JPH06132276A - Method for forming semiconductor film - Google Patents

Method for forming semiconductor film

Info

Publication number
JPH06132276A
JPH06132276A JP4284350A JP28435092A JPH06132276A JP H06132276 A JPH06132276 A JP H06132276A JP 4284350 A JP4284350 A JP 4284350A JP 28435092 A JP28435092 A JP 28435092A JP H06132276 A JPH06132276 A JP H06132276A
Authority
JP
Japan
Prior art keywords
sih
film
semiconductor film
forming
good
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4284350A
Other languages
Japanese (ja)
Inventor
Toru Mitomo
友 亨 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4284350A priority Critical patent/JPH06132276A/en
Publication of JPH06132276A publication Critical patent/JPH06132276A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a method for forming a semiconductor film, wherein an oxide film having a good flatness and a good film quality can be formed even on a surface of a high aspect ratio. CONSTITUTION:A method for forming a semiconductor film, wherein a silicon oxide film is formed by a chemical vapor growth method through using as its raw material gas the gas obtained by adding a compound containing oxygen to the organic silane compound specified by a general chemical formula (R1 R2N)nSiH4-no (in the formula, each of R1, R2 is one of H-, CH3-, C2H5-, C3H7-, C4H9-, and at least one of R1, R2 is not H-, and n is one of integers 1-4.).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の薄膜形成方
法に関するものであり、特に高アスペクト比の段差への
埋め込みと平坦化が可能な層間絶縁膜の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a thin film of a semiconductor device, and more particularly to a method of manufacturing an interlayer insulating film which can be embedded in a step having a high aspect ratio and flattened.

【0002】[0002]

【従来の技術】近年、デバイスの高集積化、微細化の進
展に伴い、配線の多層化が進んでいる。このような多層
配線構造においては、デバイス表面の高アスペクト比化
が進むため、層間絶縁膜の平坦性が悪化する。しかし、
デバイス作成の観点においてはより高い平坦度が要求さ
れている。
2. Description of the Related Art In recent years, with the progress of high integration and miniaturization of devices, multi-layer wiring has been advanced. In such a multilayer wiring structure, since the aspect ratio of the device surface is increased, the flatness of the interlayer insulating film is deteriorated. But,
From the viewpoint of device fabrication, higher flatness is required.

【0003】従来、絶縁膜形成技術として、シラン−酸
素系常圧CVD法が用いられるが、この方法では、オー
バハングのできやすいノンコンフォーマルなステップカ
バレッジを示すため、高アスペクト比の形状には使用で
きず、平坦度も良好とは言えない。
Conventionally, a silane-oxygen-based atmospheric pressure CVD method has been used as a technique for forming an insulating film. However, since this method shows non-conformal step coverage that easily causes overhang, it is used for a shape having a high aspect ratio. It cannot be done, and the flatness is not good.

【0004】これを解決する方法として、無機もしくは
有機SOGによる塗布法、スパッタエッチ時のファセッ
ティング効果を利用したバイアスECR法、犠牲膜を前
面プラズマエッチするエッチバック法等考えられている
が、絶縁膜の膜質、パターン依存性、工程の複雑さ、プ
ラズマによるダメージなどの問題がある。
As a method for solving this, a coating method using an inorganic or organic SOG, a bias ECR method utilizing the faceting effect at the time of sputter etching, an etch-back method of etching the sacrificial film by front surface plasma are considered. There are problems such as film quality, pattern dependence, process complexity, and plasma damage.

【0005】この平坦性の問題を解決するための手段と
して、特開昭61−77695号に示されているごとく
有機シラン(TEOS,テトラエトキシシラン)とオゾ
ンを反応させる方法が開発されてきた。この方法によれ
ば、表面反応主体のプロセスであるため反応種が基体表
面を十分マイグレーションし、結果として良好なステッ
プカバレッジを示す。
As a means for solving this problem of flatness, a method of reacting an organic silane (TEOS, tetraethoxysilane) with ozone has been developed as shown in JP-A-61-77695. According to this method, since the process is mainly a surface reaction, the reactive species sufficiently migrate on the surface of the substrate, resulting in good step coverage.

【0006】オゾンとTEOSを用いる反応はステップ
カバレッジは良いものの、成膜温度が400℃程度の低
温反応のため膜がポーラスである、また、膜中にSi−
OH結合が存在する等の欠点がある。これらが水分の吸
収や、ガスの発生による断線不良を引き起こす原因とな
る。また、この反応で形成する酸化膜の膜質はオゾン濃
度に影響を受けるが、肝心なオゾン濃度のコントロール
が困難なため、良好な膜質が得られないという問題もあ
る。
Although the reaction using ozone and TEOS has good step coverage, the film is porous due to the low temperature reaction at a film forming temperature of about 400.degree.
There are drawbacks such as the presence of OH bonds. These may cause water absorption and defective disconnection due to gas generation. Further, although the film quality of the oxide film formed by this reaction is affected by the ozone concentration, there is also a problem that good film quality cannot be obtained because it is difficult to control the ozone concentration, which is essential.

【0007】[0007]

【発明が解決しようとする課題】上述したごとく、多層
配線形成プロセスにおける絶縁膜の平坦化には多くの障
害が存在し、将来有望であると思われるオゾン−TEO
SCVD法においても、膜質が良好でなく、オゾンの取
扱が困難である等の問題点が指摘されている。
As described above, there are many obstacles to the flattening of the insulating film in the multi-layer wiring formation process, and ozone-TEO, which is considered to be promising in the future.
Also in the SCVD method, problems such as poor film quality and difficulty in handling ozone have been pointed out.

【0008】本発明の目的は上記問題点を解決して、ア
スペクト比の高い表面にも、良好な平坦性を持ちかつ、
膜質が良い酸化膜を形成することが可能な半導体膜形成
方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems and to have good flatness even on a surface having a high aspect ratio, and
It is an object of the present invention to provide a semiconductor film forming method capable of forming an oxide film having good film quality.

【0009】[0009]

【課題を解決するための手段】上記オゾン−TEOSC
VD法の問題点は成膜温度が低い点とオゾン濃度のコン
トロールが難しい点である。これは原料にTEOSを使
用する以上回避不可能の問題と考えられる。なぜなら、
TEOS自体の分解温度が約700℃と高く、オゾンの
ように反応性の高い化学種でないと低温で反応しないた
めである。低温化のためにプラズマを使用する方法も考
えられているが、プラズマダメージ、ステップカバレッ
ジが悪化する等の問題が発生する。
Means for Solving the Problems Ozone-TEOSC
The problems of the VD method are that the film forming temperature is low and that the ozone concentration is difficult to control. This is considered to be an unavoidable problem when TEOS is used as the raw material. Because
This is because the decomposition temperature of TEOS itself is as high as about 700 ° C., and unless it is a highly reactive chemical species such as ozone, it will not react at a low temperature. Although a method of using plasma for lowering the temperature has been considered, problems such as plasma damage and deterioration of step coverage occur.

【0010】このような問題を解決するために、本発明
者らが鋭意努力の結果、オゾンのような取扱の難しい化
学種を用いずに、酸素を使用し、やはり低温で酸化膜を
合成することのできる原料ガスを発見した。このガスを
TEOSの代わりに用いることにより、アスペクト比の
高い表面にも、良好な平坦性を持ちかつ、膜質が良い酸
化膜を形成することが可能になった。
As a result of diligent efforts by the present inventors to solve such a problem, oxygen is used without using a difficult-to-handle chemical species such as ozone, and an oxide film is also synthesized at a low temperature. We have discovered a raw material gas that can be used. By using this gas instead of TEOS, it becomes possible to form an oxide film having good flatness and good film quality even on a surface having a high aspect ratio.

【0011】即ち、本発明は、 一般式 (R1 2 N)n SiH4-n (但し、上式において、R1 、R2 がH−,CH3 −,
2 5 −,C3 7 −,C4 9 −のいずれかであ
り、そのうち少なくとも一つがH−でない。nは1〜4
の整数である)で表わされる有機シラン化合物と酸素を
含んだ化合物を加えて原料ガスとして化学気相成長法に
より酸化珪素膜を形成することを特徴とする半導体膜形
成方法を提供するものである。
That is, according to the present invention, the general formula (R 1 R 2 N) n SiH 4-n (where R 1 and R 2 are H-, CH 3- ,
C 2 H 5 -, C 3 H 7 -, C 4 H 9 - are either, at least one of them is not H-. n is 1 to 4
The present invention provides a method for forming a semiconductor film, characterized in that a silicon oxide film is formed by a chemical vapor deposition method as a raw material gas by adding an organic silane compound represented by .

【0012】ここで、有機シラン化合物を2種類以上組
み合わせて用いるのが好ましい。
Here, it is preferable to use two or more kinds of organic silane compounds in combination.

【0013】また、有機シラン化合物としては、トリス
ジメチルアミノシラン((CH3 2 N)3 SiH、ビ
スジメチルアミノシラン((CH3 2 N)2 Si
2 、ジメチルアミノシラン((CH3 2 N)SiH
3 、トリスジエチルアミノシラン((C2 5 2 N)
3 SiH、ビスジエチルアミノシラン((C2 5 2
N)2 SiH2 、ジエチルアミノシラン((C2 5
2 N)SiH3 、トリスジプロピルアミノシラン((C
3 7 2 N)3 SiH、ビスジプロピルアミノシラン
((C3 7 2 N)2 SiH2 、ジプロピルアミノシ
ラン((C3 7 2 N)SiH3 、トリスジイソブチ
ルアミノシラン((C4 9 2 N)3 SiH、ビスジ
イソブチルアミノシラン((C4 9 2 N)2 SiH
2 、ジイソブチルアミノシラン((C4 9 2 N)S
iH3 を用いるのが好適である。
The organosilane compound is tris.
Dimethylaminosilane ((CH3) 2N)3SiH, Bi
Sdimethylaminosilane ((CH3)2N)2Si
H2, Dimethylaminosilane ((CH3)2N) SiH
3, Trisdiethylaminosilane ((C2HFive)2N)
3SiH, bisdiethylaminosilane ((C2HFive)2
N)2SiH2, Diethylaminosilane ((C2HFive)
2N) SiH3, Trisdipropylaminosilane ((C
3H7)2N)3SiH, bisdipropylaminosilane
((C3H7)2N)2SiH2, Dipropylaminosi
Run ((C3H7) 2N) SiH3, Tris diisobuty
Luminosilane ((CFourH9)2N)3SiH, bisuji
Isobutylaminosilane ((CFourH9)2N)2SiH
2, Diisobutylaminosilane ((CFourH9)2N) S
iH3Is preferably used.

【0014】[0014]

【発明の作用】以下に本発明をさらに詳細に説明する。
本発明の半導体膜形成法によれば、本原料ガスと酸素を
含む分子を用いることにより、低温合成が可能で、しか
も、オゾンの場合と異なり反応が容易に制御できるた
め、良好な膜質を持つ酸化膜が形成できる。さらに、有
機材料の流動性からステップカバレッジも良好なものが
得られる。
The present invention will be described in more detail below.
According to the method for forming a semiconductor film of the present invention, low temperature synthesis is possible by using the raw material gas and a molecule containing oxygen, and moreover, unlike the case of ozone, the reaction can be easily controlled, resulting in a good film quality. An oxide film can be formed. Further, due to the fluidity of the organic material, good step coverage can be obtained.

【0015】本発明の半導体膜形成方法においては、原
料として有機シラン化合物と含酸素化合物を用い、これ
らを原料ガスとして化学気相成長法により酸化珪素膜を
形成する。
In the semiconductor film forming method of the present invention, an organic silane compound and an oxygen-containing compound are used as raw materials, and a silicon oxide film is formed by a chemical vapor deposition method using these as raw material gases.

【0016】本発明においては、有機シラン化合物とし
ては、一般式 (R1 2 N)n SiH4-n (但し、上式において、R1 、R2 がH−,CH3 −,
2 5 −,C3 7 −,C4 9 −のいずれかであ
り、そのうち少なくとも一つがH−でない。nは1〜4
の整数である)で表される有機化合物を少なくとも1種
用いる。
In the present invention, the organic silane compound is represented by the general formula (R 1 R 2 N) n SiH 4-n (provided that in the above formula, R 1 and R 2 are H-, CH 3- ,
C 2 H 5 -, C 3 H 7 -, C 4 H 9 - are either, at least one of them is not H-. n is 1 to 4
Is an integer) is used at least one kind.

【0017】また、酸素含有化合物としては、酸素のほ
か、N2 Oなどの系に悪影響を与えない酸素含有化合物
であれば、何を用いてもよい。
As the oxygen-containing compound, in addition to oxygen, any oxygen-containing compound which does not adversely affect the system such as N 2 O may be used.

【0018】上記有機シラン化合物としては、有機シラ
ン化合物が、トリスジメチルアミノシラン((CH3
2 N)3 SiH,ビスジメチルアミノシラン((C
3 2N)2 SiH2 ,ジメチルアミノシラン((C
3 2 N)SiH3 ,トリスジエチルアミノシラン
((C2 5 2 N)3 SiH,ビスジエチルアミノシ
ラン(C2 5 2 N)2 SiH2 ,ジエチルアミノシ
ラン((C2 5 2 N)SiH3 ,トリスジプロピル
アミノシラン((C3 7 2 N)3 SiH,ビスジプ
ロピルアミノシラン((C3 7 2 N)2 SiH2
ジプロピルアミノシラン((C3 7 2 N)Si
3 ,トリスジイソブチルアミノシラン((C4 9
2 N)3 SiH,ビスジイソブチルアミノシラン((C
4 9 2 N)2 SiH2 ,ジイソブチルアミノシラン
((C4 9 2 N)SiH3 を用いるのが好ましい。
Examples of the above-mentioned organic silane compound include organic sila.
Compound is trisdimethylaminosilane ((CH3)
2N)3SiH, bisdimethylaminosilane ((C
H3)2N)2SiH2, Dimethylaminosilane ((C
H3)2N) SiH3, Trisdiethylaminosilane
((C2HFive)2N)3SiH, bisdiethylamino
Run (C2HFive)2N)2SiH2, Diethylamino
Run ((C2HFive)2N) SiH3, Trisdipropyl
Aminosilane ((C3H7)2N)3SiH, biszip
Ropylaminosilane ((C3H7)2N)2SiH2
Dipropylaminosilane ((C3H7)2N) Si
H3, Trisdiisobutylaminosilane ((CFourH 9)
2N)3SiH, bisdiisobutylaminosilane ((C
FourH9)2N)2SiH2, Diisobutylaminosilane
((CFourH9)2N) SiH3Is preferably used.

【0019】本発明の方法を実施する際にしては、図1
に模式的に示す装置を用いるのが好適である。同図にお
いて、1は原料ガス、2は基板、3はヒータ、4はオイ
ルバス、5は成膜室、6はノズル、7は排気ポンプ、8
はストップバルブ、9はガスラインである。
In carrying out the method of the present invention, FIG.
It is suitable to use the apparatus schematically shown in FIG. In the figure, 1 is a source gas, 2 is a substrate, 3 is a heater, 4 is an oil bath, 5 is a film forming chamber, 6 is a nozzle, 7 is an exhaust pump, and 8 is.
Is a stop valve, and 9 is a gas line.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0021】(実施例1)本実施例においては、図1に
示す装置を用いて成膜を行った。原料ガスとしてはトリ
スジメチルアミノシラン((CH3 2 N)3 SiHと
酸素を用いた。実験条件は基板としてステップカバレッ
ジ測定用のAlの配線パターン付のSiウエハと赤外吸
収スペクトルを測定するためのペアSiウエハを用い、
基板温度400℃、動作圧力100torr、原料ガス
はオイルバスにて70℃に加熱され、窒素ガス10sc
cmによりバブリングされ成膜室に導入した。また、酸
素は5sccm、バッファガスとして窒素を100sc
cm流した。この条件で成膜した膜の赤外吸収スペクト
ルを図2に示す。この図より、この膜が良質なSiO 2
膜であることが判る。また、ステップカバレッジも良好
であった。なお、ここでは酸素を含む化合物として酸素
分子を用いたが、もちろん、酸素を含む化合物(例えば
2 Oなど)であれば使用できる。
(Embodiment 1) In this embodiment, FIG.
Film formation was performed using the apparatus shown. The source gas is tri
Sdimethylaminosilane ((CH3)2N)3With SiH
Oxygen was used. The experimental conditions are step coverage as a substrate.
Si wafer with Al wiring pattern for infrared measurement and infrared absorption
Using a pair of Si wafers for measuring the absorption spectrum,
Substrate temperature 400 ° C, operating pressure 100 torr, source gas
Is heated to 70 ° C in an oil bath, nitrogen gas 10sc
It was bubbled by cm and introduced into the film forming chamber. Also acid
Element is 5 sccm, nitrogen as buffer gas is 100 sc
cm flowed. Infrared absorption spectrum of film formed under these conditions
Is shown in FIG. This figure shows that this film is of good quality 2
It turns out to be a film. Also, good step coverage
Met. Note that here, oxygen is used as a compound containing oxygen.
Although a molecule was used, of course, a compound containing oxygen (for example,
N2O, etc.) can be used.

【0022】(実施例2)本実施例においても、図1に
示す装置を用いて成膜を行った。原料ガスとしてはトリ
スジメチルアミノシラン((CH3 2 N)3 SiHと
ビスジメチルアミノシラン((CH3 2 N)2 SiH
2 を1:1で混合したものと酸素を用いた。実験条件は
基板としてステップカバレッジ測定用のAlの配線パタ
ーン付きのSiウエハと赤外吸収スペクトルを測定する
ためのベアSiウエハを用い、動作圧力100tor
r、原料ガスはオイルバスにて70℃に加熱され、窒素
ガス10sccmによりバブリングされ成膜室に導入し
た。また、酸素は5sccm、バッファガスとして窒素
を100sccm流した。この条件で成膜した膜の場
合、実施例1と同等の膜質を得るための基板温度は35
0℃で良いことが判った。より一層の低温化が可能にな
ったといえる。
(Embodiment 2) In this embodiment as well, film formation was performed using the apparatus shown in FIG. Raw material gases include trisdimethylaminosilane ((CH 3 ) 2 N) 3 SiH and bisdimethylaminosilane ((CH 3 ) 2 N) 2 SiH
A mixture of 2 in 1: 1 and oxygen was used. The experimental conditions were as follows: an Si wafer with Al wiring pattern for step coverage measurement and a bare Si wafer for measuring infrared absorption spectrum were used as substrates, and operating pressure was 100 torr.
r, the raw material gas was heated to 70 ° C. in an oil bath, bubbled with 10 sccm of nitrogen gas, and introduced into the film forming chamber. Further, oxygen was flowed at 5 sccm, and nitrogen was flowed at 100 sccm as a buffer gas. In the case of a film formed under these conditions, the substrate temperature for obtaining a film quality equivalent to that in Example 1 is 35.
It turns out that 0 ° C is good. It can be said that even lower temperatures have become possible.

【0023】(比較例)本発明の効果を明確にするた
め、比較例として従来からステップカバレッジが良いと
されているオゾン−TEOSによる酸化膜の合成を行っ
た。原料ガスとしてはテトラエトキシシラン(TEO
S)とオゾン(O3 )を用いた。実験条件は基板として
Alの配線パターン付のSiと赤外吸収スペクトルを測
定するためのベアSiウエハを用い、基板温度400
℃、動作圧力は1気圧、TEOSはオイルバスにて65
℃に加熱され、窒素ガス100sccmによりバブリン
グされ成膜室に導入した。また、オゾンはオゾナイザー
(約4%がオゾンになる)により供給され、その時の酸
素の流量は7.5SLMとした。またバッファガスとし
て窒素を35SLM流した。この条件で成膜した膜の赤
外吸収スペクトルを図3に示す。この図より、この膜が
OH基を多量に含むSiO2 膜であり、膜として問題が
あることが判る。
(Comparative Example) In order to clarify the effect of the present invention, an oxide film was synthesized by ozone-TEOS, which has been conventionally considered to have good step coverage, as a comparative example. As a raw material gas, tetraethoxysilane (TEO
S) and ozone (O 3 ) were used. The experimental conditions were as follows: Si with an Al wiring pattern was used as a substrate, and a bare Si wafer for measuring an infrared absorption spectrum was used.
℃, operating pressure 1 atm, TEOS 65 in the oil bath
It was heated to 0 ° C., bubbled with 100 sccm of nitrogen gas, and introduced into the film forming chamber. Further, ozone was supplied by an ozonizer (about 4% becomes ozone), and the flow rate of oxygen at that time was 7.5 SLM. Further, 35 SLM of nitrogen was used as a buffer gas. The infrared absorption spectrum of the film formed under these conditions is shown in FIG. From this figure, it can be seen that this film is a SiO 2 film containing a large amount of OH groups and has a problem as a film.

【0024】[0024]

【発明の効果】本発明によれば、成膜温度は低温(40
0℃以下)のままで、ステップカバレッジが良好で、平
坦性も高く、しかも膜質の良い酸化膜が形成できる。
According to the present invention, the film forming temperature is low (40
(0 ° C. or less), an oxide film having good step coverage, high flatness, and good film quality can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で用いた成膜装置の概略図で
ある。
FIG. 1 is a schematic view of a film forming apparatus used in an example of the present invention.

【図2】 本発明により形成した実施例1での膜の赤外
吸収スペクトル図である。
FIG. 2 is an infrared absorption spectrum diagram of the film of Example 1 formed according to the present invention.

【図3】 従来の方法より形成した比較例での膜の赤外
吸収スペクトル図である。
FIG. 3 is an infrared absorption spectrum diagram of a film of a comparative example formed by a conventional method.

【符号の説明】[Explanation of symbols]

1 原料ガス 2 基板 3 ヒータ 4 オイルバス 5 成膜室 6 ノズル 7 排気ポンプ 8 ストップバルブ 9 ガスライン 1 Raw Material Gas 2 Substrate 3 Heater 4 Oil Bath 5 Film Forming Chamber 6 Nozzle 7 Exhaust Pump 8 Stop Valve 9 Gas Line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式 (R1 2 N)n SiH4-n (但し、上式において、R1 、R2 がH−,CH3 −,
2 5 −,C3 7 −,C4 9 −のいずれかであ
り、そのうち少なくとも一つがH−でない。nは1〜4
の整数である)で表わされる有機シラン化合物と酸素を
含んだ化合物を加えて原料ガスとして化学気相成長法に
より酸化珪素膜を形成することを特徴とする半導体膜形
成方法。
1. A compound represented by the general formula (R 1 R 2 N) n SiH 4-n (wherein R 1 and R 2 are H-, CH 3- ,
C 2 H 5 -, C 3 H 7 -, C 4 H 9 - are either, at least one of them is not H-. n is 1 to 4
A compound containing oxygen and a compound containing oxygen is added to form a silicon oxide film by a chemical vapor deposition method as a raw material gas.
【請求項2】有機シラン化合物を2種類以上組み合わせ
て用いる請求項1に記載の半導体膜形成方法。
2. The method for forming a semiconductor film according to claim 1, wherein two or more kinds of organic silane compounds are used in combination.
【請求項3】有機シラン化合物が、 トリスジメチルアミノシラン((CH3 2 N)3 Si
H、 ビスジメチルアミノシラン((CH3 2 N)2 SiH
2 、 ジメチルアミノシラン((CH3 2 N)SiH3 、 トリスジエチルアミノシラン((C2 5 2 N)3
iH、 ビスジエチルアミノシラン((C2 5 2 N)2 Si
2 、 ジエチルアミノシラン((C2 5 2 N)SiH3 、 トリスジプロピルアミノシラン((C3 7 2 N)3
SiH、 ビスジプロピルアミノシラン((C3 7 2 N)2
iH2 、 ジプロピルアミノシラン((C3 7 2 N)Si
3 、 トリスジイソブチルアミノシラン((C4 9 2 N)
3 SiH、 ビスジイソブチルアミノシラン((C4 9 2 N)2
SiH2 、 ジイソブチルアミノシラン((C4 9 2 N)SiH
3である請求項1または2に記載の半導体膜形成方法。
3. The organosilane compound is trisdimethylaminosilane ((CH 3 ) 2 N) 3 Si.
H, bisdimethylaminosilane ((CH 3 ) 2 N) 2 SiH
2 , dimethylaminosilane ((CH 3 ) 2 N) SiH 3 , trisdiethylaminosilane ((C 2 H 5 ) 2 N) 3 S
iH, bisdiethylaminosilane ((C 2 H 5 ) 2 N) 2 Si
H 2, diethylaminosilane ((C 2 H 5) 2 N) SiH 3, tris dipropylamino silane ((C 3 H 7) 2 N) 3
SiH, bis dipropylamino silane ((C 3 H 7) 2 N) 2 S
iH 2 , dipropylaminosilane ((C 3 H 7 ) 2 N) Si
H 3, tris diisobutyl aminosilane ((C 4 H 9) 2 N)
3 SiH, bisdiisobutylaminosilane ((C 4 H 9 ) 2 N) 2
SiH 2, diisobutyl aminosilane ((C 4 H 9) 2 N) SiH
The method for forming a semiconductor film according to claim 1, wherein the method is 3.
JP4284350A 1992-10-22 1992-10-22 Method for forming semiconductor film Withdrawn JPH06132276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4284350A JPH06132276A (en) 1992-10-22 1992-10-22 Method for forming semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4284350A JPH06132276A (en) 1992-10-22 1992-10-22 Method for forming semiconductor film

Publications (1)

Publication Number Publication Date
JPH06132276A true JPH06132276A (en) 1994-05-13

Family

ID=17677450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4284350A Withdrawn JPH06132276A (en) 1992-10-22 1992-10-22 Method for forming semiconductor film

Country Status (1)

Country Link
JP (1) JPH06132276A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262053B1 (en) * 1995-08-18 2000-07-15 다케모토 히데하루 Method for forming film
JP2002080296A (en) * 2000-09-06 2002-03-19 Humo Laboratory Ltd Thin film rock crystal and its manufacturing method
EP1383163A2 (en) * 2002-07-08 2004-01-21 Samsung Electronics Co., Ltd. Methods for forming silicon dioxide layers on substrates using atomic layer deposition
JP2004315364A (en) * 2004-07-12 2004-11-11 Humo Laboratory Ltd Quartz crystal thin film
US7077904B2 (en) 2002-04-25 2006-07-18 Samsung Electronics Co., Ltd. Method for atomic layer deposition (ALD) of silicon oxide film
US7084076B2 (en) 2003-02-27 2006-08-01 Samsung Electronics, Co., Ltd. Method for forming silicon dioxide film using siloxane
CN101078109A (en) * 2006-05-23 2007-11-28 气体产品与化学公司 Process for producing silicon oxide films from organoaminosilane precursors
JP2008533731A (en) * 2005-03-17 2008-08-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming silicon oxide-containing film
JP2008273824A (en) * 2008-04-08 2008-11-13 Humo Laboratory Ltd Quartz crystal thin film
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
JP2011097096A (en) * 2007-08-31 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus and method of forming oxide film
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
US8771807B2 (en) 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
CN105369215A (en) * 2007-02-27 2016-03-02 气体产品与化学公司 Plasma enhanced cyclic chemical vapor deposition of silicon-containing films
US9371338B2 (en) 2012-07-20 2016-06-21 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications
US9382268B1 (en) 2013-07-19 2016-07-05 American Air Liquide, Inc. Sulfur containing organosilane precursors for ALD/CVD silicon-containing film applications
US9822132B2 (en) 2013-07-19 2017-11-21 American Air Liquide, Inc. Hexacoordinate silicon-containing precursors for ALD/CVD silicon-containing film applications
US10570513B2 (en) 2014-12-13 2020-02-25 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications and methods of using the same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262053B1 (en) * 1995-08-18 2000-07-15 다케모토 히데하루 Method for forming film
JP2002080296A (en) * 2000-09-06 2002-03-19 Humo Laboratory Ltd Thin film rock crystal and its manufacturing method
US7077904B2 (en) 2002-04-25 2006-07-18 Samsung Electronics Co., Ltd. Method for atomic layer deposition (ALD) of silicon oxide film
EP1383163A2 (en) * 2002-07-08 2004-01-21 Samsung Electronics Co., Ltd. Methods for forming silicon dioxide layers on substrates using atomic layer deposition
EP1383163A3 (en) * 2002-07-08 2004-07-07 Samsung Electronics Co., Ltd. Methods for forming silicon dioxide layers on substrates using atomic layer deposition
US6992019B2 (en) 2002-07-08 2006-01-31 Samsung Electronics Co., Ltd. Methods for forming silicon dioxide layers on substrates using atomic layer deposition
US7084076B2 (en) 2003-02-27 2006-08-01 Samsung Electronics, Co., Ltd. Method for forming silicon dioxide film using siloxane
JP2004315364A (en) * 2004-07-12 2004-11-11 Humo Laboratory Ltd Quartz crystal thin film
JP2008533731A (en) * 2005-03-17 2008-08-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming silicon oxide-containing film
US8227032B2 (en) 2005-03-17 2012-07-24 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming silicon oxide containing films
US8613976B2 (en) 2005-03-17 2013-12-24 L'Air Liquide, SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming silicon oxide containing films
JP2013070077A (en) * 2005-03-17 2013-04-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Formation method of silicon oxide containing film
KR101248358B1 (en) * 2005-03-17 2013-04-03 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method of forming silicon oxide containing films
US8932675B2 (en) 2005-05-16 2015-01-13 Air Products And Chemicals, Inc. Methods for depositing silicon carbo-nitride film
US9640386B2 (en) 2005-05-16 2017-05-02 Versum Materials Us, Llc Precursors for CVD silicon carbo-nitride films
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
JP2011040741A (en) * 2005-05-16 2011-02-24 Air Products & Chemicals Inc Composition for chemical vapor deposition
US7932413B2 (en) 2005-05-16 2011-04-26 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride films
JP2013042177A (en) * 2005-05-16 2013-02-28 Air Products & Chemicals Inc Composition for chemical vapor deposition
US8383849B2 (en) 2005-05-16 2013-02-26 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride films
KR100903916B1 (en) * 2006-05-23 2009-06-19 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Process for producing silicon oxide films from organoaminosilane precursors
JP2007318142A (en) * 2006-05-23 2007-12-06 Air Products & Chemicals Inc Method for manufacturing silicon oxide film from organic amino silane precursor
EP2562797A1 (en) * 2006-05-23 2013-02-27 Air Products And Chemicals, Inc. Process for producing silicon oxide films from organoaminosilane precursors
EP2562798A1 (en) * 2006-05-23 2013-02-27 Air Products And Chemicals, Inc. Process for producing silicon oxide films from organoaminosilane precursors
JP4718515B2 (en) * 2006-05-23 2011-07-06 エア プロダクツ アンド ケミカルズ インコーポレイテッド Silicon oxide and silicon oxynitride films, methods for forming them, and compositions for chemical vapor deposition
EP1860690B1 (en) * 2006-05-23 2018-10-24 Versum Materials US, LLC Process for producing silicon oxide films from organoaminosilane precursors
US7875312B2 (en) 2006-05-23 2011-01-25 Air Products And Chemicals, Inc. Process for producing silicon oxide films for organoaminosilane precursors
CN103225070A (en) * 2006-05-23 2013-07-31 气体产品与化学公司 Process for producing silicon oxide films from organoaminosilane precursors
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
CN103397306A (en) * 2006-05-23 2013-11-20 气体产品与化学公司 Process for producing silicon oxide film from organoaminosilane precursors
JP2017208575A (en) * 2006-05-23 2017-11-24 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Silicon oxide and silicon oxynitride film, forming methods thereof, and composition for chemical vapor deposition
JP2014045218A (en) * 2006-05-23 2014-03-13 Air Products And Chemicals Inc Silicon oxide and silicon oxynitride film, and forming method thereof, and composition for chemical vapor deposition
CN101078109A (en) * 2006-05-23 2007-11-28 气体产品与化学公司 Process for producing silicon oxide films from organoaminosilane precursors
JP2014132665A (en) * 2006-05-23 2014-07-17 Air Products And Chemicals Inc Process for producing silicon oxide films from organoaminosilane precursors
JP2015159335A (en) * 2006-05-23 2015-09-03 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Silicon oxide and silicon oxynitride film, and forming method thereof, and composition for chemical vapor deposition
JP2011159992A (en) * 2006-05-23 2011-08-18 Air Products & Chemicals Inc Method for manufacturing silicon oxide film from organoaminosilane precursors
JP2015128170A (en) * 2006-05-23 2015-07-09 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Silicon oxide and silicon oxynitride film, and forming method thereof, and composition for chemical vapor deposition
JP2015146429A (en) * 2006-05-23 2015-08-13 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Silicon oxide and silicon oxynitride film, forming method thereof, and composition for chemical vapor deposition
CN105369215A (en) * 2007-02-27 2016-03-02 气体产品与化学公司 Plasma enhanced cyclic chemical vapor deposition of silicon-containing films
JP2011097096A (en) * 2007-08-31 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus and method of forming oxide film
JP2008273824A (en) * 2008-04-08 2008-11-13 Humo Laboratory Ltd Quartz crystal thin film
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
US8771807B2 (en) 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
US9371338B2 (en) 2012-07-20 2016-06-21 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications
US9593133B2 (en) 2012-07-20 2017-03-14 America Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications
US9938303B2 (en) 2012-07-20 2018-04-10 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications
US9382268B1 (en) 2013-07-19 2016-07-05 American Air Liquide, Inc. Sulfur containing organosilane precursors for ALD/CVD silicon-containing film applications
US9822132B2 (en) 2013-07-19 2017-11-21 American Air Liquide, Inc. Hexacoordinate silicon-containing precursors for ALD/CVD silicon-containing film applications
US10570513B2 (en) 2014-12-13 2020-02-25 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications and methods of using the same

Similar Documents

Publication Publication Date Title
JPH06132276A (en) Method for forming semiconductor film
KR100443085B1 (en) A Method Of Forming Silicon Containing Thin Film by Atomic Layer Deposition Utilizing Hexachlorodisilane and ammonia
JP7092709B2 (en) High temperature atomic layer deposition of silicon-containing film
KR100961805B1 (en) Method of forming silicon oxide containing films
KR960011015B1 (en) DEPOSITION OF SILICON DIOXIDE FILMS AT TEMPERATURE AS LOW AS 100í• BY LPCVD USING ORGANODISILANE SOURCES
US7488693B2 (en) Method for producing silicon oxide film
KR100903484B1 (en) Cvd method and device for forming silicon-containing insulation film
US5290736A (en) Method of forming interlayer-insulating film using ozone and organic silanes at a pressure above atmospheric
US7642204B2 (en) Methods of forming fluorine doped insulating materials
WO2004010467A2 (en) Low temperature dielectric deposition using aminosilane and ozone
JP2000077403A (en) Growth of oxygen-containing silicon compound film
KR20070000465A (en) Method for producing silicon nitride films and silicon oxynitride films by chemical vapor deposition
US5324539A (en) Method for forming CVD thin glass films
JPH03286531A (en) Formation of silicon oxide film
JPH098031A (en) Manufacture of insulation film by means of chemical vapor phase epitaxy
US6645873B2 (en) Method for manufacturing a semiconductor device
US5459108A (en) Normal pressure CVD process for manufacture of a semiconductor device through reaction of a nitrogen containing organic source with ozone
JPH07161705A (en) Method of forming interlayer insulating film of multilayered wiring of semiconductor device
KR20050018641A (en) Low temperature dielectric deposition using aminosilane and ozone
JP3401322B2 (en) Method for manufacturing semiconductor device having insulating film
TWI830206B (en) Silicon precursor compounds and method for forming silicon-containing films
JPH08115976A (en) Deposition of low dielectric film
JPH05299412A (en) Manufacture of silicon oxide film in semiconductor device
JP3090751B2 (en) Method for manufacturing semiconductor device
JP3081932B2 (en) Atmospheric pressure CVD equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104