JPH09293716A - Forming method of insulating film containing fluorine - Google Patents

Forming method of insulating film containing fluorine

Info

Publication number
JPH09293716A
JPH09293716A JP8102546A JP10254696A JPH09293716A JP H09293716 A JPH09293716 A JP H09293716A JP 8102546 A JP8102546 A JP 8102546A JP 10254696 A JP10254696 A JP 10254696A JP H09293716 A JPH09293716 A JP H09293716A
Authority
JP
Japan
Prior art keywords
fluorine
film
insulating film
ozone
containing silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8102546A
Other languages
Japanese (ja)
Inventor
Kenji Tanaka
顕司 田中
Tadashi Nakano
正 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8102546A priority Critical patent/JPH09293716A/en
Publication of JPH09293716A publication Critical patent/JPH09293716A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02131Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being halogen doped silicon oxides, e.g. FSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a SiOF film having excellent embedding feature of a microscopic pattern and a low relative dielectric constant by a method wherein a fluorine-containing silicon oxide substance insulating film is deposited on the surface of a semiconductor substrate by an atmospheric pressure thermal CVD method using raw material of ozone, a fluorine-containing silicon compound and organic silane. SOLUTION: A fluorine-containing silicon oxide substance insulating film is deposited on the surface of a semiconductor substrate 2 by an atmospheric pressure thermal CVD method using ozone, a fluorine-containing silicon compound and organic silane as raw material. For example, a silicon substrate 2 is retained at 400 deg.C by heating with a heater 3, and a reaction chamber is brought in the state of 400Torr using an exhaust system 4. The N2 , which is the carrier gas of TEOS, is changed in the range of 0 to 350sccm, SiF4 is changed in the range of 0 to 350sccm, and the oxygen, containing ozone of about 8wt.%, is introduced at the constant flow rate of 500sccm using an ozone generator 7. A fluorine-containing SiO2 film is deposited on the silicon substrate 2 using an atmospheric pressure thermal CVD method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法、特に配線を隔離するための絶縁膜の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an insulating film for isolating wiring.

【0002】[0002]

【従来の技術】半導体装置においては、素子および配線
を隔離するために絶縁膜が用いられる。従来この絶縁膜
として、シラン等を原料として減圧または常圧の化学気
相蒸着(CVD)法により形成された酸化ケイ素(Si
2 )膜が使用されている。第一層間膜としては硼素と
リンを含むSiO2 膜(BPSG)が一般に使用され、
アルミニウムまたはその合金の配線間の絶縁膜として
は、テトラエトキシシラン(TEOS)と酸素とを用い
たプラズマCVD法によるSiO2 (p−TEOS)膜
や、TEOSとオゾン(O3 )を用いた常圧熱CVD法
によるSiO2(O3 −TEOS)膜を用いることが多
い。
2. Description of the Related Art In a semiconductor device, an insulating film is used to isolate an element and a wiring. Conventionally, as the insulating film, silicon oxide (Si) formed by a chemical vapor deposition (CVD) method under reduced pressure or normal pressure using silane or the like as a raw material.
O 2 ) films are used. As the first interlayer film, a SiO 2 film (BPSG) containing boron and phosphorus is generally used,
As an insulating film between wirings of aluminum or its alloy, a SiO 2 (p-TEOS) film formed by a plasma CVD method using tetraethoxysilane (TEOS) and oxygen, or a normal film using TEOS and ozone (O 3 ). A SiO 2 (O 3 -TEOS) film formed by the pressure heat CVD method is often used.

【0003】しかしながら近年、素子の微細化に伴い、
信号伝達遅延の問題が懸念されている。これは、素子の
微細化に伴って配線間隔が狭くなるに従い、配線間容量
が増大するために生ずる。この信号伝達遅延は、半導体
装置の性能向上を妨げるものである。従って、配線間容
量の低減が必要であり、これは主に絶縁膜の誘電率の低
減により達成される。
However, with the recent miniaturization of elements,
There is concern about the problem of signal transmission delay. This occurs because the inter-wiring capacitance increases as the wiring spacing becomes narrower with the miniaturization of elements. This signal transmission delay hinders the performance improvement of the semiconductor device. Therefore, it is necessary to reduce the capacitance between wirings, which is mainly achieved by reducing the dielectric constant of the insulating film.

【0004】ところが、前述のような従来のSiO2
は、比誘電率が4〜5(BPSG膜では5程度、O3
TEOS膜では4程度)であり、将来の高速デバイスで
は高すぎる値と考えられている。これに対し、フッ素を
SiO2 膜中に含有させることによって比誘電率を下げ
る方法が検討され始めている(Jpn. J. Appl. Phys. Vo
l.33 (1994) pp.408-412, J. Electrochem. Soc., Vol.
140, No.3, March 1993 pp.687-692参照)。これにより
得られるフッ素含有SiO2 (SiOF)膜は比誘電率
が3.6程度であってSiO2 膜のそれに比較して低
い。しかしこのSiOF膜を半導体基板上に成膜する技
術は未だ知られていない。
However, the conventional SiO 2 film as described above has a relative dielectric constant of 4 to 5 (about 5 for the BPSG film, O 3
It is about 4 for a TEOS film), and is considered to be too high for future high speed devices. On the other hand, a method of lowering the relative permittivity by incorporating fluorine into the SiO 2 film has begun to be studied (Jpn. J. Appl. Phys. Vo
l.33 (1994) pp.408-412, J. Electrochem. Soc., Vol.
140, No. 3, March 1993 pp. 687-692). The fluorine-containing SiO 2 (SiOF) film thus obtained has a relative dielectric constant of about 3.6, which is lower than that of the SiO 2 film. However, a technique for forming this SiOF film on a semiconductor substrate has not been known yet.

【0005】他方、素子の微細化に伴って配線間隔が狭
くなるに従い、配線間の埋め込み性の問題も厳しくなっ
ている。例えばp−TEOS膜は、配線間が 0.5μm以
下の微細パターンを覆うように成膜すると、ボイドが発
生して平坦化特性が低減するので不適格である。このよ
うに、配線間が0.5 μm以下の微細パターンを備えた半
導体装置の製造プロセスについては、比誘電率と埋め込
み性との両性能を満足しうる絶縁膜の形成方法は未確立
の状態である。
On the other hand, as the space between the wirings becomes narrower with the miniaturization of elements, the problem of embedding between wirings becomes more severe. For example, if the p-TEOS film is formed so as to cover a fine pattern having a wiring interval of 0.5 μm or less, voids are generated and the planarization characteristic is reduced, so that it is not suitable. As described above, in the manufacturing process of a semiconductor device having a fine pattern of 0.5 μm or less between wirings, a method for forming an insulating film that can satisfy both the relative permittivity and the embedding property has not been established. .

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、微細
パターンの埋め込み性に優れ且つ比誘電率が低いフッ素
含有絶縁膜の形成方法を提供することを課題とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for forming a fluorine-containing insulating film which is excellent in embedding of fine patterns and has a low relative dielectric constant.

【0007】[0007]

【課題を解決するための手段】第1の本発明は、オゾン
と、フッ素含有シリコン化合物と、有機シランとを原料
とし常圧熱CVD法によりフッ素を含有する酸化ケイ素
質の絶縁膜を半導体基板表面上に堆積することを特徴と
するフッ素含有絶縁膜の形成方法である。第2の本発明
は、原料がさらに硼素源および/またはリン源を含み、
絶縁膜がさらに硼素および/またはリンを含むを含む第
1の本発明のフッ素含有絶縁膜の形成方法である。
According to a first aspect of the present invention, a silicon oxide insulating film containing fluorine is prepared by a normal pressure thermal CVD method using ozone, a fluorine-containing silicon compound and an organic silane as raw materials. It is a method for forming a fluorine-containing insulating film, which is characterized in that it is deposited on the surface. 2nd this invention WHEREIN: A raw material further contains a boron source and / or a phosphorus source,
The method for forming a fluorine-containing insulating film according to the first aspect of the present invention, wherein the insulating film further contains boron and / or phosphorus.

【0008】[0008]

【発明の実施の形態】第1の本発明によれば、絶縁膜の
堆積方法として、O3 −TEOS膜の形成プロセスであ
る常圧熱CVD法を採用したことで、微細パターンに対
する埋め込み性に優れたSiOF膜を得ることができ
る。そして、常圧熱CVD法に用いる原料のうちフッ素
源として、フッ素含有シリコン化合物を用いたことで、
SiO2 膜中にフッ素を容易に含有させることができ、
これにより初めて低誘電率を有するSiOF膜を半導体
基板表面上に形成できる。
According to the first aspect of the present invention, as the method of depositing the insulating film, the atmospheric pressure thermal CVD method, which is the process of forming the O 3 -TEOS film, is adopted, so that the embedding property for the fine pattern is improved. An excellent SiOF film can be obtained. Then, by using the fluorine-containing silicon compound as the fluorine source among the raw materials used in the atmospheric pressure thermal CVD method,
Fluorine can be easily contained in the SiO 2 film,
As a result, a SiOF film having a low dielectric constant can be formed on the surface of the semiconductor substrate for the first time.

【0009】フッ素源としてフッ素含有シリコン化合
物、すなわちSi−F結合を持つ物質を用いることによ
ってのみSiO2 膜中にフッ素を含有せしめることがで
きる。このことは本発明者らの新知見であり、例えば従
来のように、原料にO3 −TEOS−C2 6 (Si−
F結合を持たないフッ素源)を用い常圧熱CVD法で半
導体基板表面上にSiO2 膜を成膜しても、その膜中に
フッ素の含有がほとんど確認できない。
Fluorine can be contained in the SiO 2 film only by using a fluorine-containing silicon compound as a fluorine source, that is, a substance having a Si--F bond. This is a new finding of the present inventors. For example, as in the conventional case, the raw material is O 3 -TEOS-C 2 F 6 (Si-
Even if a SiO 2 film is formed on the surface of a semiconductor substrate by a normal pressure thermal CVD method using a fluorine source having no F bond), almost no fluorine content can be confirmed in the film.

【0010】フッ素源であるフッ素含有シリコン化合物
としては、フッ化ケイ素(SiF4)が望ましいが、そ
の他Si−F結合をもつ物質、例えばSiF(OC3
5 3 等でも同等の効果が期待できる。有機シラン(S
i源)としてはTEOSが好適であるが、この他TEO
Sと同等の効果を有するテトラメトキシシラン、テトラ
プロポシシラン、トリエトキシシラン、ヘキサエトキシ
ジシロキサン、オクタメチルシクロテトラシロキサン、
トリメトキシシラン、ヘキサメチルシラザン等をTEO
Sに代えて或いはTEOSと組み合わせて用いることが
できる。
Fluorine-containing silicon compound as a fluorine source
As for silicon fluoride (SiFFour) Is desirable, but
Other substances having a Si-F bond, such as SiF (OCThree H
Five ) ThreeEtc., the same effect can be expected. Organosilane (S
TEOS is suitable as the i source), but other than this, TEO
Tetramethoxysilane having the same effect as S, tetra
Propoxysilane, triethoxysilane, hexaethoxy
Disiloxane, octamethylcyclotetrasiloxane,
Trimethoxysilane, hexamethylsilazane, etc.
Can be used instead of S or in combination with TEOS
it can.

【0011】有機シランの反応室内への導入方法として
は、N2 やAr等をキャリアガスとしたバブリング法や
噴霧法があり、いずれの方法も本発明に適用できる。な
お、原料の有機シランとフッ素含有シリコン化合物との
混合比は任意に選択可能であり、成膜後の絶縁膜中のフ
ッ素含有量を高めるにはフッ素含有シリコン化合物の割
合を増加させればよい。
As a method of introducing the organic silane into the reaction chamber, there are a bubbling method and a spraying method using N 2 or Ar as a carrier gas, and any method can be applied to the present invention. The mixing ratio of the organic silane as a raw material and the fluorine-containing silicon compound can be arbitrarily selected, and the ratio of the fluorine-containing silicon compound may be increased to increase the fluorine content in the insulating film after film formation. .

【0012】第2の本発明によれば、BPSG膜中にフ
ッ素を含有させることでき、低誘電率のBPSG膜を形
成することが可能になる。第2の本発明において、硼素
源としては、ジボラン、トリメチル硼素、トリエチルホ
ウ素、ホウ酸トリメチル、ホウ酸トリエチル等を用いる
ことができ、リン源としては、ホスフィン、トリメチル
ホスフィン、リン酸トリメチル、リン酸トリエチル等を
用いることができる。なお、成膜後の絶縁膜中の硼素、
リンの含有量は、硼素源、リン源の混合比を変えること
で任意に調整できる。
According to the second aspect of the present invention, fluorine can be contained in the BPSG film, and a BPSG film having a low dielectric constant can be formed. In the second invention, diborane, trimethylboron, triethylboron, trimethylborate, triethylborate, etc. can be used as the boron source, and phosphine, trimethylphosphine, trimethylphosphate, phosphoric acid can be used as the phosphorus source. Triethyl or the like can be used. In addition, boron in the insulating film after film formation,
The phosphorus content can be arbitrarily adjusted by changing the mixing ratio of the boron source and the phosphorus source.

【0013】[0013]

【実施例】図1は、本発明の実施に適した成膜装置(常
圧CVD装置)の模式図である。図1において、1は反
応室内に原料ガスを導入する給気系、2はシリコン基
板、3はヒータ、4は排気系、5はバブラ、6はマスフ
ローコントローラ、7はオゾン生成器である。
EXAMPLE FIG. 1 is a schematic diagram of a film forming apparatus (normal pressure CVD apparatus) suitable for carrying out the present invention. In FIG. 1, 1 is an air supply system for introducing a raw material gas into the reaction chamber, 2 is a silicon substrate, 3 is a heater, 4 is an exhaust system, 5 is a bubbler, 6 is a mass flow controller, and 7 is an ozone generator.

【0014】半導体基板(本実施例ではシリコン基板)
2はフェイスダウンに保持され、裏面に密着しているヒ
ータ3により加熱される。反応室内の圧力は、給気系1
の給気速度と排気系4の排気速度とによりコントロール
される。原料ガスのうち有機シラン(本実施例ではTE
OSを使用)は、バブラ5に封入されキャリアガス(本
実施例ではN2 を使用)でバブリングすることによって
反応室内に導入される。フッ素含有シリコン化合物(本
実施例ではSiF4 を使用)およびオゾンは直接反応室
内に導入される。フッ素含有シリコン化合物、オゾンお
よびキャリアガスの流量はそれぞれマスフローコントロ
ーラ6により制御される。なお、オゾンはオゾン生成器
7により生成される。 <実施例1>図1に示した成膜装置を用いてO3 −TE
OS膜にフッ素を含有させた第1の本発明の実施例(実
施例1)を開示する。
Semiconductor substrate (silicon substrate in this embodiment)
2 is held face down and heated by the heater 3 which is in close contact with the back surface. The pressure in the reaction chamber is 1
It is controlled by the supply speed of the air and the exhaust speed of the exhaust system 4. Organosilane (TE in this example)
(OS is used) is introduced into the reaction chamber by being enclosed in the bubbler 5 and bubbling with a carrier gas (N 2 is used in this embodiment). The fluorine-containing silicon compound (SiF 4 is used in this embodiment) and ozone are directly introduced into the reaction chamber. The flow rates of the fluorine-containing silicon compound, ozone and carrier gas are controlled by the mass flow controller 6, respectively. The ozone is generated by the ozone generator 7. Example 1 O 3 -TE was formed using the film forming apparatus shown in FIG.
A first embodiment (Example 1) of the present invention in which the OS film contains fluorine will be disclosed.

【0015】シリコン基板2をヒータ3により400℃
に加熱保持し、排気系4により反応室圧を400Tor
rとし、給気系1を働かせて、TEOSのキャリアガス
であるN2 (N2<TEOS> と記す)を0〜350sccm(標
準m3 /min)、SiF4を0〜350sccmの範囲で
変化させ、オゾン発生器7によりオゾンを約8wt%含ま
せた酸素を5000sccm定流量で、それぞれ導入した。
なお、N2<TEOS> :0sccmおよびSiF4 :0sccmなる
流量の場合は本発明に属さないが比較基準として実施し
た。
The silicon substrate 2 is heated to 400 ° C. by the heater 3.
The temperature of the reaction chamber is maintained at 400 ° C by the exhaust system 4
r, and the air supply system 1 is operated to change N 2 (N 2 <TEOS>), which is a carrier gas of TEOS, in the range of 0 to 350 sccm (standard m 3 / min) and SiF 4 in the range of 0 to 350 sccm. Then, oxygen containing about 8 wt% of ozone was introduced at a constant flow rate of 5000 sccm by the ozone generator 7.
The flow rates of N 2 <TEOS>: 0 sccm and SiF 4 : 0 sccm are not included in the present invention, but were used as a comparison standard.

【0016】この常圧熱CVD法により、ヒータ3から
供給される熱エネルギーで原料ガスが分解され、特にT
EOSとオゾンとが反応室中で反応し、シリコン基板2
上にフッ素を含有するSiO2 膜が堆積する。なお、S
iO2 膜中のフッ素の含有量は、XPS(X-ray Photoe
lectron Spectroscopy)析法による分析値である(以下
同じ)。
By this atmospheric pressure thermal CVD method, the source gas is decomposed by the thermal energy supplied from the heater 3, and in particular T
EOS and ozone react in the reaction chamber, and silicon substrate 2
A SiO 2 film containing fluorine is deposited on top. Note that S
The fluorine content in the io 2 film is determined by XPS (X-ray Photoe
lectron Spectroscopy) The value analyzed by the analysis method (the same applies below).

【0017】図2は、実施例1に係るSiOF膜中のフ
ッ素含有量(at%;以下同じ)のSiF4 /(SiF4
+N2<TEOS> )流量比依存性を示すグラフである。な
お、SiF4 流量とN2<TEOS> 流量との和は350sccm
と一定にした。図2に示すように、本発明に従いSiF
4 をフッ素源として使用することにより、O3 −TEO
S膜中にフッ素を含有させることができる。
FIG. 2 shows SiF 4 / (SiF 4 ) having a fluorine content (at%; the same applies hereinafter) in the SiOF film according to Example 1.
+ N 2 <TEOS>) A graph showing the flow ratio dependency. The sum of the SiF 4 flow rate and the N 2 <TEOS> flow rate is 350 sccm.
And made it constant. As shown in FIG. 2, according to the present invention, SiF
By using 4 as a fluorine source, O 3 -TEO
Fluorine can be contained in the S film.

【0018】図3は、実施例1に係るSiOF膜につい
て比誘電率のフッ素含有量依存性を示すグラフである。
従来のSiO2 膜では比誘電率の下限が3.9程度であ
ることが知られている。これに対し、第1の本発明によ
れば、図3から明らかなように、比誘電率をフッ素含有
量4at%で3.4程度、フッ素含有量14at%では2.9
程度にまで低下でき、比誘電率の低いSiOF膜が得ら
れる。 <実施例2>次に、BPSG膜にフッ素を含有させた第
2の本発明の実施例(実施例2)を開示する。
FIG. 3 is a graph showing the fluorine content dependency of the relative dielectric constant of the SiOF film according to Example 1.
It is known that the lower limit of the relative permittivity of the conventional SiO 2 film is about 3.9. On the other hand, according to the first aspect of the present invention, as is clear from FIG. 3, the relative dielectric constant is about 3.4 at a fluorine content of 4 at% and 2.9 at a fluorine content of 14 at%.
A SiOF film having a low relative dielectric constant can be obtained. <Embodiment 2> Next, a second embodiment (Embodiment 2) of the present invention in which fluorine is contained in the BPSG film will be disclosed.

【0019】成膜装置および基本的な成膜方法は実施例
1と同様である。ただし、硼素源、リン源ともにN2
キャリアガスとするバブリング法により、それぞれ流量
25sccmで反応室内に導入した。なお、硼素源としてホ
ウ酸トリメチル(TMB:B(OCH3 3 )を、リン
源としてリン酸トリメチル(TMP:PO(OCH3
3 )を、それぞれ使用した。
The film forming apparatus and the basic film forming method are the same as in the first embodiment. However, both the boron source and the phosphorus source were introduced into the reaction chamber at a flow rate of 25 sccm by a bubbling method using N 2 as a carrier gas. In addition, trimethyl borate (TMB: B (OCH 3 ) 3 ) as a boron source and trimethyl phosphate (TMP: PO (OCH 3 )) as a phosphorus source
3 ) were used respectively.

【0020】図4は、実施例2に係るSiOF膜中のフ
ッ素含有量(at%;以下同じ)のSiF4 /(SiF4
+N2<TEOS> )流量比依存性を示すグラフである。な
お、SiF4 流量とN2<TEOS> 流量との和は350sccm
と一定とした。図4から明らかなように、SiF4 をフ
ッ素源として使用すると、BOSG膜中にもフッ素を含
有させることができる。
FIG. 4 shows the SiF 4 / (SiF 4 ) of the fluorine content (at%; the same applies hereinafter) in the SiOF film according to the second embodiment.
+ N 2 <TEOS>) A graph showing the flow ratio dependency. The sum of the SiF 4 flow rate and the N 2 <TEOS> flow rate is 350 sccm.
And fixed. As is clear from FIG. 4, when SiF 4 is used as a fluorine source, the BOSG film can also contain fluorine.

【0021】図5は、実施例2に係るSiOF膜につい
て比誘電率のフッ素含有量依存性示すグラフである。従
来のBPSG膜では比誘電率の下限が5程度であること
が知られている。これに対し、第2の本発明によれば、
図5から明らかなように、比誘電率をフッ素含有量4at
%で4.6程度、フッ素含有量14at%では4.3程度に
まで低下でき、比誘電率の低いBPSG膜が得られる。
FIG. 5 is a graph showing the fluorine content dependence of the relative dielectric constant of the SiOF film according to Example 2. It is known that the lower limit of the relative permittivity of the conventional BPSG film is about 5. On the other hand, according to the second invention,
As is clear from FIG. 5, the relative dielectric constant was determined to be 4 at.
%, The fluorine content can be lowered to about 4.3, and the fluorine content can be lowered to about 4.3, and a BPSG film having a low relative dielectric constant can be obtained.

【0022】[0022]

【発明の効果】本発明によれば、オゾンおよびフッ化ケ
イ素、ならびにテトラエトキシシラン等の有機シランを
原料とする常圧熱CVD法によりSiOF膜を堆積する
ことにより、微細パターンの埋め込み性に優れ且つ比誘
電率が低いフッ素含有絶縁膜が形成できるという優れた
効果を奏する。
According to the present invention, the SiOF film is deposited by the atmospheric pressure thermal CVD method using ozone, silicon fluoride, and an organic silane such as tetraethoxysilane as a raw material, so that the fine pattern embedding property is excellent. In addition, it has an excellent effect that a fluorine-containing insulating film having a low relative dielectric constant can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に適した成膜装置の模式図であ
る。
FIG. 1 is a schematic view of a film forming apparatus suitable for implementing the present invention.

【図2】実施例1に係るSiOF膜中のフッ素含有量の
SiF4 /(SiF4 +N2<TEOS> )流量比依存性を示
すグラフである。
2 is a graph showing the SiF 4 / (SiF 4 + N 2 <TEOS>) flow ratio dependency of the fluorine content in the SiOF film according to Example 1. FIG.

【図3】実施例1に係るSiOF膜について比誘電率の
フッ素含有量依存性を示すグラフである。
FIG. 3 is a graph showing the fluorine content dependency of the relative dielectric constant of the SiOF film according to Example 1.

【図4】実施例2に係るSiOF膜中のフッ素含有量の
SiF4 /(SiF4 +N2<TEOS> )流量比依存性を示
すグラフである。
FIG. 4 is a graph showing the SiF 4 / (SiF 4 + N 2 <TEOS>) flow ratio dependency of the fluorine content in the SiOF film according to Example 2.

【図5】実施例2に係るSiOF膜について比誘電率の
フッ素含有量依存性示すグラフである。
FIG. 5 is a graph showing the fluorine content dependency of the relative dielectric constant of the SiOF film according to Example 2.

【符号の説明】[Explanation of symbols]

1 給気系 2 シリコン基板 3 ヒータ 4 排気系 5 バブラ 6 マスフローコントローラ 7 オゾン生成器 1 Air Supply System 2 Silicon Substrate 3 Heater 4 Exhaust System 5 Bubbler 6 Mass Flow Controller 7 Ozone Generator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オゾンと、フッ素含有シリコン化合物
と、有機シランとを原料とし常圧熱CVD法によりフッ
素を含有する酸化ケイ素質の絶縁膜を半導体基板表面上
に堆積することを特徴とするフッ素含有絶縁膜の形成方
法。
1. A fluorine-containing silicon oxide insulating film is deposited on the surface of a semiconductor substrate by atmospheric pressure CVD using ozone, a fluorine-containing silicon compound and an organic silane as raw materials. Method of forming inclusion insulating film.
【請求項2】 原料がさらに硼素源および/またはリン
源を含み、絶縁膜がさらに硼素および/またはリンを含
む請求項1記載のフッ素含有絶縁膜の形成方法。
2. The method for forming a fluorine-containing insulating film according to claim 1, wherein the raw material further contains a boron source and / or a phosphorus source, and the insulating film further contains boron and / or phosphorus.
JP8102546A 1996-04-24 1996-04-24 Forming method of insulating film containing fluorine Pending JPH09293716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102546A JPH09293716A (en) 1996-04-24 1996-04-24 Forming method of insulating film containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102546A JPH09293716A (en) 1996-04-24 1996-04-24 Forming method of insulating film containing fluorine

Publications (1)

Publication Number Publication Date
JPH09293716A true JPH09293716A (en) 1997-11-11

Family

ID=14330255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102546A Pending JPH09293716A (en) 1996-04-24 1996-04-24 Forming method of insulating film containing fluorine

Country Status (1)

Country Link
JP (1) JPH09293716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041203A1 (en) * 1999-11-30 2001-06-07 Intel Corporation Improved flourine doped sio2 film
EP1123991A2 (en) * 2000-02-08 2001-08-16 Asm Japan K.K. Low dielectric constant materials and processes
US6905981B1 (en) 2000-11-24 2005-06-14 Asm Japan K.K. Low-k dielectric materials and processes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041203A1 (en) * 1999-11-30 2001-06-07 Intel Corporation Improved flourine doped sio2 film
GB2373372A (en) * 1999-11-30 2002-09-18 Intel Corp Improved flourine doped sio2 film
GB2373372B (en) * 1999-11-30 2004-04-28 Intel Corp Improved flourine doped sio2 film
EP1123991A2 (en) * 2000-02-08 2001-08-16 Asm Japan K.K. Low dielectric constant materials and processes
EP1123991A3 (en) * 2000-02-08 2002-11-13 Asm Japan K.K. Low dielectric constant materials and processes
US6733830B2 (en) 2000-02-08 2004-05-11 Asm Japan K.K. Processes for depositing low dielectric constant materials
US7144620B2 (en) 2000-02-08 2006-12-05 Asm Japan K.K. Process for depositing low dielectric constant materials
US7544827B2 (en) 2000-02-08 2009-06-09 Asm Japan K.K. Process for depositing low dielectric constant materials
US6905981B1 (en) 2000-11-24 2005-06-14 Asm Japan K.K. Low-k dielectric materials and processes

Similar Documents

Publication Publication Date Title
EP0517548B1 (en) Chemical vapor deposition method for forming silicon oxide film
KR100369427B1 (en) Film forming method and manufacturing method of semiconductor device
JP2634743B2 (en) Low temperature chemical vapor deposition
KR100453612B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6531412B2 (en) Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications
US5334552A (en) Method for fabricating a semiconductor device having a multi-layered interconnection structure
US5563105A (en) PECVD method of depositing fluorine doped oxide using a fluorine precursor containing a glass-forming element
US6727190B2 (en) Method of forming fluorine doped boron-phosphorous silicate glass (F-BPSG) insulating materials
US5703404A (en) Semiconductor device comprising an SiOF insulative film
US5354387A (en) Boron phosphorus silicate glass composite layer on semiconductor wafer
KR100602469B1 (en) Mechanical enhancer additives for low dielectric films
US5840631A (en) Method of manufacturing semiconductor device
US20070212850A1 (en) Gap-fill depositions in the formation of silicon containing dielectric materials
CN104593747B (en) Dielectric Barrier Deposition Using Oxygen-Containing Precursors
US20020076944A1 (en) Organosilane CVD precursors and their use for making organosilane polymer low-k dielectric film
JP2505309B2 (en) Method for forming borophosphosilicate glass composite layer on semiconductor wafer
JP3463416B2 (en) Method of manufacturing insulating film and semiconductor device
JPH11288930A (en) Low-temperature reflow dielectric bpsg fluoride
KR100339820B1 (en) Film formation method and manufacturing method semiconductor device
JPH09293716A (en) Forming method of insulating film containing fluorine
JPH07161705A (en) Method of forming interlayer insulating film of multilayered wiring of semiconductor device
JP3443978B2 (en) Method of forming low dielectric film
US6489255B1 (en) Low temperature/low dopant oxide glass film
JP3017627B2 (en) Thin film formation method
US20010036754A1 (en) Film forming method and manufacturing method of semiconductor device