JPH0215629A - Chemical vapor growth - Google Patents

Chemical vapor growth

Info

Publication number
JPH0215629A
JPH0215629A JP16570388A JP16570388A JPH0215629A JP H0215629 A JPH0215629 A JP H0215629A JP 16570388 A JP16570388 A JP 16570388A JP 16570388 A JP16570388 A JP 16570388A JP H0215629 A JPH0215629 A JP H0215629A
Authority
JP
Japan
Prior art keywords
impurity
film
insulating film
raw material
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16570388A
Other languages
Japanese (ja)
Inventor
Yasuro Ikeda
康郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16570388A priority Critical patent/JPH0215629A/en
Publication of JPH0215629A publication Critical patent/JPH0215629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To contrive the improvement of insulation characteristics and a humidity resistance by a method wherein an organic compound in which elements of Si, Ta, Zr, Hf and so on being contained in the main component of an insulating film and an element which is introduced as an impurity are directly bonded to each other or are bonded to each other through one piece of an element is used as an impurity raw material. CONSTITUTION:An organic compound in which elements of Si and so on being contained in the main component of an insulating film and an impurity are directly bonded to each other or are bonded to each other through one piece of other element is used as an impurity raw material. Therefore, an incomplete bonding is hardly generated theoretically among the bondings of the elements in the main component of the insulating film to the impurity element. Moreover, the impurity raw material itself contributes to a film deposition rate or a film formation mechanism. As a result of these two actions, the amount of the impurity, which is taken in the film, is increased and as the generation of a phenomenon that the impurity is deposited in the oxide film is suppressed, insulation characteristics and a humidity resistance are improved. That is, in an impurity raw material of PO(OSi(CH3)3)3, B(OSi(CH3)3)3 and the like, which are used as an organic compound, as Si forming SiO2, which is the main component of a BPSG film, and P or B, which is an impurity element, are bonded to each other in advance through one piece of an oxygen atom, the impurity element and its oxide hardly liberate from each other at the time of formation of a film and the amount of the impurity, which is taken in the film, is also increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学気相成長法に関し、特にS iOt eT
a、O,、ZrO2,HfO2等の絶縁材料を主成分と
し、これに不純物を含有せしめた絶縁膜の化学気相成長
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to chemical vapor deposition, and in particular to SiOt eT
The present invention relates to a chemical vapor deposition method for forming an insulating film mainly composed of an insulating material such as a, O, ZrO2, HfO2, etc., and containing impurities therein.

〔従来の技術〕[Conventional technology]

従来、化学気相成長法によって、リンガラス(PSG)
、ボロンガラス(BsG)、ヒ素ガラス(AGS)、ボ
07リンガラス(BPsG)等の不純物を含有した5i
02等の絶縁膜を形成するためには、不純物原料として
は、第1表に示すように各不純物の水素化物、塩化物、
アルコキサイド等の有機化合物を雰囲気中に導入するこ
とが必要であった。
Conventionally, phosphorus glass (PSG) was produced by chemical vapor deposition.
, 5i containing impurities such as boron glass (BsG), arsenic glass (AGS), and boron glass (BPsG).
In order to form an insulating film such as 02, impurity raw materials include hydrides, chlorides, and chlorides of each impurity as shown in Table 1.
It was necessary to introduce organic compounds such as alkoxides into the atmosphere.

第1表 上−」」6ムニニ ・PH3 、PO(13,PCρ3 ・P2O5,P2O3 ・P O(OCH3) 3. P O(OC2H5) 
3・P  (OCH3) 3.P (OC2H5)3・
P O(CH3) 3.  P  (CI(3) 32
、 ボロンソース ・B 2 Hs ・BCρ。
Top of Table 1 - "6 Munini・PH3, PO(13,PCρ3・P2O5,P2O3・PO(OCH3) 3.PO(OC2H5)
3・P (OCH3) 3. P (OC2H5)3・
P O (CH3) 3. P (CI(3) 32
, boron source・B 2 Hs・BCρ.

・B2O3 ・B  (OCH3)3.B  (OC2H5)3・B
  (CH3)  3.B  (CzHs)s盈−11
ムニ玉 ・A s Hs ・A s  (OCHs)3 ・A S  (CH3)  s 〔発明が解決しようとする課題〕 上述した従来の絶縁膜の気相成長法では、不純物を導入
する原料として水素化合物、塩化物、アルコキサイド等
の有機化合物を用いているが、当該原料中には絶縁膜の
主成分を構成する5i−0結合が含まれていないために
、絶縁膜中の主成分と不純物との結合が完全でない場合
が多く、気相成長装置の反応室に供給した不純物原料の
量に比べて膜中に取り込まれる不純物量が非常に低かっ
たり、絶縁特性や耐湿性の不良が生じたり、不純物の酸
化物などが析出したりするといった欠点があった。
・B2O3 ・B (OCH3)3. B (OC2H5)3・B
(CH3) 3. B (CzHs)s盈-11
Munitama・A s Hs ・A s (OCHs) 3 ・A s (CH3) s [Problems to be solved by the invention] In the conventional vapor phase growth method for insulating films described above, a hydrogen compound is used as a raw material for introducing impurities. , chlorides, alkoxides, and other organic compounds are used, but since these raw materials do not contain the 5i-0 bond that constitutes the main component of the insulating film, there is a possibility that the main components in the insulating film may interact with impurities. In many cases, the bonding is not perfect, and the amount of impurities incorporated into the film is very low compared to the amount of impurity raw material supplied to the reaction chamber of the vapor phase growth device, or the insulation properties or moisture resistance are poor, or impurities However, there were disadvantages such as precipitation of oxides and the like.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の絶縁膜気相成長法は、絶縁膜の主成分に含まれ
るSi、Ta、Zr、Hf等の元素と、前記不純物とし
て導入する元素とが、直接或は1個の元素を介して結合
している有機化合物を不純物原料として用いている。
In the insulating film vapor phase growth method of the present invention, elements such as Si, Ta, Zr, Hf, etc. contained in the main components of the insulating film and the element introduced as the impurity are directly or through one element. The bound organic compounds are used as impurity raw materials.

不純物原料のうちのリンの原料として、P O(OS 
i  Rjm)。
Among the impurity raw materials, P O (OS
i Rjm).

p (o  s 1Rak)。p (o s 1 Rak).

PO(Si−R□)。PO(Si-R□).

P(Si−R□) の分子式を持つ化合物を用いることができる。P(Si-R□) A compound having the molecular formula can be used.

但し、Rjkは任意の結合基を示し、j、には1.2,
3の如き整数を示す。また(Si−R□)。
However, Rjk represents any bonding group, and j is 1.2,
Indicates an integer such as 3. Also (Si-R□).

(0−81−Rlk)は、(Si  Ru・R1□・R
13)(Si−R21・R22・R23) (S 1−
Rs、・R3□・R33)l(OS i  R++・R
12・Rus) (OS 1−R21・R22・R23
) (OS i  Rs+・’R32・R33)などを
示し、R□は任意の基を示す。
(0-81-Rlk) is (Si Ru・R1□・R
13) (Si-R21/R22/R23) (S 1-
Rs,・R3□・R33)l(OS i R++・R
12・Rus) (OS 1-R21・R22・R23
) (OS i Rs+・'R32・R33), etc., and R□ represents an arbitrary group.

また、不純物原料のうちホウ素の原料として、B  (
OS i  Rlk)。
In addition, among the impurity raw materials, B (
OS i Rlk).

B  (Si  Rn)   (j、に=1.2.3)
の分子式を持つ化合物を用いることができる。
B (Si Rn) (j, = 1.2.3)
A compound having the molecular formula can be used.

また、不純物原料のうちヒ素の原料として、As (O
Si  Rlk)。
In addition, among the impurity raw materials, As (O
Si Rlk).

A S <s 1R1h) <jr k=11213)
の分子式を持つ化合物を用いることができる。
A S <s 1R1h) <jr k=11213)
A compound having the molecular formula can be used.

また、不純物原料のうちアンチモンの原料として、 S b  (OS i   Rlk)。Also, among the impurity raw materials, as a raw material for antimony, S b (OS i Rlk).

S b  (S i  Rjm)   (j 、に= 
1 、2.3)の分子式を持つ化合物を用いることがで
きる。
S b (S i Rjm) (j, to =
A compound having a molecular formula of 1, 2.3) can be used.

本発明によれば、不純物原料として、絶縁膜の主成分に
含まれるSi等の元素と不純物とが、直接或は1個の他
の元素を介して結合している有機化合物を用いているた
め、絶縁膜の主成分の元素と不純物元素との結合で不完
全なものは、原理的に発生しにくい。また、不純物原料
そのものが膜堆積速度あるいは膜形成メカニズムに寄与
する。
According to the present invention, an organic compound in which an element such as Si contained in the main component of the insulating film and the impurity are bonded directly or through one other element is used as the impurity raw material. In principle, incomplete bonding between the main component element of the insulating film and the impurity element is unlikely to occur. Further, the impurity raw material itself contributes to the film deposition rate or film formation mechanism.

この二つの作用の結果、膜中に取り込まれる不純物量が
増加し、また、不純物が酸化膜中で析出する現象が起こ
りにくくなるため、絶縁特性や耐湿性が改善されるとい
う特長を有する。
As a result of these two effects, the amount of impurities incorporated into the film increases, and the phenomenon in which impurities are precipitated in the oxide film becomes less likely to occur, resulting in improved insulation properties and moisture resistance.

〔実施例〕〔Example〕

次に、本発明について、図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例に用いた装置の概略構造を
示す縦断面図である。本実施例は、シリコンソースとし
て、常温で液体である有機化合物を用い、酸化剤として
、オゾン含有酸素を用いた常圧気相成長法によりポロン
・リンガラス(以下BPSGと呼ぶ)膜を形成する例で
ある。シリコンソースとしてのテトラエポキシシラン(
Si(OC2H5)4)(以下TEO8と呼ぶ)101
は恒温容器117内で約70℃に保持されており、バブ
リング用N2106がTE01101内に導入されて気
泡を発生し、TEOSガスが蒸発する。同様にして、リ
ンソースとしてのPO(O3i(CH3) り s 1
02からリンソースガスが蒸発し、ポロンソースのB 
(OS i (CR3) 3) 3103からポロンソ
ースガスが蒸発する。以上3種類の不純物と主成分のT
EOSガスは恒温配管108で混合され、さらにN2配
管109からの希釈用N2ガスが混合され、予熱器11
5を通して分散型ヘッド112に導かれる。酸素ガス0
2配管114からオゾン発生器113に導入され、オゾ
ン含有酸素となった後、分散型ヘッド112に導かれる
FIG. 1 is a vertical sectional view showing the schematic structure of an apparatus used in an embodiment of the present invention. This example is an example in which a poron-phosphorus glass (hereinafter referred to as BPSG) film is formed by normal pressure vapor phase growth using an organic compound that is liquid at room temperature as a silicon source and ozone-containing oxygen as an oxidizing agent. It is. Tetraepoxysilane as a silicon source (
Si(OC2H5)4) (hereinafter referred to as TEO8) 101
is maintained at about 70° C. in a thermostatic container 117, and bubbling N2106 is introduced into TE01101 to generate bubbles and TEOS gas evaporates. Similarly, PO as a phosphorus source (O3i(CH3) s 1
The phosphorus source gas evaporates from 02, and the B of the poron source
(OS i (CR3) 3) Poron source gas evaporates from 3103. The above three types of impurities and the main component T
The EOS gas is mixed in the constant temperature pipe 108, and further mixed with N2 gas for dilution from the N2 pipe 109, and the EOS gas is mixed in the constant temperature pipe 108.
5 to the distributed head 112. Oxygen gas 0
After being introduced into the ozone generator 113 through the second pipe 114 and becoming ozone-containing oxygen, it is led to the dispersion type head 112.

基板110は、ヒーター移動機構116上に設置された
ヒーター111上に置かれ、分散型ヘッド112の下を
移動するようになっている。前述の原料ガスとオゾン含
有酸素ガスは、表面温度で200〜500℃に保たれた
基板の近傍で混合され、基板上にBPSG膜を生成する
The substrate 110 is placed on a heater 111 installed on a heater moving mechanism 116 and is adapted to move under the distributed head 112. The aforementioned raw material gas and ozone-containing oxygen gas are mixed near the substrate whose surface temperature is maintained at 200 to 500° C. to form a BPSG film on the substrate.

本装置に用いられるPO(O8i (CHs) s) 
sやB (O8i (CH3) り 3などの不純物原
料は、BPSG膜の主成分であるS i O2を形成す
るSiと不純物元素であるP、Bが1個の酸素原子を介
して予め結合しているため、膜形成時に不純物元素やそ
の酸化物が遊離することが殆ど無く、膜中に取り込まれ
る不純物量も多い。これらの効果の結果、形成されたB
PSG膜は緻密度が高く、第4図の様に、従来技術に比
べて絶縁特性は著しく向上した。また、耐湿性も改善さ
れ、従来技術では成膜後10日間程度で生じていた、不
純物の酸化物の析出やクラック発生が無かった。
PO (O8i (CHs) s) used in this device
Impurity raw materials such as s and B (O8i (CH3) 3) are made by bonding Si, which forms SiO2, which is the main component of the BPSG film, with P and B, which are impurity elements, through one oxygen atom. Therefore, impurity elements and their oxides are hardly liberated during film formation, and a large amount of impurities are incorporated into the film.As a result of these effects, the formed B
The PSG film has a high density, and as shown in FIG. 4, the insulation properties are significantly improved compared to the conventional technology. Moisture resistance was also improved, and there was no precipitation of impurity oxides or cracking, which occurred within about 10 days after film formation in the prior art.

本実施例では、シリコンソースとして、TEO2Sを用
い、酸化剤として、オゾン含有酸素を用いて常圧気相成
長法によりBPSG膜を形成したが、シリコンソースと
して、テトラメトキシシラン(S i  (OCH3)
−)やジアセトキシジブトキシシラン(Si (OCO
CH3)2・(OC4He)2)を用いても同様の結果
が得られる。また、第1図の装置外略図に示したように
、不純物原料として、A s (O8i (CH3) 
3) sを用いてヒ素ガラス(ASG)を形成しても同
様の結果が得られる。
In this example, a BPSG film was formed by normal pressure vapor phase epitaxy using TEO2S as a silicon source and ozone-containing oxygen as an oxidizing agent.
-) and diacetoxydibutoxysilane (Si (OCO
Similar results are obtained using CH3)2.(OC4He)2). In addition, as shown in the schematic diagram of the outside of the apparatus in Fig. 1, A s (O8i (CH3)
3) Similar results can be obtained by forming arsenic glass (ASG) using s.

第2図は、本発明の他の実施例に用いた装置の概略構造
を表す縦断面図である。本実施例は、シリコンソースと
して、常温で液体である有機化合物を用い、酸化剤とし
て、酸素を用いた減圧気相成長法によりポロン・リンガ
ラス(以下BPSGと呼ぶ)膜を形成する例である。シ
リコンソースとしてのジアセトキシジブトキシシラン(
Si(OCOCR3) 2 (OC4H9) り (以
下DADBSと呼ぶ)201は恒温容器218内に70
〜100℃の一定温度に保持されており、バブリング用
N2221がDADES 201内に導入されて気泡を
発生し、DADBSガスが蒸発する。同様にして、リン
ンース202としてのP(O3i(CH3)3)3から
リンソースガスが蒸発し、ポロンソース203としての
B(○S i (CHs) 3) 3からポロンソース
ガスが蒸発する。以上3種類の不純物と主成分のDAD
BSガスは恒温配管209で混合され、さらにN2配管
208からの希釈用N2ガスで希釈され、フロントキャ
ップ206を通って石英炉芯管212に導入される。ま
た、酸素ガスは02配管207から導入される。石英炉
芯管212内部はヒーター211により500〜800
℃の間のある一定温度に保たれ、ルーツポンプ215や
ロータリーポンプ216により0.1〜500Torr
の間のある一定圧力に保たれている。基板205は、こ
の石英炉芯管内部に置かれた石英ポー)210上に装着
されており、前述の原料ガスと酸素ガスの反応によりB
PSG膜が形成される。
FIG. 2 is a vertical sectional view showing the schematic structure of an apparatus used in another embodiment of the present invention. This example is an example in which a poron-phosphorus glass (hereinafter referred to as BPSG) film is formed by a low-pressure vapor phase growth method using an organic compound that is liquid at room temperature as a silicon source and oxygen as an oxidizing agent. . Diacetoxydibutoxysilane as silicon source (
Si(OCOCR3) 2 (OC4H9) (hereinafter referred to as DADBS) 201 is placed in a constant temperature container 218 at 70°C.
The temperature is maintained at a constant temperature of ~100°C, and bubbling N2221 is introduced into the DADES 201 to generate bubbles and the DADBS gas evaporates. Similarly, phosphorus source gas evaporates from P(O3i(CH3)3)3 as the rinsing source 202, and poron source gas evaporates from B(○S i (CHs) 3) 3 as the poron source 203. The above three types of impurities and the main component DAD
The BS gas is mixed in a constant temperature pipe 209, further diluted with N2 gas for dilution from a N2 pipe 208, and introduced into a quartz furnace core tube 212 through a front cap 206. Further, oxygen gas is introduced from the 02 pipe 207. The inside of the quartz furnace core tube 212 has a temperature of 500 to 800 by the heater 211.
It is maintained at a constant temperature between ℃ and 0.1 to 500 Torr by roots pump 215 and rotary pump 216.
is maintained at a constant pressure between The substrate 205 is mounted on a quartz port 210 placed inside this quartz furnace core tube, and B is generated by the reaction between the raw material gas and oxygen gas mentioned above.
A PSG film is formed.

本装置に用いられているP (O3i (CH3)3)
3やB (O3i  (CH3) s) 3などの不純
物原料は、BPSG膜の主成分である5in2を形成す
るSiと不純物元素であるP、Bが1個の酸素原子を介
して予め結合しているため、膜形成時に不純物元素やそ
の酸化物が遊離することが殆ど無く、膜中に取り込まれ
る不純物量も多い。
P (O3i (CH3)3) used in this device
Impurity raw materials such as 3 and B (O3i (CH3) s) 3 are made by bonding Si, which forms 5in2, which is the main component of the BPSG film, with P and B, which are impurity elements, through one oxygen atom. Therefore, impurity elements and their oxides are hardly liberated during film formation, and a large amount of impurities are incorporated into the film.

本実施例では、シリコンソースとして、DADBSを用
い、酸化剤として、酸素を用いて減圧気相成長法により
BPSG膜を形成したが、シリコンソースとして、テト
ラエトキシシラン(TE01)やテトラメトキシシラン
(S i (OCHs) 4)などを用いても同様の結
果が得られる。また、第1図の装置外略図に示したよう
に、不純物原料として、A s (OS i (CHg
) 3) 3を用いてヒ素ガラス(ASG)を形成して
も同様の結果が得られる。
In this example, a BPSG film was formed by low pressure vapor phase epitaxy using DADBS as a silicon source and oxygen as an oxidizing agent. Similar results can be obtained using i (OCHs) 4) and the like. In addition, as shown in the schematic diagram of the outside of the apparatus in FIG. 1, As (OS i (CHg
) 3) Similar results can be obtained by forming arsenic glass (ASG) using 3).

第3図は、本発明の更に他の実施例を適用する半導体装
置の縦断面図であり、チップボンデング後に形成するチ
ップ保護膜として、DADBSとシリコン含有リンソー
スとオゾン含有酸素から形成されたPSG膜を用いたも
のである。半導体チップ307はリードフレームのアイ
ランド308上に固定されており、半導体チップ307
内部の信号を取り出すため、アルミパッド304とリー
ドフレームのリード305はポンディングワイヤー30
9で結ばれている。半導体チップ表面にはカバー酸化窒
化シリコン(S i ON) 膜302が堆積されてい
るが、さらにその表面やポンディングワイヤー309.
リードフレームのアイランド308の裏面、リード30
5の一部などを覆うようニシテ、主成分DADBSとP
O(O81(CH3)り3のようなシリコン含有リンソ
ースを用いたCVD法によるPSG膜301が形成され
いる。その外側は封止用樹脂303で覆われている。
FIG. 3 is a longitudinal cross-sectional view of a semiconductor device to which still another embodiment of the present invention is applied, in which a chip protective film formed after chip bonding is formed from DADBS, silicon-containing phosphorus source, and ozone-containing oxygen. It uses a PSG film. The semiconductor chip 307 is fixed on an island 308 of the lead frame, and the semiconductor chip 307
In order to extract the internal signal, the aluminum pad 304 and the lead frame lead 305 are connected to the bonding wire 30.
They are connected by 9. A cover silicon oxynitride (S i ON) film 302 is deposited on the surface of the semiconductor chip, and the surface and bonding wires 309 .
Back side of island 308 of lead frame, lead 30
The main ingredients are DADBS and P to cover part of 5.
A PSG film 301 is formed by a CVD method using a silicon-containing phosphorus source such as O(O81(CH3)3).The outside thereof is covered with a sealing resin 303.

本実施例の様にチップ保護膜としてCVD膜を堆積する
場合、堆積温度を250℃以下にする必要がある。DA
DBSとオゾン含有酸素からなるCVD法はかかる低温
でも堆積可能であるが、本実施例のようにPSG膜を形
成する場合、通常用いられているトリメチルフォスフエ
イト (PO(OCH3)3)等の不純物原料では、リ
ンの膜中への取り込まれ方が不安定で、P2O6等が膜
表面へ析出するなどの欠点があったが、本実施例では、
不純物原料としてPO(O8i (CH3) 3) 3
を用いているため、堆積温度が低くてもリンを安定な形
で膜中へ取り込むことができる。このようにして形成さ
れたPSG膜はポンディングパッド部からの水分の侵入
によるアルミパッド304の腐食を防止し、ポンディン
グワイヤー309やリードフレーム308,305と封
止用樹脂303との密着性を向上し封止用樹脂303に
発生するクロックを抑止する効果がある。
When depositing a CVD film as a chip protection film as in this embodiment, the deposition temperature must be 250° C. or lower. D.A.
The CVD method using DBS and ozone-containing oxygen can be deposited even at such low temperatures, but when forming a PSG film as in this example, the commonly used trimethyl phosphate (PO(OCH3)3) etc. Impurity raw materials had drawbacks such as unstable phosphorus incorporation into the film and precipitation of P2O6 etc. on the film surface, but in this example,
PO(O8i (CH3) 3) 3 as an impurity raw material
, it is possible to incorporate phosphorus into the film in a stable form even at low deposition temperatures. The PSG film formed in this way prevents corrosion of the aluminum pad 304 due to moisture intrusion from the bonding pad portion, and improves the adhesion between the bonding wire 309 and lead frames 308, 305 and the sealing resin 303. This has the effect of suppressing clocks generated in the sealing resin 303.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、不純物を含む絶縁膜を形
成する化学気相成長法において、不純物原料として、絶
縁膜の主成分である元素と不純物元素とが含まれる有機
化合物を用いることにより、絶縁膜の主成分の元素と不
純物元素との結合は完全になる。また、不純物原料その
ものが膜形成に寄与する。この二つの作用の結果、膜中
に取り込まれる不純物量が増加し、絶縁特性や耐湿性が
改善され、不純物の酸化物の析出が起こりにくくなると
いう効果を有する。
As explained above, the present invention uses an organic compound containing an element that is the main component of the insulating film and an impurity element as an impurity raw material in a chemical vapor deposition method for forming an insulating film containing impurities. The bond between the main component element of the insulating film and the impurity element becomes complete. Further, the impurity raw material itself contributes to film formation. As a result of these two effects, the amount of impurities taken into the film increases, the insulation properties and moisture resistance are improved, and the precipitation of impurity oxides becomes less likely to occur.

また、上記した説明では絶縁膜の主成分としてSiO2
を用いて説明したが、本発明は他の絶縁膜、例えば、T
 a 205. Z r 02. Hf 02などの絶
縁膜に不純物を含ませる場合にも適用できることは明ら
かである。
In addition, in the above explanation, SiO2 is the main component of the insulating film.
Although the present invention has been described using other insulating films, for example, T
a 205. Z r 02. It is clear that the present invention can also be applied to cases where impurities are included in an insulating film such as Hf 02.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するための化学気相
成長装置の概略構造を示す縦断面図、第2図は、本発明
の他の実施例を説明するための化学気相成長装置の概略
構造を示す縦断面図、第3図は本発明の更に他の実施例
を説明するための半導体装置を示す縦断面図、第4図は
本発明により形成したBPSG膜の絶縁特性図である。 101・・・・・・シリコンソース(TE01)、10
2・・・・・・す77−ス(PO(O8i  (CH3
)3)3)、103 ・=・・ポロンソース(B(○S
 i (CH3)3)り、104・・・・・・ヒ素7 
 :A (As  (O8i  (CH3) 3) 3
)、105・・・・・・バルブ、lo6・・川・バブリ
ング用N2.107・・・・・・流量コントローラ、1
08・川・・恒温配管、109・・・・・・N2配管、
110・・・・・・基板、111・・・・・・ヒ−4−
、112・・・・・・分散型ヘッド、113・・・・・
・オゾン発生器、114・・・・・・0□配管、115
・・印・予熱器、116・・・・・・ヒーター移動機構
、117・・・・・・恒温容器、201・・・・・・シ
リコンソース(DADBS)、202−・・・!J 7
 ’)−ス(P (OS i (CH3)3)り、20
3・・・・・・ボロ77−ス(B (O8i (CH3
)3)3)、204・・・・・・ヒ素ソース(As  
(O8i  (CH3)3)l)、205・・・・・・
基板、206・・川・フロントキャップ、207・・・
・・・0゜配管、208・・・・・・N2配管、209
・・・・・・恒温配管、210・・・・・・石英ボート
、211・・・・・・ヒーター 212・・・・・・石
英炉芯管、213・・・・・・エンドキャップ、214
・・・・・・メインバルブ、215・・・・・・ルーツ
ポンプ、216・・・・・・ロータリーポンプ、217
・・・・・・リークバルブ、218・・・・・・恒温容
器、219・・・・・・流量コントローラ、220・・
・・・・バルブ、221・・・・・・バブリング用N2
.301・・・・・・PSG膜、302・・・・・・カ
バーS i ON膜、303・・・・・・封止用樹脂、
304・・・・・・アルミパッド、305・・・・・リ
ードフレーム(リード)、306・・・・・・絶縁膜、
307・・・・・・半導体チップ、308・・・・・・
リードフレーム(アイランド)、309・・・・・・ポ
ンディングワイヤー 代理人 弁理士  内 原   晋 鞄 岐 差
FIG. 1 is a longitudinal cross-sectional view showing a schematic structure of a chemical vapor deposition apparatus for explaining one embodiment of the present invention, and FIG. 2 is a chemical vapor deposition apparatus for explaining another embodiment of the present invention. FIG. 3 is a vertical cross-sectional view showing a schematic structure of a growth device, FIG. 3 is a vertical cross-sectional view showing a semiconductor device for explaining still another embodiment of the present invention, and FIG. 4 is a vertical cross-sectional view showing the insulation characteristics of a BPSG film formed according to the present invention. It is a diagram. 101... Silicon source (TE01), 10
2...S77-su(PO(O8i (CH3
)3)3),103 ・=・Poron sauce (B(○S
i (CH3)3)ri, 104...Arsenic 7
:A (As (O8i (CH3) 3) 3
), 105...Valve, lo6...N2 for river/bubbling.107...Flow rate controller, 1
08・River... Constant temperature piping, 109... N2 piping,
110... Board, 111... He-4-
, 112... Distributed head, 113...
・Ozone generator, 114...0□Piping, 115
. . . Preheater, 116 . . . Heater moving mechanism, 117 . . . Constant temperature container, 201 . . . Silicon source (DADBS), 202 - ! J7
')-S (P (OS i (CH3)3), 20
3...Bolo 77-su (B (O8i (CH3
)3)3),204...Arsenic source (As
(O8i (CH3)3)l), 205...
Board, 206... River/front cap, 207...
...0° piping, 208...N2 piping, 209
... Constant temperature piping, 210 ... Quartz boat, 211 ... Heater 212 ... Quartz furnace core tube, 213 ... End cap, 214
... Main valve, 215 ... Roots pump, 216 ... Rotary pump, 217
...Leak valve, 218 ... Constant temperature container, 219 ... Flow rate controller, 220 ...
...Valve, 221...N2 for bubbling
.. 301...PSG film, 302...Cover Si ON film, 303...Sealing resin,
304... Aluminum pad, 305... Lead frame (lead), 306... Insulating film,
307... Semiconductor chip, 308...
Lead frame (Island), 309...Ponding wire agent Patent attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜を構成する主元素に、当該元素とは異る不純物元
素を混入せしめた絶縁膜を形成する化学気相成長法にお
いて、前記不純物元素を導入する原料として、絶縁膜を
構成する主元素と不純物元素とが含まれ、前記絶縁膜の
主元素と、前記不純物元素とが、直接或は1個の他の元
素を介して結合している化合物を用いることを特徴とす
る化学気相成長法
In the chemical vapor deposition method of forming an insulating film in which an impurity element different from the main element constituting the insulating film is mixed, the main element constituting the insulating film and the main element constituting the insulating film are used as raw materials for introducing the impurity element. A chemical vapor deposition method characterized by using a compound containing an impurity element, and in which the main element of the insulating film and the impurity element are bonded directly or through one other element.
JP16570388A 1988-07-01 1988-07-01 Chemical vapor growth Pending JPH0215629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16570388A JPH0215629A (en) 1988-07-01 1988-07-01 Chemical vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16570388A JPH0215629A (en) 1988-07-01 1988-07-01 Chemical vapor growth

Publications (1)

Publication Number Publication Date
JPH0215629A true JPH0215629A (en) 1990-01-19

Family

ID=15817451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16570388A Pending JPH0215629A (en) 1988-07-01 1988-07-01 Chemical vapor growth

Country Status (1)

Country Link
JP (1) JPH0215629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563208A (en) * 1991-02-21 1993-03-12 Toshiba Corp Nonvolatile semiconductor memory and manufacture thereof
JP2004071970A (en) * 2002-08-08 2004-03-04 Shin Etsu Chem Co Ltd Manufacturing method and manufacturing system of silicon substrate for solar cell
JP2007053173A (en) * 2005-08-16 2007-03-01 Kobe Steel Ltd Copper substrate for electronic part, and method of forming silicon oxide thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563208A (en) * 1991-02-21 1993-03-12 Toshiba Corp Nonvolatile semiconductor memory and manufacture thereof
JP2004071970A (en) * 2002-08-08 2004-03-04 Shin Etsu Chem Co Ltd Manufacturing method and manufacturing system of silicon substrate for solar cell
JP2007053173A (en) * 2005-08-16 2007-03-01 Kobe Steel Ltd Copper substrate for electronic part, and method of forming silicon oxide thin film

Similar Documents

Publication Publication Date Title
US6727190B2 (en) Method of forming fluorine doped boron-phosphorous silicate glass (F-BPSG) insulating materials
US3511703A (en) Method for depositing mixed oxide films containing aluminum oxide
JP4009250B2 (en) Method for forming a PMD structure
US5094984A (en) Suppression of water vapor absorption in glass encapsulation
US5028566A (en) Method of forming silicon dioxide glass films
KR100259314B1 (en) Method of manufacturing semiconductor device
KR101353739B1 (en) Process for producing silicon oxide films from organoaminosilane precursors
US3481781A (en) Silicate glass coating of semiconductor devices
JP2533440B2 (en) Method for forming interlayer insulating film of semiconductor device
US5336640A (en) Method of manufacturing a semiconductor device having an insulating layer composed of a BPSG film and a plasma-CVD silicon nitride film
US4708884A (en) Low temperature deposition of silicon oxides for device fabrication
KR970003724B1 (en) A semiconductor device and process
US4647472A (en) Process of producing a semiconductor device
JP2002343793A (en) Method for manufacturing silicon-containing solid thin film by atomic layer deposition by using hexachlorodisilane and ammonia
EP0323103A2 (en) Multilayer ceramics coatings from the ceramification of hydrogen silsesquioxane resin in the presence of ammonia
US4433008A (en) Doped-oxide diffusion of phosphorus using borophosphosilicate glass
EP0470661B1 (en) Method of providing a silicion dioxide layer on a substrate by means of chemical reaction from the vapour phase at a low pressure (LPCVD)
US3798081A (en) Method for diffusing as into silicon from a solid phase
JPH0215629A (en) Chemical vapor growth
US6080639A (en) Semiconductor device containing P-HDP interdielectric layer
US3706597A (en) Glass vapor deposition on surfaces of semiconductor elements
EP0286097B1 (en) Method of forming silicon dioxide glass films
US4172158A (en) Method of forming a phosphorus-nitrogen-oxygen film on a substrate
JPH04505035A (en) Novel viscoelastic flow method for glass deposition
CN216698382U (en) Photosensitive chip passivation structure