JP3721815B2 - 光学素子の製造方法 - Google Patents

光学素子の製造方法 Download PDF

Info

Publication number
JP3721815B2
JP3721815B2 JP35656598A JP35656598A JP3721815B2 JP 3721815 B2 JP3721815 B2 JP 3721815B2 JP 35656598 A JP35656598 A JP 35656598A JP 35656598 A JP35656598 A JP 35656598A JP 3721815 B2 JP3721815 B2 JP 3721815B2
Authority
JP
Japan
Prior art keywords
manufacturing
optical element
thin film
element according
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35656598A
Other languages
English (en)
Other versions
JP2000180606A (ja
Inventor
秀則 山田
高幸 山田
睦也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP35656598A priority Critical patent/JP3721815B2/ja
Publication of JP2000180606A publication Critical patent/JP2000180606A/ja
Application granted granted Critical
Publication of JP3721815B2 publication Critical patent/JP3721815B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信,光インターコネクション,オプトエレクトロニクス,光計測等の分野において、光導波路,光共振器,近接場光学プローブ,複屈折素子,フィルター,分岐素子,波面変換素子,偏向素子等として使用され、屈折率周期構造を有する誘電体多層膜,フォトニッククリスタル等の光学素子の製造方法に関し、特に、結晶構造および材料の選択の自由度が高く、3次元屈折率周期構造の形成が可能な光学素子の製造方法する。
【0002】
【従来の技術】
屈折率の分布が光の波長と同程度のピッチからなる屈折率周期構造の媒質は、独特の光の伝播特性を有することが知られており、周期構造が1次元のものとしては、誘電体多層膜が古くから知られており、その設計理論や作製技術は既に成熟した分野である。
【0003】
一方、光の波長と同程度のピッチからなる3次元的な屈折率周期構造を有する媒質を利用して、半導体素子中の自然放出の制御を行う方法が、1987年にYablonovitchによって提唱されて以来(E. Yablonovitch, Phys. Rev. Lett., vol. 58, (1987), P2059-P2062 )、2次元あるいは3次元的な周期構造の媒質中での光の振る舞いが注目を集めている。そのような媒質中では、ある特定の範囲の波数ベクトルを有する光は伝播が禁じられ、半導体中の電子のエネルギーバンドと同様のフォトニックバンドが形成される。フォトニックバンドを形成する屈折率周期構造を「フォトニッククリスタル」という。
【0004】
フォトニックバンドを利用すると、以前はこれまでにないフォトンの制御が可能になるため、様々な応用が期待されている。既に、自然放出光の制御による低閾値あるいは閾値のないレーザ(馬場ら、応用物理, vol.67,(1998), P1041-P1045)、フォトニッククリスタル中の格子欠陥の周りに光が局在する性質を利用した光導波路(J.D.Joannopoulos et. al.: "Photonic Crystal", Princeton University Prss, (1995 Princeton, New Jersey), P100-P104)、同じく光の局在を利用した高効率でμmオーダーの超小型な光共振器(馬場ら、応用物理, vol.67, (1998), P1041-1045)、および波長や入射角の微小な変化によって大きく偏向角を変える新しいプリズム機能を有する素子(小坂ら、第59回応用物理学会学術講演会予稿集III,17p-T-13, (1998), P920)等の応用が提唱されている。
【0005】
このような微細な屈折率周期構造を有する光学素子の従来の製造方法としては、例えば、特開平10−59746号公報、特開平9−304611号公報、文献1「J.Vac.Sci.Technol.B 14(6),(1996),P.4110-4114」、文献2「Jpn.J.Appl.Phys.,vol.35,(1996),P.L909-L912」、文献3「Jpn.J.Appl.Phys.,vol.36,(1996),P.L286-L288」に示されたものがある。
【0006】
特開平10−59746号公報に示された製造方法は、誘電率の異なる2種以上材料によって誘電体多層膜を形成した後、この誘電体多層膜に対して強度分布を有するレーザ光を照射し、誘電体多層膜にレーザ光のエネルギーを吸収させることで溶融・蒸発若しくはアブレーションを起こさせて、誘電体多層膜の一部をレーザ光の強度に応じて除去し、他の部分を光の波長程度の格子定数をもつ周期的に配列される誘電体凸部として残す方法である。2種の誘電体の屈折率の違いにより層の積層方向の周期構造を実現し、レーザ光によって除去された空気部分と誘電体部分との折率の違いにより層の面内方向の周期構造を実現している。
【0007】
特開平9−304611号公報に示された製造方法は、周期的な凹凸構造を表面に有した下地を用意し、この下地の表面上に、屈折率が異なる2種類の薄膜を、交互にかつそれぞれの膜厚が凹凸における段差と等しいか実質的に等しい膜厚となるように積層する。2種類の誘電体の屈折率の違いにより、層に垂直な方向および層の面内方向の両方に周期的な構造を実現する。
【0008】
文献1に示された製造方法は、ヒ化ガリウム(GaAs)をフォトニッククリスタルの材料とし、びっしりと並んだ六角形の頂点に穴があるNiマスクを用いて、化学アシストイオンビームエッチングによりGaAs表面法線に対して35度の角度の斜めの穴を穿つ方法である。GaAs表面法線に対して120度ずつ回転させて3回穴をエッチングすることによって、Fcc(面芯立方)構造のGaAsと空気からなるフォトニッククリスタルを作製することができる。
【0009】
文献2に示された製造方法は、基板上のGaAs層に溝を形成したもの同士をウェハーボンディングによって貼り合せた後に片側の基板を選択エッチングで除去する、という過程を繰返すことによって、3次元フォトニック結晶を作製するものである。
【0010】
文献3に示された製造方法は、二酸化珪素(SiO2 )膜によってGaAs基板上をマスクし、GaAsを選択成長させることによって2次元フォトニック結晶を作製するものである。
【0011】
【発明が解決しようとする課題】
しかし、特開平10−59746号公報に示された従来の製造方法によると、レーザ光の強度に応じて複数の層を同時に除去するため、層間で異なる面内結晶構造を有するような結晶は作製できず、また、エアを構成要素とする結晶しか作れないという結晶構造に大きな制約がある。さらに、レーザアブレーションで除去する場合には、材料に制約がある。レーザー照射による熱で除去する場合にも、熱による周囲材料のダメージが問題になる場合がある。
【0012】
特開平9−304611号公報に示された従来の製造方法によると、下地の凹凸構造を各層に反映しているので、層間で異なる面内結晶構造を有するような結晶は作製できない。また、凹凸構造の凹部の幅が段差より小さいと、幅の狭い凹部に他の領域とまったく同じ膜厚を積層することが難しため、そのような構造の作製は困難になるという問題がある。
【0013】
文献1に示された従来の製造方法によると、イオンビームエッチングにより斜めの穴を形成するため、各層毎に異なった面内結晶構造を有するような結晶の作製は、かなり困難となる。また、材料によっては、エッチング精度/速度を両立させるエッチング条件とマスクの選択が困難になること、密集パターンでローディングが生じたり、エッチング時にオーバーハングが生じたりしてシャープな鉛直面作製し難いこと、エッチング深さの高精度制御が困難なこと等の制約がある。
【0014】
文献2に示された従来の製造方法によると、エッチングやウェハーボンディングを繰返すため、それが可能な材料しか選べないという材料上の制約がある。また、融着熱や圧力が高くなるため、それに耐えられる材料しか使用できず、また、周囲に熱や圧力に弱い素子等が存在する場合には、使用できないという制約もある。さらに、一回の接合毎に基板裏面の研磨やエッチングなどの時間がかかる工程を要する欠点がある。
【0015】
文献3に示された従来の製造方法によると、マスクを用いてGaAsを選択成長させているため、2次元的な結晶しか作製できず、3次元結晶は不可能であり、また、選択成長が可能な材料しか使えないという問題がある。
【0016】
従って、本発明の目的は、結晶構造および材料の選択の自由度が高く、3次元屈折率周期構造の形成が可能な光学素子の製造方法を提供することにある。
【0017】
【課題を解決するための手段】
【0018】
本発明は、上記目的を達成するため、複数の層からなり、光波長と同一あるいはそれ以下の周期で屈折率が変化する屈折率周期構造を有する光学素子の製造方法において、基板上に前記複数の層に対応した2次元パターンを有する複数の薄膜を形成する第1の工程と、前記基板上から前記複数の薄膜を剥離し、この剥離した前記複数の薄膜を順次接合して積層する第2の工程とを含むことを特徴とする光学素子の製造方法を提供する。
上記構成によれば、第1工程では、例えば、材料の制限の少ないスパッタリング法等の着膜法によって基板上に薄膜を形成し、その基板上の薄膜をフォトリソグラフィー法等のパターニング法によって任意の2次元パターンを有する複数の薄膜を形成する。第2工程では、2次元パターンを有する複数の薄膜を接合し積層することにより、2次元パターン(結晶構造)の変化、および材料の変化によって3次元方向に屈折率が変化する3次元屈折率周期構造が形成される。
【0019】
【発明の実施の形態】
図1は、本発明の実施の形態に係る光学素子の製造装置を示す。この製造装置1は、後述する積層工程が行われる真空チャンバー2を有し、この真空チャンバー2の内部に、基板が載置される基板ホルダ3と、基板上に形成された薄膜が転写されるステージ13と、基板ホルダ3にアルゴンの高速原子ビーム(FAB:Fast Atom Beam)15を照射して表面を清浄化する第1のFAB源4Aと、ステージ13にFAB15を照射して表面を清浄化する第2のFAB源4Bと、ステージ13をX軸方向(図1において左右方向)に移動させるX軸テーブル5Aと、ステージ13をY軸方向(図1において紙面に垂直な方向)に移動させるY軸テーブル5Bとを設けている。また、この製造装置1は、真空チャンバー2の外部に基板ホルダ3をZ軸方向(図1において上下方向)に移動させるZ軸テーブル5Cと、アライメント調整の際に基板ホルダ3をZ軸回りに回転させるθテーブル5Dとを備えている。なお、第1および第2のFAB源4A,4Bは、基板ホルダ3をステージ13側に圧接するときは、邪魔にならないように図示しないモータによって退避できるようになっている。以下、このように構成された製造装置1を用いて光学素子としてのフォトニッククリスタルを製造する場合について説明する。
【0020】
図2(a),(b)、図3(a),(b)、および図4(a)〜(e)は、本発明の第1の実施の形態に係る光学素子の製造方法を示す。この第1の実施の形態は、1種類の薄膜材料と空気若しくは真空からなるパターンの層をX軸方向に位置をずらしながら複数層積層してなるフォトニッククリスタルである。
【0021】
まず、図2(a)に示すように、例えば、Siウェハからなる基板10を準備し、この基板10の表面にポリイミドをスピンコーティング法により5μm塗布し、これを硬化させ、表面にフッ化処理を施して離型層11を形成する。この離型層11の表面は、スピンコーティング法を用いたことにより、表面粗さはRa<2nmとすることが容易に可能である。更に離型層11の上にスパッタリング法によりSi薄膜12Aを0.5μm着膜する。Si薄膜12Aの膜厚は、水晶振動子でモニターすることにより正確に設定できる。
【0022】
次に、図2(b)に示すように、通常のフォトリソグラフィー法を用いてSi薄膜12Aをパターニングしてフォトニッククリスタルを構成する各層の薄膜120a,120bを一括して形成する。Si薄膜12Aのエッチングは、湿式エッチングよりもドライエッチング、望ましくは反応性イオンエッチング(RIE:Reactive Ion Etching)の方が、薄膜120a,120bの角が丸まらず、基板10の表面に対して端面が垂直となるので好ましい。
【0023】
図3(a)は、パターニングされた薄膜120a,120bの一例を示す。基板10上には、パターンAを有する複数(例えば8つ)の薄膜120aと、パターンBを有する複数(例えば8つ)の薄膜120bが形成される。薄膜120aおよび薄膜120bは、5mm角の外形を有し、縦横のピッチpが用いる光の波長の略半分程度で二次元状に配列された複数の六角形穴121を有し、これらの六角形穴121は、図3(b)に示すように、薄膜12aと薄膜12bとを重ねたとき、ピッチp/2だけ縦および横方向にずれている(位相のずれ) 。この位相のずれは、例えば、0.1μmから数μm程度となる。
【0024】
次に、図4(a)に示すように、複数の薄膜120a,120bを形成した基板10を図1に示す製造装置1の真空チャンバー2に導入し、基板ホルダ3上に載置してステージ13と対向させ、高真空、望ましくは超高真空に排気する。ステージ13の表面に、5mm角程度のSiチップ14を固定しておくか、あるいは厚さ0.1μm程度のSi層をコーティングする。これにより、これから積層する薄膜120a,120bとの同種材料の常温接合が可能になる。本実施の形態では、5mm角にダイシングしたSiチップ14をステージ13上に取り付けて対向基板とした。Siチップ14は、最初のパターンAを有する薄膜120aの直上に位置するようにX軸ステージ5A,Y軸ステージ5B,θステージ5θを用いて位置決めする。そしてSiの薄膜120a,120b、およびステージ13上のSiチップ14の両方の面にFAB15を照射し、表面を清浄化する。FAB15はアルゴンガスを源とし、加速電圧0.5乃至1.5kV、5乃至15mAの電流値で5分間照射した。FAB15により表面の酸化膜や汚染層が除去されるが、その膜厚は高々5nm程度なので膜厚精度に対する影響は軽微である。また、この除去量を予め考慮して図2(a)に示す工程で着膜するSi薄膜12の膜厚に上乗せしておくことも可能である。
【0025】
引き続き、図4(b)に示すように、基板ホルダ3をZ軸ステージ5Cにより上昇させて基板10をステージ13側に圧接する。パターンAの薄膜120aとステージ13の表面のSiチップ14が常温接合により強固に接合される。
【0026】
更に、図4(c)に示すように、基板10をステージ13から引き離すと、基板10上のパターンAの薄膜120aはステージ13側に転写される。これは、離型層11とSiの薄膜120aの密着力がSi同士の接合力よりも小さいためである。この工程によりフォトニッククリスタルのパターンAからなる層がステージ13上に形成されたことになる。転写された薄膜120aの表面は、それまで離型層11と接触していた面であり、この表面粗さはポリイミドの離型層11の表面粗さと同程度(Ra<2nm)で非常に良好である。表面粗さが良好だと、表面での散乱による損失が少ないので、フォトニッククリスタルとしての集光効率を高くできる。
【0027】
次に、パターンAの薄膜120aが転写されたSiチップ14をX軸テーブル5A,Y軸テーブル5Bによって5mmだけ移動させ、今度はパターンBの薄膜120bの直上に来るようにする。そして上記FAB15照射、接合、転写の工程を繰り返すと、Siチップ14上のパターンAの薄膜120aと基板10上のパターンBの薄膜120bが常温接合・転写され、パターンBの薄膜120bはパターンAの薄膜120a上に積層される。この状態でSiチップ14表面の六角形穴121を透視的に見ると、上記図3(b)のようになっている。この構造は単結晶で言う面心立方格子の最稠密面に対応する構造である。
【0028】
同様に引き続き、上記FAB15照射、接合、転写の各工程を後14回繰り返すことにより、図4(e)に示すように、16層の薄膜120a,120bを積層したフォトニッククリスタル16が作製できる。
【0029】
上述した第1の実施の形態によれば、以下の効果が得られる。
(イ) 結晶構造を自由に選ぶことができ、材料選択の自由度が高く、3次元的な結晶が可能という条件を全て満たすので、望ましいフォトニックバンドが実現でき、所望の特性を得ることができる。
(ロ) 3次元構造の積層工程で高温を必要としないため、熱によるダメージや歪みが発生せず、熱に弱い材料や素子を自由に組合わせることができる。
(ハ) 各層の界面の表面粗さが小さい、各層の膜厚精度が高い、1層内の形状の精度もリソグラフィープロセスの高精度がそのまま活用できる、という条件を全て満たすため、高性能高品質なフォトニッククリスタルを得ることができる。
(ニ) 各層の形状を1枚のウェハに1度に作製でき、かつ多数個のフォトニッククリスタルを同時に作製できるため、作製コストを著しく下げることが可能になる。
(ホ) 基板裏面の研磨やエッチングなどの時間が長くかかる工程を省略することができる。
【0030】
なお、本実施の形態では、薄膜としてスパッタリングにより形成したSiを用いたが、シランガスやジシランガスを原料とする減圧CVD(Chemical Vapor Deposition )法やプラズマCVD法により形成したSi薄膜を用いてもよい。これらの場合、基板温度を高くする必要があるが、離型層としてはポリイミドの替わりに、より耐熱性の高い二酸化珪素(SiO2 )膜や酸化フッ化珪素(SiOF)膜を用いてもよい。また、薄膜材料はSi以外でも、所望の波長に対して適当な屈折率を有する誘電体材料、半導体材料であればよい。
【0031】
図5(a),(b)は、本発明の第2の実施の形態に係る光学素子の製造方法を示す。この第2の実施の形態は、1種類の薄膜材料と空気若しくは真空からなるパターンを複数層積層してなるフォトニッククリスタルであるが、第1の実施の形態との違いは、各パターンが層の間で異なることである。
【0032】
第2の実施の形態のパターニング工程では、図5(a)に示すように、第1層から第6層用の6つの薄膜122a,122b,122c,122d,122e,122fを形成する。薄膜122aは、横方向にストライプ状のパターンを有する。薄膜122bは、縦方向にストライプ状のパターンを有し、1つのストライプの下半分に欠損領域123bを設けている。薄膜122cは、横方向にストライプ状のパターンを有し、一部に欠損領域123cを設けている。薄膜122dは、縦方向にストライプ状のパターンを有し、中央に欠損領域123dを設けている。薄膜122eは、横方向にストライプ状のパターンを有し、中央に欠損領域123eを設けている。薄膜122fは、縦方向にストライプ状のパターンを有し、中央に欠損領域123fを設けている。各薄膜122a〜122fは、5mm角の外形を有する。各ストライプのピッチpは、用いる光の波長の半分程度である。
【0033】
積層工程は、第1の実施の形態と同様に、第1層から順次5mm角単位に接合と転写を繰り返す。これにより、図5(b)に示すように、対向基板上には所望の3次元構造を有するフォトニッククリスタル16が作製できる。
【0034】
上述した第2の実施の形態によれば、欠損領域123b,123c,123d,123e,123fの設計により所望の3次元光導波路を形成することが可能となる。また、フォトニッククリスタルを構成する各層を一度のパターニング工程で1枚の基板上に作製することができるため、容易にフォトニッククリスタルを製造することができる。
【0035】
図6(a)〜(e)は、本発明の第3の実施の形態に係る光学素子の製造方法を示す。なお、同図は、一層分のパターンについて示す。この第3の実施の形態は、一層内に屈折率の異なる領域が混在する層を順次積層したフォトニッククリスタルである。
【0036】
まず、同図(a)に示すように、例えば、Siウェハからなる基板10を準備し、この基板10の表面に化学的気相堆積(CVD:Chemical Vapor Deposition )法により酸化フッ化珪素(SiOF)からなる離型層11を形成する。更に、この上に減圧CVD法により多結晶Si薄膜124を0.5μm着膜する(同図a)。
【0037】
次に、同図(b)に示すように、通常のフォトリソグラフィー法を用いてを多結晶Si薄膜124上にイオン注入のマスク材としてレジスト125を形成する。このときにフォトニッククリスタルの各層に対応する5mm角の大きさのパターンを6層分一括して形成する。
【0038】
次に、この基板10をイオン注入装置に導入し、同図(c)に示すように、リン126を注入する。そして、同図(d)に示すように、レジスト125を剥離し、引き続き基板10をアニールすると、リン126を注入した領域(レジスト125で覆われていなかった領域)124aは、n型の多結晶Siとなり、屈折率が変化する。従って、同図(e)に示すように、本実施の形態では、ピッチが波長の半分程度の縦横に走る図5と同様なストライプの例を示した。屈折率の異なるストライプ状のパターンを有する薄膜120が完成する。この後の各層の積層工程は、第1の実施の形態と同様である。
【0039】
上述した第3の実施の形態によれば、先に示した1種類の材料と空気若しくは真空との組み合わせによる周期構造に比べ、屈折率差を任意に選択できるため、より自由度の高いフォトニッククリスタルを得ることが可能となる。
また、構造的にはエアギャップが無く、第2の実施の形態のように橋渡し構造になる部分が無いため、高い接合強度が得られる。
なお、本実施の形態では、イオン注入元素としてリンを用いたが、同様にボロンや砒素を用いてもよい。また、イオン注入法を用いずに、固相拡散や気相拡散を用いて元素を拡散させてもよい。イオン注入や拡散のマスクとしては、レジスト以外に、シリコン窒化膜やシリコン酸化膜を用いることもできる。
また、本実施の形態では、Siに対して不純物原子を拡散させて屈折率に変化をつける方法を示したが、多結晶Siに対し、Si原子をイオン注入して多結晶構造を断ち切って非晶質化させるような、構造変化をもたらすことで屈折率を変化させてもよい。この場合は上記拡散による方法よりも屈折率差を大きくできるという効果がある。さらにSi注入後に水素雰囲気にさらすことにより非晶質領域を水素化すると、非晶質領域の屈折率を微調整することができる。
更に、屈折率を変化させる方法として、イオン交換法などを用いてよい。
【0040】
図7(a)〜(e)は、本発明の第4の実施の形態に係る光学素子の製造方法を示す。なお、同図は、一層分のパターンについて示す。この第4の実施の形態は、一層内に2種類の材料が混在する層を順次積層したフォトニッククリスタルであるが、第3の実施の形態との違いは、イオン注入や拡散と言った主たる材料の変質による屈折率の変化を利用するものではなく、材料そのものが異なる点にある。
【0041】
まず、同図(a)に示すように、例えば、Siウェハからなる基板10を準備し、この基板10の表面にCVD法によりSiOF(酸化フッ化珪素)からなる離型層11を形成する。更に、この離型層11の上に減圧CVD法により多結晶Si薄膜124を0.5μm着膜する。
【0042】
次に、同図(b)に示すように、第1の実施の形態と同様に、通常のフォトリソグラフィー法により多結晶Si薄膜124を複数の六角形穴124aを有する形状にパターニングする。
【0043】
引き続き、同図(c)に示すように、この多結晶Si薄膜124の上に第2の材料としてシリコン窒化膜127をプラズマCVD法により0.5μm着膜する。
【0044】
次に、同図(d)に示すように、この基板10を化学的機械的研磨法(CMP:Chemical Mechanical Polishing )により表面を研磨し、多結晶Si薄膜124とシリコン窒化膜127が同一膜厚になるように平坦化処理する。これにより、多結晶Si薄膜124の複数の六角形穴124aの中にシリコン窒化膜127が埋め込まれたパターンを有する薄膜120が完成する。CMPによる研磨では、薄膜の表面粗さを改善する効果もあり、2nm以下にすることも比較的容易である。このことは、光学素子の散乱損失を低減できるため好都合である。この後の各層の積層工程は、第1の実施の形態と同様である。
【0045】
上述した第4の実施の形態によれば、層内で2種類以上の材料が選択できるため、フォトニッククリスタルの設計自由度が大きい。例えば、シリコン窒化膜の代わりにシリコン酸化膜を用いてもよい。但し、常温接合により積層が可能となるためには、層の主となる材料はシリコンなど常温接合強度が十分に大きな材料を選ぶ必要がある。
また、第1の実施の形態では六角形穴121の直上に次の層の薄膜120a,120bがオーバーハングすることがあったが、この第4の実施の形態では六角形穴124bの中にシリコン窒化膜127が同一膜厚で存在するので、オーバーハングとなることはないため、高い接合強度が得られる。但し、シリコン同士の常温接合に比べ、シリコンとシリコン窒化膜の接合は強度が弱いため、層間の接合は主にシリコン同士の接触部分の接合強度による。
【0046】
図8(a)〜(c)は、本発明の第5の実施の形態に係る光学素子の製造方法を示す。この第5の実施の形態は、各層間で異なる材料の周期構造の層を積層したフォトニッククリスタルである。
【0047】
作製方法としては、基板10を2枚用いることが上記各実施の形態とは異なる。まず、2枚の基板10A,10BにSiOFからなる離型層を着膜する。次に、基板10Aの離型層の上に減圧CVD法により多結晶シリコンの薄膜を0.5μm着膜する。一方、基板10Bの離型層の上にプラズマCVD法により非晶質シリコンの薄膜を0.5μm着膜する。引き続き、第1の実施の形態と同様に、薄膜のパターニングを行う。基板10Aには、同図(a)に示すように、パターンAを有する複数の薄膜120aを形成し、基板10Bには、同図(b)に示すように、パターンBを有する複数の薄膜120bを形成する。なお、各層のパターンは、第2の実施の形態で示したように、層間で異なるパターンとすることも可能である。引き続き、第1の実施の形態と同様に、各層を順番に積層して行く。第1の実施の形態と異なるのは、基板10A,10Bが2枚あるため、2枚の基板10A,10Bを同時に真空チャンバー2に導入し、対向基板と交互に対向・位置決めしながら積層することだけである。
【0048】
上述した第5の実施の形態によれば、積層方向に関しては2種類の材料の屈折率差による周期構造が得られ、面内では各層のパターンに依存した周期構造が得られ、これらを独立して制御可能なフォトニッククリスタルが得られる。
【0049】
図9(a),(b)は、本発明の第6の実施の形態に係る光学素子の製造方法を示す。この第6の実施の形態は、積層する各層のパターンを矩形ではなく、三角形にしたものである。本実施の形態では、同図(a)に示すように、各層の外形を正三角形とし、その中にピッチpが波長の半分程度の周期的格子の薄膜128a〜128fを基板上に作製する。各層のパターニングや積層工程は既に述べた実施の形態と同様である。完成したフォトニッククリスタル16は、同図(b)に示すように、三角柱形状となる。このように第6の実施の形態によれば、各層のパターンはフォトリソ工程で形成するため、そのマスクを変更すれば、光学素子の機能により結晶構造のみならずその外観形状も任意に製造可能となる。なお、形状としては三角柱以外にも、五角柱や六角柱でもよい。
【0050】
なお、本発明は、上記実施の形態に限定されず、種々に変形実施が可能である。例えば、上記各実施の形態では、基板上への薄膜の着膜方法として、スパッタリング法について説明したが、電子ビーム加熱蒸着法,抵抗加熱蒸着法,化学蒸着法等の他の真空蒸着法やスピンコーティング法等を用いてもよい。
また、薄膜のパターニング工程は、フォトリソグラフィー法に限らず、電子ビーム直接描画法やレーザ直接描画法を用いてもよい。
【0051】
【発明の効果】
以上説明した通り、本発明の光学素子の製造方法によれば、フォトリソグラフィー法等のパターニング法によって任意の2次元パターンを有する複数の薄膜を形成できるので、結晶構造の自由度が高くなる。また、材料の制限の少ないスパッタリング法等の着膜法によって基板上に薄膜を形成できるので、材料選択の自由度が高くなる。また、2次元パターンを有する複数の薄膜を積層しているので、3次元屈折率周期構造を形成することが可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る光学素子の製造装置を示す図
【図2】(a),(b)は、本発明の第1の実施の形態に係る光学素子の製造方法を示す図
【図3】(a)は、第1の実施の形態の製造方法によってパターニングされた薄膜を示す図、(b)は、薄膜を重ねたときの透視図
【図4】(a)〜(e)は、第1の実施の形態の照射,接合,転写工程を示す図
【図5】(a),(b)は、本発明の第2の実施の形態に係る光学素子の製造方法を示す図
【図6】(a)〜(e)は、本発明の第3の実施の形態に係る光学素子の製造方法を示す図
【図7】(a)〜(e)は、本発明の第4の実施の形態に係る光学素子の製造方法を示す図
【図8】(a)〜(c)は、本発明の第5の実施の形態に係る光学素子の製造方法を示す図
【図9】(a),(b)は、本発明の第6の実施の形態に係る光学素子の製造方法を示す図
【符号の説明】
1 製造装置
2 真空チャンバー
3 基板ホルダ
4A 第1のFAB源
4B 第2のFAB源
5A X軸テーブル
5B Y軸テーブル
5C Z軸テーブル
5D θテーブル
10,10A,10B 基板
11 離型層
13 ステージ
15 高速原子ビーム(FAB:Fast Atom Beam)
120,120a,120b 薄膜
121 六角形穴
122a〜122f 薄膜
123b〜123f 欠損領域
124 多結晶Si薄膜
124a リン注入領域(n型多結晶Si)
124b 六角形穴
125 レジスト
126 リン
127 シリコン窒化膜
p ピッチ

Claims (11)

  1. 複数の層からなり、光波長と同一あるいはそれ以下の周期で屈折率が変化する屈折率周期構造を有する光学素子の製造方法において、基板上に前記複数の層に対応した2次元パターンを有する複数の薄膜を形成する第1の工程と、前記基板上から前記複数の薄膜を剥離し、この剥離した前記複数の薄膜を順次接合して積層する第2の工程とを含むことを特徴とする光学素子の製造方法。
  2. 前記第2の工程は、常温接合法により前記複数の薄膜を接合する構成の請求項記載の光学素子の製造方法。
  3. 前記第1の工程は、各々同一の材料からなり、互いに異なる前記2次元パターンを有する前記複数の薄膜を形成する構成の請求項記載の光学素子の製造方法。
  4. 前記第1の工程は、各々2種類以上の材料、あるいは1種類以上の材料と空隙からなり、互いに同一の前記2次元パターンを有する前記複数の薄膜を形成する構成の請求項記載の光学素子の製造方法。
  5. 前記第1の工程は、各々2種類以上の材料、あるいは1種類以上の材料と空隙からなり、互いに異なる前記2次元パターンを有する前記複数の薄膜を形成する構成の請求項記載の光学素子の製造方法。
  6. 前記第1の工程は、主たる構成材料に部分的に変質処理を施して前記複数の薄膜を形成する構成の請求項記載の光学素子の製造方法。
  7. 前記変質処理は、前記主たる構成材料に対し不純物あるいはイオンの拡散あるいは注入を行う構成の請求項記載の光学素子の製造方法。
  8. 前記変質処理は、前記主たる構成材料の原子あるいは分子の結合状態を変化させる処理を行う構成の請求項記載の光学素子の製造方法。
  9. 前記第1の工程は、前記基板上に離型層を形成する工程と、前記離型層の上に薄膜を着膜する工程と、前記薄膜をパターニングして前記複数の薄膜を形成するパターニング工程とを含む構成の請求項記載の光学素子の製造方法。
  10. 前記パターニング工程は、フォトリソグラフィー法を用いる構成の請求項5記載の光学素子の製造方法。
  11. 前記パターニング工程は、電子ビーム直接描画法を用いる構成の請求項記載の光学素子の製造方法。
JP35656598A 1998-12-15 1998-12-15 光学素子の製造方法 Expired - Fee Related JP3721815B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35656598A JP3721815B2 (ja) 1998-12-15 1998-12-15 光学素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35656598A JP3721815B2 (ja) 1998-12-15 1998-12-15 光学素子の製造方法

Publications (2)

Publication Number Publication Date
JP2000180606A JP2000180606A (ja) 2000-06-30
JP3721815B2 true JP3721815B2 (ja) 2005-11-30

Family

ID=18449667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35656598A Expired - Fee Related JP3721815B2 (ja) 1998-12-15 1998-12-15 光学素子の製造方法

Country Status (1)

Country Link
JP (1) JP3721815B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580031B2 (en) 2009-04-08 2013-11-12 Canon Kabushiki Kaisha Method of producing three-dimensional photonic crystal and optical functional device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1417526B9 (fr) * 2001-04-10 2007-05-09 Vincent Lauer Ensemble modifiable de trous microscopiques
DE60235421D1 (de) * 2001-04-10 2010-04-01 Vincent Lauer Veränderbare Anordnung von mikroskopischen Löchern
JP4645309B2 (ja) * 2005-06-02 2011-03-09 富士ゼロックス株式会社 3次元フォトニック結晶の製造方法及び3次元フォトニック結晶製造用基板
JP5943960B2 (ja) * 2008-05-26 2016-07-05 キヤノン株式会社 偏光ビームスプリッタ、位相板およびバンドパスフィルター

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580031B2 (en) 2009-04-08 2013-11-12 Canon Kabushiki Kaisha Method of producing three-dimensional photonic crystal and optical functional device

Also Published As

Publication number Publication date
JP2000180606A (ja) 2000-06-30

Similar Documents

Publication Publication Date Title
TWI710016B (zh) 繞射光柵之製造
US6358854B1 (en) Method to fabricate layered material compositions
US6380551B2 (en) Optical function device with photonic band gap and/or filtering characteristics
US6392787B1 (en) Process for fabricating article comprising photonic band gap material
Zhou et al. Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes
CN102591136A (zh) Euv用防尘薄膜及防尘薄膜组件,以及该膜的制造方法
US6865005B2 (en) Three-dimensional photonic crystal
JP3721815B2 (ja) 光学素子の製造方法
US10665749B2 (en) Manufacturing method of quantum dot structure
US7674573B2 (en) Method for manufacturing layered periodic structures
WO2024104022A1 (zh) 具有包芯电光材料层的波导结构、制备方法及应用
US20100055620A1 (en) Nanostructure fabrication
JP2004077831A (ja) 偏光子および偏光子の製造方法
JP3829150B2 (ja) フォトニック結晶光共振器
CN112612078B (zh) 一种基于goi或soi上的高效耦合波导及其制备方法
JP2001318247A (ja) 3次元フォトニック結晶体及びその製造方法
JP4341296B2 (ja) フォトニック結晶3次元構造体の製造方法
EP2071371B1 (en) Three-dimensional photonic crystal and manufacturing method thereof
JP2006058506A (ja) 積層構造体及びその製造方法、光学素子、並びに光学製品
JP2005266005A (ja) フォトニック結晶を備えた光回路およびその製造方法
JP4186073B2 (ja) 3次元フォトニック結晶構造の製造方法
JP2023020811A (ja) フォトニック結晶素子用複合基板
JP2000314817A (ja) 3次元フォトニック結晶の作製装置
JPH08101320A (ja) 微小構造体およびその作製方法
KR20240039774A (ko) 이차원 반도체 양자점 어레이의 제조방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees