JP3721208B2 - Formation method of phosphosilicate glass film by vapor deposition. - Google Patents

Formation method of phosphosilicate glass film by vapor deposition. Download PDF

Info

Publication number
JP3721208B2
JP3721208B2 JP27400894A JP27400894A JP3721208B2 JP 3721208 B2 JP3721208 B2 JP 3721208B2 JP 27400894 A JP27400894 A JP 27400894A JP 27400894 A JP27400894 A JP 27400894A JP 3721208 B2 JP3721208 B2 JP 3721208B2
Authority
JP
Japan
Prior art keywords
film
vapor deposition
glass film
phosphosilicate glass
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27400894A
Other languages
Japanese (ja)
Other versions
JPH08133754A (en
Inventor
和久 小野沢
篤也 芳仲
剛 渡辺
忠雄 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP27400894A priority Critical patent/JP3721208B2/en
Publication of JPH08133754A publication Critical patent/JPH08133754A/en
Application granted granted Critical
Publication of JP3721208B2 publication Critical patent/JP3721208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Description

【0001】
【産業上の利用分野】
本発明は、半導体、フラットディスプレイ、光磁気メモリ、光素子及びセンサー等のデバイスの絶縁保護膜などに利用されるリン珪酸ガラス膜の気相成長による形成法に関する。
【0002】
【従来の技術】
SiO2膜にリンをド−プした形のリン珪酸ガラス(以下、PSGと略称する)膜は、LSI製造プロセスに不可欠な膜であり、表面安定化膜、層間絶縁膜、Al配線保護膜などに用いられる。PSG膜中のPの効果としてはアルカリゲッタ−、膜の耐クラック性付与、ガラス軟化点の低減などがあげられる。
【0003】
PSG膜の形成法としては化学気相成長(CVD)法が用いられ、原料としてSiH4、PH3及びO2が使用され、下記のような反応によるものが一般的なものである:
SiH4+PH3+O2→SiO2+P25+H2
しかしながら、半導体デバイスの微細化、高集積化が進むにつれて配線のアスペクト比が大きくなり、絶縁膜層のステップカバレッジ(段差被覆性)が悪くなって配線間にボイドが生ずる結果となった。
【0004】
こうした問題点を受けて、現在ではオゾンを酸化剤に用い、Siソ−スとしてTEOS[テトラエトキシシラン:Si(OC25)4]及びPソ−スとしてトリメチルホスフェイト[PO(OCH33]あるいはトリメチルホスファイト[P(OCH3)3]が多く採用されるに至っている。
この原料系で形成されたPSG膜はステップカバレッジが良好でボイドが生じないことに加え、表面の平坦性が良好であること、ピンホ−ルが無いこと、パ−ティクルの付着が無いことなどの特長を有し、さらに当該原料はSiH4、PH3などの水素化物に比べて発火性がないため安全で取り扱い易いといった利点もあり、こうした点が現在実用化されている理由となっている。
【0005】
【発明が解決しようとする課題】
しかし、半導体デバイスは現在もさらに高集積化、高密度化が進んでいる状況にあり、TEOS、トリメチルホスフェイト等を用いる形成法でもステップカバレッジに限界が生じつつある。そのため、さらに効果的なPSG膜の形成法が求められている状況にある。
また、ド−プされるリンは、P23、P25などの形でSiO2膜中に3〜5重量%程度含まれているのが一般的であり、リンを高濃度化しようとすると、P23やP25がSiO2膜から分離する結果となり、一定濃度以上にド−プすることが不可能となっている。
【0006】
PSG膜を層間絶縁膜のリフロ−平坦化に応用する場合には、8重量%以上のリン濃度を必要とし、そのためにはSi−O−Pの安定した結合状態を形成しなければならず、この点からもPSG膜の形成法の改良が求められている。
【0007】
従って、本発明の目的は、上記の問題点を解決するべく、分子中にすでにSi−O−Pの結合を含む化合物とオゾンを原料とする気相成長によるPSG膜の形成法を提供することにある。
【0008】
【課題を解決するための手段】
即ち、本発明の気相成長によるPSG膜の形成法は、原料として1分子中にSi−O−P結合を有する化合物及びオゾンを使用することを特徴とする。
【0009】
なお、1分子中にSi−O−P結合を有する化合物としては、下記の一般式
【化2】

Figure 0003721208
(式中、R1〜R5は直鎖または分岐鎖を有するアルキル基を表し、それぞれ同一でも異なっていてもよい)
で示される化合物が好ましい。
【0010】
また、上記PSG膜の形成法に使用される気相成長法としては、化学気相成長(CVD)法が好ましい。
【0011】
本発明方法は絶縁保護膜の形成法として好適なものであり、例えば 半導体、フラットディスプレイ、光磁気メモリ、光素子及びセンサー等のデバイスの絶縁保護膜としてPSG膜を使用する時に使用することができる。
【0012】
本発明の気相成長によるPSG膜の形成法は、Si−O−P結合を有する化合物の蒸気およびオゾンを常圧にて混合し、加熱した基板にPSG膜を気相成長させるものである。
【0013】
本発明のPSG膜の形成法に原料として用いられるSi−O−P結合を有する化合物とは、1分子中にSi−O−P結合を1つ以上有する化合物であれば特に限定されない。これに該当する化合物は、例えばアルキル置換シリルホスフェート、アルキル置換シリルホスファイトである。
【0014】
前記化合物のうち好ましいものは、上記一般式(1)で示される化合物である。一般式(1)において、R1〜R5は直鎖または分岐鎖を有するアルキル基であり、それぞれ同一でも異なっても良い。かかるアルキル基としては、メチル、エチル、プロピル、2−プロピル、ブチル、2−ブチル、tert−ブチル、ペンチル、2−ペンチル、tert−ペンチル、ヘキシル、ヘプチル、オクチル等が挙げられる。中でも好ましいアルキル基は炭素数1〜3のアルキル基で、メチル、エチル、プロピル、2−プロピルである。
【0015】
上記一般式(1)で示される化合物のうち好ましいものとしては、ジメチル(トリメチルシリル)ホスファイト、ジメチル(トリエチルシリル)ホスファイト、ジエチル(トリメチルシリル)ホスファイト、ジイソプロピル(トリメチルシリル)ホスファイト等が挙げられる。
【0016】
これらの化合物は、一定の蒸気圧を確保するために一定温度に保温し、N2、Arなどの不活性ガスをキャリアとして吹き込むことにより、該化合物の蒸気含有ガスとして反応チャンバに導入される。このときの基板温度は250〜350℃とするのが適当である。また、オゾンはO2をオゾナイザに通じ、O2に対して1.5〜7%、好ましくは3〜6%の濃度になるように設定するのが好ましい。なお、PSG膜の膜厚は膜成長時間の増減により任意に制御することができる。
【0017】
本発明方法により得られるPSG膜は、膜中に安定した結合状態でリンが存在し、また、Si/P濃度比が使用する原料毎に一定であるため、従来品に比べて耐湿性、絶縁耐圧が良好であり、信頼性に優れたものである。
【0018】
【実施例】
次に実施例を示し、本発明を具体的に説明する。
実施例1
第1図は本発明に用いるCVD装置の模式的構造図である。図において1a〜1cは流量計、2a〜2eはバルブ、3はオゾナイザ−、4は原料の気化室、5はチャンバ、6はディスパ−ジョンヘッド、7はヒ−タ、8は基板のSiウエハ、9は排気口である。
まず、原料のジメチル(トリメチルシリル)ホスファイト[Me3SiOP(OCH32]を気化室(4)に充填し、45℃に保温して蒸気圧を一定にし、また、チャンバ(5)内の基板(8)をヒ−タ(7)で300℃に加熱した。次に、キャリアガスのN2を気化室に3リットル/分で吹き込み、チャンバ内に原料を含むガスを導入した。同時に希釈用ガスとしてN2を18リットル/分で導入し、さらにO2ガスをオゾナイザ(3)に通し、オゾン濃度を5%にして導入することによりSiウエハ基板上に厚さ1.5μmのPSG膜を成長させた。
このようにして得られたPSG膜中のP濃度をICP法により測定したところ、15重量%の高濃度であることが判明した。
また、幅0.25μm、高さ1.2μmのトレンチに対するステップカバレッジ特性は、第2図aに示すようにボイドの無い良好なフロ−形状が得られた。
【0019】
実施例2
原料としてジエチル(トリメチルシリル)ホスファイトを用いる他は実施例1と同様の方法にて、厚さ1.4μmのPSG膜を得た。得られたPSG膜のP濃度をICP法により測定したところ、13.5重量%であった。
【0020】
実施例3
原料としてジエチル(モノメチルジプロピルシリル)ホスファイトを用いる他は実施例1と同様の方法にて、厚さ1.5μmのPSG膜を得た。得られたPSG膜のP濃度をICP法により測定したところ13重量%であった。
【0021】
比較例
原料として、SiソースにTEOS及びPソースにトリメチルホスフェートを用い、気化室をそれぞれ65℃、60℃に保温し、チャンバ(5)内の基板(8)をヒ−タ(7)で400℃に加熱した。次にキャリアガスのN2を気化室にそれぞれ3リットル/分、1.5リットル/分で吹き込み、チャンバ内に原料を含むガスを導入した。同時に希釈用ガスとしてN2を18リットル/分で導入し、さらにO2ガスをオゾナイザ(3)に通し、オゾン濃度を5%にして導入することによりSiウエハ基板上にPSG膜を成長させた。
このようにして得られたPSG膜中のP濃度をICP法測定したところ、4重量%の濃度であった。
また、幅0.25μm、高さ1.2μmのトレンチに対するステップカバレッジ特性は、第2図bに示すようにトレンチ内部にボイドが生ずる結果となった。
【0022】
【発明の効果】
本発明の効果は、ステップカバレッジ特性が良好で、TEOS系のプロセスより約100℃低温でPSG膜が得られる方法を提供することである。また、単一原料からPSG膜を得ることができ、複数の原料の場合のようにそれぞれの流量比調節の必要がなく、膜製造工程管理が容易な絶縁保護膜製造方法を提供することできる。更に、本発明の方法により、高濃度のPがド−プでき、LSI製造における層間絶縁膜への応用が可能となった。
従って、本発明の気相成長によるPSG膜の形成法により、信頼性の高い半導体装置の作成が可能となった。
【図面の簡単な説明】
【図1】本発明の実施例に用いるCVD装置の模式的構造図である。
【図2】実施例と従来法のステップカバレッジの比較図である。
【符号の説明】
1a〜1c:流量計
2a〜2e:バルブ
3 :オゾナイザ
4 :気化室
5 :チャンバ
6 :ディスパ−ジョンヘッド
7 :ヒ−タ
8 :基板
9 :排気口[0001]
[Industrial application fields]
The present invention relates to a method of forming a phosphosilicate glass film by vapor deposition used for an insulating protective film of a device such as a semiconductor, a flat display, a magneto-optical memory, an optical element, and a sensor.
[0002]
[Prior art]
A phosphosilicate glass (hereinafter abbreviated as PSG) film in which phosphorus is doped on a SiO 2 film is an indispensable film for an LSI manufacturing process, such as a surface stabilizing film, an interlayer insulating film, an Al wiring protective film, etc. Used for. Examples of the effect of P in the PSG film include an alkali getter, imparting crack resistance to the film, and reducing the glass softening point.
[0003]
A chemical vapor deposition (CVD) method is used as a method for forming the PSG film, SiH 4 , PH 3 and O 2 are used as raw materials, and the following reaction is generally used:
SiH 4 + PH 3 + O 2 → SiO 2 + P 2 O 5 + H 2 O
However, as the semiconductor device is miniaturized and highly integrated, the aspect ratio of the wiring increases, and the step coverage (step coverage) of the insulating film layer deteriorates, resulting in voids between the wirings.
[0004]
In response to these problems, ozone is now used as an oxidizing agent, TEOS [tetraethoxysilane: Si (OC 2 H 5 ) 4 ] as the Si source, and trimethyl phosphate [PO (OCH 3 ) as the P source. 3 ] or trimethyl phosphite [P (OCH 3 ) 3 ] has been widely adopted.
The PSG film formed with this raw material system has good step coverage and no voids, and also has good surface flatness, no pinholes, and no adhesion of particles. In addition, the raw material is advantageous in that it is safe and easy to handle because it is not ignitable as compared with hydrides such as SiH 4 and PH 3 .
[0005]
[Problems to be solved by the invention]
However, semiconductor devices are still being increasingly integrated and densified, and the step coverage is becoming limited even in the formation method using TEOS, trimethyl phosphate, or the like. Therefore, there is a need for a more effective method for forming a PSG film.
The doped phosphorus is generally contained in the SiO 2 film in the form of P 2 O 3 , P 2 O 5 or the like in an amount of about 3 to 5% by weight. Attempts to do so result in the separation of P 2 O 3 and P 2 O 5 from the SiO 2 film, making it impossible to dop above a certain concentration.
[0006]
When the PSG film is applied to the reflow planarization of the interlayer insulating film, a phosphorus concentration of 8% by weight or more is required. For this purpose, a stable bonded state of Si—O—P must be formed, From this point of view, improvement of the method for forming the PSG film is required.
[0007]
Accordingly, an object of the present invention is to provide a method for forming a PSG film by vapor phase growth using a compound containing an Si—O—P bond in the molecule and ozone as raw materials in order to solve the above-mentioned problems. It is in.
[0008]
[Means for Solving the Problems]
That is, the method for forming a PSG film by vapor deposition according to the present invention is characterized in that a compound having a Si—O—P bond in one molecule and ozone are used as raw materials.
[0009]
In addition, as a compound having a Si—O—P bond in one molecule, the following general formula:
Figure 0003721208
(In the formula, R 1 to R 5 each represents a linear or branched alkyl group, and may be the same or different from each other)
The compound shown by these is preferable.
[0010]
Further, as the vapor phase growth method used for forming the PSG film, a chemical vapor deposition (CVD) method is preferable.
[0011]
The method of the present invention is suitable as a method for forming an insulating protective film, and can be used, for example, when a PSG film is used as an insulating protective film for devices such as semiconductors, flat displays, magneto-optical memories, optical elements and sensors. .
[0012]
In the method of forming a PSG film by vapor phase growth according to the present invention, vapor of a compound having a Si—O—P bond and ozone are mixed at normal pressure, and the PSG film is vapor-phase grown on a heated substrate.
[0013]
The compound having a Si—O—P bond used as a raw material in the method for forming a PSG film of the present invention is not particularly limited as long as it is a compound having one or more Si—O—P bonds in one molecule. Examples of such compounds include alkyl-substituted silyl phosphates and alkyl-substituted silyl phosphites.
[0014]
Among the compounds, a compound represented by the general formula (1) is preferable. In the general formula (1), R 1 to R 5 are linear or branched alkyl groups, which may be the same or different. Such alkyl groups include methyl, ethyl, propyl, 2-propyl, butyl, 2-butyl, tert-butyl, pentyl, 2-pentyl, tert-pentyl, hexyl, heptyl, octyl and the like. Among them, preferred alkyl groups are alkyl groups having 1 to 3 carbon atoms, such as methyl, ethyl, propyl and 2-propyl.
[0015]
Preferable examples of the compound represented by the general formula (1) include dimethyl (trimethylsilyl) phosphite, dimethyl (triethylsilyl) phosphite, diethyl (trimethylsilyl) phosphite, diisopropyl (trimethylsilyl) phosphite and the like.
[0016]
These compounds are kept at a constant temperature in order to ensure a constant vapor pressure, and introduced into the reaction chamber as a vapor-containing gas of the compound by blowing an inert gas such as N 2 or Ar as a carrier. The substrate temperature at this time is suitably 250 to 350 ° C. Further, it is preferable that ozone is set so that O 2 is passed through an ozonizer and the concentration is 1.5 to 7%, preferably 3 to 6% with respect to O 2 . The thickness of the PSG film can be arbitrarily controlled by increasing or decreasing the film growth time.
[0017]
The PSG film obtained by the method of the present invention contains phosphorus in a stable bonding state in the film, and the Si / P concentration ratio is constant for each raw material used. Good withstand voltage and excellent reliability.
[0018]
【Example】
Next, an Example is shown and this invention is demonstrated concretely.
Example 1
FIG. 1 is a schematic structural diagram of a CVD apparatus used in the present invention. In the figure, 1a to 1c are flowmeters, 2a to 2e are valves, 3 is an ozonizer, 4 is a raw material vaporizing chamber, 5 is a chamber, 6 is a dispersion head, 7 is a heater, and 8 is a substrate Si wafer. , 9 are exhaust ports.
First, the raw material dimethyl (trimethylsilyl) phosphite [Me 3 SiOP (OCH 3 ) 2 ] is filled in the vaporization chamber (4), kept at 45 ° C. to keep the vapor pressure constant, and in the chamber (5) The substrate (8) was heated to 300 ° C. with a heater (7). Next, N 2 as a carrier gas was blown into the vaporization chamber at 3 liters / minute, and a gas containing a raw material was introduced into the chamber. At the same time, N 2 was introduced as a dilution gas at a rate of 18 liters / minute, and further O 2 gas was passed through an ozonizer (3) and introduced with an ozone concentration of 5%, so that a thickness of 1.5 μm was formed on the Si wafer substrate. A PSG film was grown.
When the P concentration in the PSG film thus obtained was measured by the ICP method, it was found to be a high concentration of 15% by weight.
Further, as shown in FIG. 2a, the step coverage characteristic for the trench having a width of 0.25 μm and a height of 1.2 μm has a good flow shape without voids.
[0019]
Example 2
A PSG film having a thickness of 1.4 μm was obtained in the same manner as in Example 1 except that diethyl (trimethylsilyl) phosphite was used as a raw material. When the P concentration of the obtained PSG film was measured by the ICP method, it was 13.5% by weight.
[0020]
Example 3
A PSG film having a thickness of 1.5 μm was obtained in the same manner as in Example 1 except that diethyl (monomethyldipropylsilyl) phosphite was used as a raw material. When the P concentration of the obtained PSG film was measured by the ICP method, it was 13% by weight.
[0021]
As comparative materials, TEOS was used as the Si source and trimethyl phosphate was used as the P source, the vaporization chambers were kept at 65 ° C. and 60 ° C., respectively, and the substrate (8) in the chamber (5) was heated to 400 by the heater (7). Heated to ° C. Next, N 2 as a carrier gas was blown into the vaporization chamber at 3 liters / minute and 1.5 liters / minute, respectively, and a gas containing raw materials was introduced into the chamber. At the same time, N 2 was introduced as a dilution gas at a rate of 18 liters / minute, and O 2 gas was passed through an ozonizer (3) and introduced at an ozone concentration of 5% to grow a PSG film on the Si wafer substrate. .
When the P concentration in the PSG film thus obtained was measured by the ICP method, it was 4% by weight.
Further, the step coverage characteristic for a trench having a width of 0.25 .mu.m and a height of 1.2 .mu.m resulted in the formation of voids inside the trench as shown in FIG.
[0022]
【The invention's effect】
The effect of the present invention is to provide a method in which a PSG film is obtained at a temperature lower by about 100 ° C. than a TEOS-based process with good step coverage characteristics. Further, a PSG film can be obtained from a single raw material, and there is no need to adjust the flow rate ratio as in the case of a plurality of raw materials, and an insulating protective film manufacturing method that can easily manage the film manufacturing process can be provided. Furthermore, by the method of the present invention, a high concentration of P can be doped, and application to an interlayer insulating film in LSI manufacturing becomes possible.
Therefore, a highly reliable semiconductor device can be formed by the method of forming a PSG film by vapor deposition according to the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of a CVD apparatus used in an embodiment of the present invention.
FIG. 2 is a comparison diagram of step coverage between an embodiment and a conventional method.
[Explanation of symbols]
1a-1c: Flowmeters 2a-2e: Valve 3: Ozonizer 4: Vaporization chamber 5: Chamber 6: Dispersion head 7: Heater 8: Substrate 9: Exhaust port

Claims (4)

気相成長法によるリン珪酸ガラス膜の形成法において、原料として1分子中にSi−O−P結合を有する化合物及びオゾンを使用することを特徴とする気相成長によるリン珪酸ガラス膜の形成法。In the method for forming the phosphosilicate glass film by vapor deposition, the formation of phosphorus-silicate glass film by vapor deposition, characterized by using the compounds and ozone with a Si-O-P bonds in one molecule as a starting material Law. 1分子中にSi−O−P結合を有する化合物が、下記の一般式
Figure 0003721208
(式中、R〜Rは直鎖または分岐鎖を有するアルキル基を表し、それぞれ同一でも異なっていてもよい)
で示される請求項1記載の気相成長によるリン珪酸ガラス膜の形成法。
A compound having a Si—O—P bond in one molecule is represented by the following general formula:
Figure 0003721208
(Wherein R 1 to R 5 represent a linear or branched alkyl group, and may be the same or different from each other)
The method for forming a phosphosilicate glass film by vapor phase growth according to claim 1, which is represented by the following:
気相成長が化学気相成長(CVD)法である請求項1または2記載の気相成長によるリン珪酸ガラス膜の形成法。  The method for forming a phosphosilicate glass film by vapor deposition according to claim 1 or 2, wherein the vapor deposition is a chemical vapor deposition (CVD) method. リン珪酸ガラス膜が絶縁保護膜である請求項1ないし3のいずれか1項記載の気相成長によるリン珪酸ガラス膜の形成法。  The method of forming a phosphosilicate glass film by vapor phase growth according to any one of claims 1 to 3, wherein the phosphosilicate glass film is an insulating protective film.
JP27400894A 1994-11-08 1994-11-08 Formation method of phosphosilicate glass film by vapor deposition. Expired - Fee Related JP3721208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27400894A JP3721208B2 (en) 1994-11-08 1994-11-08 Formation method of phosphosilicate glass film by vapor deposition.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27400894A JP3721208B2 (en) 1994-11-08 1994-11-08 Formation method of phosphosilicate glass film by vapor deposition.

Publications (2)

Publication Number Publication Date
JPH08133754A JPH08133754A (en) 1996-05-28
JP3721208B2 true JP3721208B2 (en) 2005-11-30

Family

ID=17535673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27400894A Expired - Fee Related JP3721208B2 (en) 1994-11-08 1994-11-08 Formation method of phosphosilicate glass film by vapor deposition.

Country Status (1)

Country Link
JP (1) JP3721208B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251554B2 (en) * 1998-12-04 2002-01-28 キヤノン販売株式会社 Film forming method and semiconductor device manufacturing method
JP2002274871A (en) * 2001-03-15 2002-09-25 Asahi Denka Kogyo Kk Method for producing silicate glass layer for optical wave guide and material for cvd used in the same
JP5003503B2 (en) * 2008-01-17 2012-08-15 三菱電機株式会社 Method for producing quartz glass and method for producing optical device

Also Published As

Publication number Publication date
JPH08133754A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US6727190B2 (en) Method of forming fluorine doped boron-phosphorous silicate glass (F-BPSG) insulating materials
EP2110459B1 (en) Precursors for CVD silicon carbo-nitride films
KR101328813B1 (en) Process for producing silicon oxide films from organoaminosilane precursors
US5028566A (en) Method of forming silicon dioxide glass films
US4708884A (en) Low temperature deposition of silicon oxides for device fabrication
US5250473A (en) Method of providing silicon dioxide layer on a substrate by means of chemical reaction from the vapor phase at a low pressure (LPCVD)
JPS62238628A (en) Method of forming layer containing silicon and oxygen
US5324539A (en) Method for forming CVD thin glass films
JPH06132276A (en) Method for forming semiconductor film
JP3721208B2 (en) Formation method of phosphosilicate glass film by vapor deposition.
JP3195299B2 (en) Low temperature reflow dielectric fluorinated BPSG
KR100339820B1 (en) Film formation method and manufacturing method semiconductor device
EP0286097B1 (en) Method of forming silicon dioxide glass films
JP4050804B2 (en) Method of forming phosphosilicate glass film
KR20050018641A (en) Low temperature dielectric deposition using aminosilane and ozone
JPH0215629A (en) Chemical vapor growth
JPH09293716A (en) Forming method of insulating film containing fluorine
TW202334498A (en) Precursors and related methods
JPH0974055A (en) Composite semiconductor substrate
JPH0472623A (en) Method and device for manufacturing semiconductor device
JPS61270836A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees