 in contact with the surface of the inspection material (that is, moving the probe 11 relatively in the horizontal direction with respect to the inspection material). Since the position of the probe 11 is stabilized by the biasing force, the parallel state between the contact surface 111 of the probe 11 generated by the spring member 123 and the surface of the material to be inspected can be more reliably maintained. Is possible. In the present embodiment, a configuration including a total of eight rubber members 126 has been described. However, the present invention is not limited to this, and can be configured from various materials as long as they are elastic members such as spring members. In addition, the number and arrangement location thereof can be appropriately selected according to the pressing force applied to the probe 11 and the properties of the surface of the material to be inspected.
[0025]
As described above, according to the ultrasonic flaw detector 1 according to the present embodiment, the probe 11 having a small contact area is applied, and the contact surface 111 of the probe 11 and the surface of the inspection object are parallel. The probe holder 12 that can stabilize the state does not require the probe pressing and holding time until the echo height is stabilized, and can inspect the material to be inspected continuously by scanning. It is.
[0026]
Hereinafter, the features of the present invention will be further clarified by showing examples.
[0027]
(Example 1)
For an inspection material having an electric discharge machining slit formed on the surface of a flat plate material having a thickness of 6 mm, the ultrasonic flaw detector 1 shown in FIG. Flawed. In addition, “Sonicoat SH-B” manufactured by Nichiai Acetylene Co., Ltd. was used as the contact medium.
[0028]
FIG. 4 shows the result of automatic flaw detection under the above conditions. The vertical axis in FIG. 4 indicates the height of the reflected echo from the slit (relative value with 100% when stationary), and the horizontal axis indicates the scanning speed. As shown in FIG. 4, although the height of the reflected echo is lower than that at rest, it falls within a drop of about 4.5 dB and is stable with almost no fluctuation in the height of the reflected echo in the scanning speed range of 1 to 10 mm / s. It was found that automatic flaw detection was possible.
[0029]
(Example 2)
As shown in FIG. 5, the ultrasonic flaw detector 1 shown in FIG. 1 is attached to the rotating member 2 at a predetermined distance from the welded part P1 of the steel pipe P as the material to be inspected, and the guide rail surrounds the steel pipe P. Automatic flaw detection was performed by rotating the rotating member 2 by a motor drive (manually possible) along the line 3 (scanning speed 5 mm / s). The steel pipe P as the material to be inspected has an outer diameter of 200 mm and a wall thickness of 5.8 mm. Further, on the inner surface of the weld P1, the width is 0.1 mm, the length is 6 mm, and the depths are 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0, respectively, at substantially regular intervals along the circumferential direction. A total of six electric discharge machining slits of .8 mm and 1.0 mm were formed. In addition, as a contact medium, “Sonicoat SHN-B25” manufactured by Nichiai Acetylene Co., Ltd. was applied to the entire circumference of the range in which the probe 11 of the flaw detector 1 is in contact.
[0030]
FIG. 6 shows the result of automatic flaw detection under the above conditions (the waveform of the reflected echo observed with an oscilloscope). The vertical axis in FIG. 6 represents the height of the reflected echo from each slit (relative value with the height of the reflected echo from the slit having a depth of 0.3 mm as 100%), and the horizontal axis represents the predetermined position of the steel pipe P. The positions in the circumferential direction with reference to are shown. As shown in FIG. 6, it was found that all the electric discharge machining slits can be detected with a very good detection ability (S / N ratio). In FIG. 6, since the height of the reflection echo of the 0.3 mm slit having the smallest depth is displayed as 100%, the reflection echo from the slit having a depth of 0.4 mm or more is electrically saturated. In reality, a linear echo height was obtained according to the slit depth, and it was found that the inspection accuracy was sufficient for identifying the defect depth. Note that the automatic flaw detector (ultrasonic flaw detector 1, rotating member 2, and guide rail 3) described in the present embodiment replaces the guide rail 3 even when the outer diameter of the steel pipe P as the material to be inspected changes. It can be used only by itself and is extremely convenient.
[0031]
【The invention's effect】
As described above, according to the ultrasonic flaw detector according to the present invention, a probe having a small contact area is applied and the parallel state between the contact surface of the probe and the surface of the inspection object is stabilized. With the configuration of the probe holder that can be used, it is possible to perform flaw detection by continuously scanning the material to be inspected without requiring the probe pressing and holding time until the echo height is stabilized. In addition, an SH wave probe that transmits and receives SH waves is applied as a probe, and an extremely excellent effect that automatic flaw detection using the SH wave probe can be put into practical use is achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an ultrasonic flaw detector according to an embodiment of the present invention.
FIG. 2 is a rear view of the probe shown in FIG.
FIG. 3 shows a comparison result of changes in echo heights after a probe according to the present invention and a conventional probe are brought into contact with a predetermined material to be inspected.
FIG. 4 shows the results of Example 1 of the present invention.
FIG. 5 is a perspective view showing a schematic configuration of an automatic flaw detector used in Embodiment 2 of the present invention.
FIG. 6 shows the results of Example 2 of the present invention.
FIG. 7 is a rear view of a conventional probe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flaw detector 11 ... Probe 12 ... Probe holder 111 ... Contact surface 121 ... Contact part (free bearing)
123... First elastic member (spring member)
126 ... second elastic member (rubber member)

Claims (2)

超音波の送受信波が通過する範囲のみが被検査材に接触するように、下方に突出した接触面を有し、SH波を送受信する探触子と、
前記探触子を収納し保持する探触子ホルダーとを備えた超音波探傷装置であって、
前記探触子ホルダーは、
前記探触子の接触面を挟んで対向する位置に、被検査材と当接するように下方に突出した当接部と、
前記探触子ホルダーの上端部と、前記探触子の前記接触面と対向する面との間に介挿され、前記探触子を被検査材に対して下方に垂直に付勢する第1の弾性部材と、
前記探触子ホルダーの水平方向側面と、前記探触子の水平方向両側面との間に介挿された第2の弾性部材とを備え
前記第1の弾性部材は、前記探触子を被検査材に対して下方に垂直に5kg重以上10kg重以下で付勢することを特徴とする超音波探傷装置。
A probe having a contact surface protruding downward so that only a range through which ultrasonic transmission / reception waves pass is in contact with the material to be inspected, and transmitting and receiving SH waves;
An ultrasonic flaw detector comprising a probe holder for storing and holding the probe,
The probe holder is
A contact portion protruding downward so as to contact the object to be inspected at a position facing the contact surface of the probe;
First inserted between an upper end portion of the probe holder and a surface facing the contact surface of the probe, and urges the probe vertically downward with respect to the material to be inspected. An elastic member of
A second elastic member interposed between a horizontal side surface of the probe holder and both horizontal side surfaces of the probe ;
The ultrasonic flaw detection apparatus according to claim 1, wherein the first elastic member urges the probe vertically with respect to a material to be inspected at a weight of 5 kg or more and 10 kg or less .
鋼管の周方向溶接部を自動探傷する自動探傷装置であって、
請求項1に記載の超音波探傷装置と、
前記鋼管の周方向溶接部から所定距離隔てた位置に、前記鋼管を囲繞するように配置された環状のガイドレールと、
前記超音波探傷装置を前記鋼管の外表面に接触させた状態で当該鋼管の周方向に回転させるべく、前記超音波探傷装置を保持し、且つ、前記ガイドレールに沿ってモータ駆動により回転する回転部材とを備えることを特徴とする自動探傷装置。
An automatic flaw detector that automatically flaws a circumferential weld of a steel pipe,
The ultrasonic flaw detector according to claim 1 ,
An annular guide rail disposed so as to surround the steel pipe at a predetermined distance from the circumferential weld of the steel pipe;
Rotation that holds the ultrasonic flaw detector while rotating the ultrasonic flaw detector in the circumferential direction of the steel pipe while being in contact with the outer surface of the steel pipe and that is rotated by a motor along the guide rail An automatic flaw detection device comprising: a member.
JP2002055789A 2002-03-01 2002-03-01 Ultrasonic flaw detector and automatic flaw detector using the same Expired - Fee Related JP3723512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055789A JP3723512B2 (en) 2002-03-01 2002-03-01 Ultrasonic flaw detector and automatic flaw detector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055789A JP3723512B2 (en) 2002-03-01 2002-03-01 Ultrasonic flaw detector and automatic flaw detector using the same

Publications (2)

Publication Number Publication Date
JP2003254952A JP2003254952A (en) 2003-09-10
JP3723512B2 true JP3723512B2 (en) 2005-12-07

Family

ID=28666542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055789A Expired - Fee Related JP3723512B2 (en) 2002-03-01 2002-03-01 Ultrasonic flaw detector and automatic flaw detector using the same

Country Status (1)

Country Link
JP (1) JP3723512B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020308B2 (en) * 2009-05-29 2011-09-20 General Electric Company Non-destructive inspection system having self-aligning probe assembly
CN107121492A (en) * 2017-04-18 2017-09-01 南通友联数码技术开发有限公司 A kind of supersonic detector performance test frock and its method of testing
CN110927247B (en) * 2019-10-29 2022-02-25 广东工业大学 Array element adjustable dry coupling type guided wave array sensor and method for pipeline detection
CN117233264B (en) * 2023-11-15 2024-03-19 湘潭振宏材料科技有限公司 Ultrasonic detection device and method for detecting internal defects of metal parts

Also Published As

Publication number Publication date
JP2003254952A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US7644618B2 (en) Apparatus and method for nondestructive inspection of parts
US11692976B2 (en) Ultrasonic scanning device and an application and method thereof
US8997574B2 (en) Oblique flaw detection using ultrasonic transducers
US9804129B2 (en) Apparatus for inspecting a tube
US4969361A (en) Ultrasonic flaw detecting method and apparatus for structural balls
CA1108743A (en) Method and apparatus for automatic ultrasonic flaw detection
JP4955359B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP3723512B2 (en) Ultrasonic flaw detector and automatic flaw detector using the same
CN201060179Y (en) Aqueous medium ultrasonic inspection machine
Dwyer-Joyce et al. In situ measurement of contact area and pressure distribution in machine elements
JP2000146922A (en) Method and device for ultrasonic crack detection of wheel set
JP5233211B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JPH07128314A (en) Ultrasonic flaw detecting method for socket welding coupling
CN2692665Y (en) Nondestrctive detection mechanical device for detecting defect in long and thin rod
TR201815434T4 (en) DEVICE FOR INSPECTION OF A MATERIAL
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves
JPH11326289A (en) Method and apparatus for ultrasonic flaw detection of cylindrical body
JP3334564B2 (en) Ultrasonic flaw detector for steel pipe or steel plate edge
JP7323477B2 (en) Ultrasonic probe and ultrasonic flaw scanner
JP2015004530A (en) Ultrasonic wave inspection method and device for round-bar steel
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JP3287150B2 (en) Surface acoustic wave ultrasonic probe, surface acoustic wave ultrasonic inspection apparatus, and surface acoustic wave ultrasonic inspection method for cylindrical body inspection
JP2909284B2 (en) Container positioning device for non-destructive inspection equipment
JP2001255310A (en) Method and apparatus for ultrasonic flaw detection using burst wave
JPH02187658A (en) Ultrasonic flaw detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees