JP3720299B2 - Ultrasonic sludge concentration measuring device - Google Patents

Ultrasonic sludge concentration measuring device Download PDF

Info

Publication number
JP3720299B2
JP3720299B2 JP2001401484A JP2001401484A JP3720299B2 JP 3720299 B2 JP3720299 B2 JP 3720299B2 JP 2001401484 A JP2001401484 A JP 2001401484A JP 2001401484 A JP2001401484 A JP 2001401484A JP 3720299 B2 JP3720299 B2 JP 3720299B2
Authority
JP
Japan
Prior art keywords
sludge
ultrasonic
measured
sludge concentration
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001401484A
Other languages
Japanese (ja)
Other versions
JP2003202327A (en
Inventor
芳紀 沖
和夫 湯川
忠良 高橋
三夫 氣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ULTRASONIC ENGINEERING CO., LTD.
Nishihara Environmental Technology Co Ltd
Original Assignee
ULTRASONIC ENGINEERING CO., LTD.
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ULTRASONIC ENGINEERING CO., LTD., Nishihara Environmental Technology Co Ltd filed Critical ULTRASONIC ENGINEERING CO., LTD.
Priority to JP2001401484A priority Critical patent/JP3720299B2/en
Publication of JP2003202327A publication Critical patent/JP2003202327A/en
Application granted granted Critical
Publication of JP3720299B2 publication Critical patent/JP3720299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超音波の減衰量が汚泥濃度と相関関係を有することを利用して水処理施設等で汚泥中の固形物濃度を測定するための超音波式汚泥濃度測定装置に関するものである。
【0002】
【従来の技術】
従来の超音波式汚泥濃度測定装置では、汚泥濃度測定精度に大きな影響を及ぼす汚泥中の気泡を加圧消泡装置による加圧力で縮小ないし消滅させたり、また、被測定汚泥に単一周波数の超音波を照射して得られる超音波減衰量に対して別途補正回路装置(設備)で補正演算を行い、その結果を被測定汚泥の汚泥濃度測定値として表示させるようにしている。
【0003】
【発明が解決しようとする課題】
従来の超音波式汚泥濃度測定装置は以上のように構成されているので、汚泥中に気泡混入があると、その気泡による影響分だけ超音波の減衰量が加算された汚泥濃度測定値となるため、その汚泥濃度測定誤差が大きくなるという課題があった。そこで、汚泥濃度の測定に際しては汚泥中の気泡を加圧消泡装置の加圧力で減少ないし消滅させるが、この場合、その加圧時間を要するために間欠測定となり、しかも、汚泥中の気泡混入が著しい場合、その気泡を完全に除去できないという課題があった。
また、被測定汚泥に対する単一周波数の超音波照射による超音波減衰量の補正演算を別途補正回路装置で行うため、高価な装置や機器類が必要となり、取り扱いが煩雑で、汚泥濃度測定装置として大がかりな設備となるという課題があった。さらに、異なる周波数の超音波を送受信するには、周波数毎に送波部および受波部を設けなければならず、上記同様の課題があった。
【0004】
この発明は上記のような課題を解決するためになされたもので、被測定汚泥に周波数が異なる複数の超音波を照射することによって得られる複数の超音波減衰量から被測定汚泥の汚泥濃度を直接算出することができる超音波式汚泥濃度測定装置を得ることを目的とする。
【0005】
また、この発明は、高価な装置や機器類を必要とせずに超音波減衰量の補正演算を行うことができ、取り扱いが容易でコスト低減が図れる超音波式汚泥濃度測定装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る超音波式汚泥濃度測定装置は、超音波送波部および超音波受波部を有し、被測定汚泥に送波した超音波の減衰量により被測定汚泥の汚泥濃度を求める超音波式汚泥濃度測定装置において、被測定汚泥に送波する超音波の周波数を基本周波数の奇数倍に切換可能な周波数切換手段および少なくとも二種類の周波数の超音波を被測定汚泥に送波して得られる超音波減衰量から被測定汚泥の汚泥濃度を演算する汚泥濃度演算手段を備え、前記超音波送波部は、周波数が異なる複数の超音波を送波する一つの超音波送波部からなり、前記超音波受波部は、周波数が異なる複数の超音波を受波する一つの超音波受波部からなるものである。
【0008】
この発明に係る超音波式汚泥濃度測定装置の汚泥濃度演算手段は、被測定汚泥に送波した二種類の周波数の超音波減衰量に基づき、被測定汚泥に含まれる気泡による超音波減衰量を補正して被測定汚泥の汚泥濃度を演算するものである。
【0009】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1は汚泥中の固形物濃度と気泡に対する超音波減衰量の概念図である。
図において、f1,f2は被測定汚泥に照射する超音波の種類が異なる二種類の測定周波数(MHz)、Mf1,Mf2はf1,f2における超音波減衰量(dB)、Xは固形物濃度(%)、Yは気泡量(%)、af1,af2は固形物濃度の減衰係数(dB/%)、bf1,bf2は気泡減衰係数(dB/%)である。
【0010】
一般に被測定汚泥の汚泥濃度およびそこに含まれる気泡量は、いずれも照射した超音波の減衰量と比例関係にあるので、下記の式(1),(2)が成立する。
Mf1=af1・X+bf1・Y ・・・・(1)
Mf2=af2・X+bf2・Y ・・・・(2)
【0011】
ここで、Ka=af2/af1,Kb=bf2/bf1とし、上記(1)式,(2)式から下記の(3)式が得られる。
X=(Mf2−Kb・Mf1)/[af1・(Ka−Kb)]・・・(3)
この(3)式より各周波数の固形物濃度減衰係数および気泡減衰係数が解っていれば、測定値(減衰量)より気泡の影響がない汚泥濃度を測定することができる。
固形物濃度減衰係数および気泡減衰係数については、測定対象で変化する値であるため、事前に求めた係数として入力する。
なお、異なる3つ以上の周波数で被測定汚泥の汚泥濃度を測定する場合には、超音波減衰量と比例関係を示す被測定汚泥の粘性や汚泥粒径などの因子を利用して三次以上の方程式として濃度演算を行う。これにより、より精度の高い被測定汚泥の汚泥濃度を得ることができる。
【0012】
図2はこの発明の実施の形態1による超音波式汚泥濃度測定装置を示すブロック図である。
図において、1は水処理施設の汚泥配管、2はその汚泥配管1内の汚泥に対して周波数が異なる少なくとも二種類の超音波を送波する超音波送波部、3はその超音波送波部2から前記汚泥配管1を介して周波数が異なる少なくとも二種類の超音波を受波する超音波受波部、4はその超音波受波部3からの出力信号をA/D変換するA/D変換部、5はA/D変換部4からデジタル信号を入力する制御手段、6はその制御手段5との間で信号の受け渡しを行う汚泥濃度演算手段、7はシンセサイザ、8は表示部、9は出力部である。ここで、前記汚泥濃度演算手段6には、上記(1)〜(3)の式が設定されている。
【0013】
次に動作について説明する。
検出器の基本周波数は1MHzとし、その奇数倍である1MHz、3MHz、5MHzで送信できるように周波数切換命令を汚泥濃度演算手段6から制御手段5に送り、その命令を受けてシンセサイザ7からの駆動信号を超音波送波部2が入力することにより該超音波送波部2が駆動される。
このように奇数倍の周波数とすることにより奇数次高調波特性を利用することができ、これにより送波手段も受波手段も一つ(一つの超音波検出器)で、周波数が異なる複数の超音波を送受波することができる。
【0014】
そして、その超音波送波部2から汚泥配管1を介し超音波受波部3に向って周波数が異なる少なくとも二種類の超音波が送波される。これにより、前記汚泥配管1内の汚泥を伝播した超音波の周波数が異なる上記透過波を超音波受波部3が受信してA/D変換部4に送り、その電圧を制御部5で処理し測定値データとして汚泥濃度演算手段6が受信する。この汚泥濃度演算手段6では、2周波(任意選択可)のデータに基づいて上記式(1)、(2)による気泡補正演算を行い、その結果の算出値を汚泥濃度測定値として操作表示部8に表示すると共に、出力部9に出力する。
【0015】
以上説明した実施の形態1によれば、多周波(例えば、少なくとも2周波)で切り換え測定を行ない、選択した多周波データより補正演算を行うことにより、汚泥中の気泡や粒径、粘性等の影響を受けることなく、正確な汚泥濃度を測定できるという効果がある。
また、1つの検出器で異なる周波数の超音波を送受信することで、汚泥測定誤差要因の補正演算を行うことが可能となり、このため、構造が簡単で信頼性が高い安価な汚泥濃度測定装置を提供できるという効果がある。
【0016】
なお、上記実施の形態1で説明した超音波切換手段は、異なる周波数の超音波を送波する命令系統および当該命令に応じた超音波送波手段を制御する制御手段を備えるものであればよい
【0017】
実施の形態2.
図3はこの発明の実施の形態2による加圧消泡装置を付加した超音波式汚泥濃度測定装置を示すブロック図であり、図1と同一の構成要素には同一符号を付して重複説明を省略する。
図において、10は汚泥濃度演算手段6からの出力信号を入力する加圧消泡動作回路、11は超音波送波部2と超音波受波部3との間に配置されて前記加圧消泡動作回路10からの信号を入力する加圧消泡装置である。
【0018】
この実施の形態2によれば、気泡量による加圧消泡モード、および汚泥濃度測定誤差要因を除去するモードとなる補正演算測定モードの切り換えを行うことが可能となり、そのモード切り換えにより、試運転時の手動モードで加圧前後のデータから気泡演算の各係数を求めてメモリすることができるという効果がある。また、上記測定モードを組み合わせた自動運転も可能になるという効果がある。さらには、被測定汚泥中の気泡が著しい場合でも、加圧消泡装置11と組合わせることにより、汚泥測定誤差が少なくなり、被測定汚泥の汚泥濃度を連続測定することができるという効果がある。
【0019】
【発明の効果】
以上のように、この発明によれば、超音波送波部および超音波受波部を有し、被測定汚泥に送波した超音波の減衰量により被測定汚泥の汚泥濃度を求める超音波式汚泥濃度測定装置において、被測定汚泥に送波する超音波の周波数を基本周波数の奇数倍に切換可能な周波数切換手段および少なくとも二種類の周波数の超音波を被測定汚泥に送波して得られる超音波減衰量から被測定汚泥の汚泥濃度を演算する汚泥濃度演算手段を備え、前記超音波送波部は、周波数が異なる複数の超音波を送波する一つの超音波送波部からなり、前記超音波受波部は、周波数が異なる複数の超音波を受波する一つの超音波受波部からなるように構成したので、超音波送波部から照射された周波数が異なる複数の超音波を被測定汚泥に透過させて超音波受波部で受信させることにより、被測定汚泥を伝播した周波数が異なることによる超音波減衰量の違いを検出し、この周波数により違いがある超音波減衰量に基づく演算を行うだけで、従来のような加圧消泡装置を必要とせずに被測定汚泥の汚泥濃度を直接測定でき、設備の簡素化およびコスト低減を図ることができるという効果がある。
【0020】
特に、この発明では、前述のように、周波数が異なった複数の超音波を送受波することができる一つの超音波送波部および一つの超音波受波部を用いると共に、被測定汚泥に送波する超音波の周波数を基本周波数の奇数倍に切換可能な構成としたことにより、奇数次高調波特性を利用することができると共に前述のように、それぞれ一つの超音波送波部と超音波受波部で周波数が異なった複数の超音波を送受波することができ、従来のような加圧消泡装置を必要としないことから、コンパクトでメンテナンスが容易な汚泥濃度測定装置を実現でき、設備の簡素化およびコスト低減が図れるという効果がある。
【0021】
この発明によれば、汚泥濃度演算手段が、被測定汚泥に送波した少なくとも二種類の周波数の超音波減衰量に基づき、被測定汚泥に含まれる気泡による超音波減衰量を補正して被測定汚泥の汚泥濃度を演算するように構成したので、高価で大がかりな加圧消泡装置を必要とせずに、被測定汚泥の汚泥濃度の測定誤差要因となる被測定汚泥中の気泡による超音波減衰量を補正することができ、その補正によって測定精度が高い汚泥濃度測定値を得ることができるという効果がある。
【図面の簡単な説明】
【図1】汚泥中の固形物濃度と気泡に対する超音波減衰量の概念図である。
【図2】この発明の実施の形態1による超音波式汚泥濃度測定装置を示すブロック図である。
【図3】この発明の実施の形態2による加圧消泡装置を付加した超音波式汚泥濃度測定装置を示すブロック図である。
【符号の説明】
1 汚泥配管
2 超音波送波部
3 超音波受波部
4 A/D変換部
5 制御手段
6 汚泥濃度演算手段
7 シンセサイザ
8 表示部
9 出力部
10 加圧消泡動作回路
11 加圧消泡装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sludge concentration measuring apparatus for measuring the solid matter concentration in sludge at a water treatment facility or the like by utilizing the fact that the attenuation amount of ultrasonic waves has a correlation with the sludge concentration.
[0002]
[Prior art]
In conventional ultrasonic sludge concentration measurement devices, bubbles in sludge that have a large effect on sludge concentration measurement accuracy are reduced or eliminated by the pressure applied by the pressure defoaming device, and a single frequency is applied to the measured sludge. A correction circuit device (equipment) separately performs a correction operation on the ultrasonic attenuation obtained by irradiating ultrasonic waves, and the result is displayed as a measured sludge concentration value of the measured sludge.
[0003]
[Problems to be solved by the invention]
Since the conventional ultrasonic sludge concentration measuring apparatus is configured as described above, if bubbles are mixed in the sludge, the sludge concentration measurement value in which the attenuation amount of the ultrasonic wave is added by the amount affected by the bubbles. Therefore, there has been a problem that the sludge concentration measurement error becomes large. Therefore, when measuring the sludge concentration, the bubbles in the sludge are reduced or eliminated by the pressure applied by the pressure defoaming device. In this case, since the pressurization time is required, intermittent measurement is performed, and air bubbles are mixed in the sludge. However, there is a problem that the bubbles cannot be completely removed.
In addition, since correction calculation of ultrasonic attenuation amount by single-frequency ultrasonic irradiation to the sludge to be measured is performed by a separate correction circuit device, expensive devices and equipment are required, handling is complicated, and as a sludge concentration measurement device There was a problem that it would be a large facility. Furthermore, in order to transmit and receive ultrasonic waves having different frequencies, a wave transmitting unit and a wave receiving unit must be provided for each frequency, and there is a problem similar to the above.
[0004]
This invention was made in order to solve the above problems, and the sludge concentration of the measured sludge is determined from the plurality of ultrasonic attenuations obtained by irradiating the measured sludge with a plurality of ultrasonic waves having different frequencies. An object is to obtain an ultrasonic sludge concentration measuring device that can be directly calculated.
[0005]
Another object of the present invention is to provide an ultrasonic sludge concentration measuring apparatus that can perform an ultrasonic attenuation correction calculation without requiring an expensive apparatus or equipment, and that can be easily handled and reduced in cost. And
[0006]
[Means for Solving the Problems]
The ultrasonic sludge concentration measuring apparatus according to the present invention has an ultrasonic wave transmission unit and an ultrasonic wave reception unit, and determines the sludge concentration of the measured sludge by the attenuation amount of the ultrasonic wave transmitted to the measured sludge. in sonic sludge concentration measuring apparatus, and transmits an ultrasonic wave ultra odd multiples the switchable frequency switching means of the sound wave fundamental frequency frequencies and at least two types of frequencies transmitting the measured sludge to the measured sludge comprising a sludge concentration operation manual stage from the ultrasound attenuation obtained for calculating the sludge concentration in the measurement sludge, the ultrasonic wave transmitter, one of the ultrasonic wave transmitter for transmitting a plurality of ultrasonic waves of different frequencies The ultrasonic wave receiving unit is composed of one ultrasonic wave receiving unit that receives a plurality of ultrasonic waves having different frequencies .
[0008]
The sludge concentration calculating means of the ultrasonic sludge concentration measuring apparatus according to the present invention calculates the ultrasonic attenuation amount due to the bubbles contained in the measured sludge based on the ultrasonic attenuation amount of two kinds of frequencies transmitted to the measured sludge. It corrects and calculates the sludge concentration of the measured sludge.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
FIG. 1 is a conceptual diagram of the solid matter concentration in sludge and the ultrasonic attenuation amount with respect to bubbles.
In the figure, f1 and f2 are two types of measurement frequencies (MHz) with different types of ultrasonic waves applied to the sludge to be measured, Mf1 and Mf2 are ultrasonic attenuation amounts (dB) at f1 and f2, and X is a solid concentration ( %), Y is the bubble amount (%), af1 and af2 are attenuation coefficients (dB /%) of the solid concentration, and bf1 and bf2 are bubble attenuation coefficients (dB /%).
[0010]
In general, the sludge concentration of the sludge to be measured and the amount of bubbles contained therein are proportional to the attenuation of the irradiated ultrasonic wave, so the following equations (1) and (2) hold.
Mf1 = af1 · X + bf1 · Y (1)
Mf2 = af2 · X + bf2 · Y (2)
[0011]
Here, Ka = af2 / af1, Kb = bf2 / bf1, and the following expression (3) is obtained from the above expressions (1) and (2).
X = (Mf2−Kb · Mf1) / [af1 · (Ka−Kb)] (3)
If the solid matter concentration attenuation coefficient and the bubble attenuation coefficient of each frequency are known from this equation (3), the sludge concentration free from the influence of bubbles can be measured from the measured value (attenuation amount).
Since the solid matter concentration attenuation coefficient and the bubble attenuation coefficient are values that vary depending on the measurement target, they are input as coefficients obtained in advance.
When measuring the sludge concentration of the measured sludge at three or more different frequencies, using the factors such as the viscosity of the measured sludge and the sludge particle size, which are proportional to the ultrasonic attenuation, a third or higher order is used. Concentration calculation is performed as an equation. Thereby, the sludge density | concentration of to-be-measured sludge with higher precision can be obtained.
[0012]
FIG. 2 is a block diagram showing an ultrasonic sludge concentration measuring apparatus according to Embodiment 1 of the present invention.
In the figure, 1 is a sludge pipe of a water treatment facility, 2 is an ultrasonic wave transmission section that transmits at least two types of ultrasonic waves having different frequencies with respect to the sludge in the sludge pipe 1, and 3 is an ultrasonic wave transmission thereof. An ultrasonic receiving unit 4 that receives at least two types of ultrasonic waves having different frequencies from the unit 2 through the sludge pipe 1 is an A / D converter that performs A / D conversion on an output signal from the ultrasonic receiving unit 3. A D conversion unit, 5 is a control unit that inputs a digital signal from the A / D conversion unit 4, 6 is a sludge concentration calculation unit that exchanges signals with the control unit 5, 7 is a synthesizer, 8 is a display unit, Reference numeral 9 denotes an output unit. Here, the equations (1) to (3) are set in the sludge concentration calculating means 6.
[0013]
Next, the operation will be described.
The fundamental frequency of the detector is 1 MHz, and a frequency switching command is sent from the sludge concentration calculation means 6 to the control means 5 so that it can be transmitted at an odd multiple of 1 MHz, 3 MHz, and 5 MHz. The ultrasonic wave transmission unit 2 is driven by inputting the signal to the ultrasonic wave transmission unit 2.
In this way, by setting the frequency to an odd multiple, the odd harmonic characteristics can be used, so that one transmission means and one reception means (one ultrasonic detector) can be used. The ultrasonic wave can be transmitted and received.
[0014]
Then, at least two types of ultrasonic waves having different frequencies are transmitted from the ultrasonic wave transmission unit 2 to the ultrasonic wave reception unit 3 through the sludge pipe 1. Thereby, the ultrasonic wave receiving unit 3 receives the transmitted wave having a different frequency of the ultrasonic wave propagated through the sludge in the sludge pipe 1 and sends it to the A / D conversion unit 4, and the voltage is processed by the control unit 5. The sludge concentration calculating means 6 receives the measured value data. In this sludge concentration calculation means 6, the bubble correction calculation by the above formulas (1) and (2) is performed based on the data of the two frequencies (optional selection), and the calculated value as a result is the operation display unit. 8 and output to the output unit 9.
[0015]
According to the first embodiment described above, switching measurement is performed at multiple frequencies (for example, at least two frequencies), and correction calculation is performed from the selected multiple frequency data, so that bubbles, particle size, viscosity, etc. in the sludge can be obtained. There is an effect that an accurate sludge concentration can be measured without being affected.
In addition, it is possible to perform correction calculation of sludge measurement error factors by transmitting and receiving ultrasonic waves of different frequencies with one detector, and therefore, an inexpensive sludge concentration measuring device with a simple structure and high reliability can be obtained. There is an effect that it can be provided.
[0016]
Incidentally, ultrasonic switching means described in the first embodiment is not limited as long as a control means for controlling the ultrasonic transmitting means in response to the command structure and the instruction to transmit the ultrasonic waves having different frequencies .
[0017]
Embodiment 2. FIG.
FIG. 3 is a block diagram showing an ultrasonic sludge concentration measuring apparatus to which a pressure defoaming apparatus according to Embodiment 2 of the present invention is added. The same components as those in FIG. Is omitted.
In the figure, 10 is a pressure defoaming operation circuit for inputting an output signal from the sludge concentration calculating means 6, and 11 is disposed between the ultrasonic wave transmitting unit 2 and the ultrasonic wave receiving unit 3, and It is a pressure defoaming device that inputs a signal from the foam operation circuit 10.
[0018]
According to the second embodiment, it is possible to switch between a pressure defoaming mode based on the amount of bubbles and a correction calculation measurement mode that is a mode for removing a sludge concentration measurement error factor. In this manual mode, each coefficient of bubble calculation can be obtained from the data before and after pressurization and stored. In addition, there is an effect that automatic operation combining the above measurement modes is also possible. Furthermore, even when air bubbles in the sludge to be measured are significant, by combining with the pressure defoaming device 11, the sludge measurement error is reduced, and the sludge concentration of the sludge to be measured can be continuously measured. .
[0019]
【The invention's effect】
As described above, according to the present invention, an ultrasonic method has an ultrasonic wave transmission unit and an ultrasonic wave reception unit, and obtains the sludge concentration of the measured sludge by the attenuation amount of the ultrasonic wave transmitted to the measured sludge. in the sludge concentration measuring device, obtained by transmitting an odd multiple to switchable frequency switching means and at least two of the measured sludge ultrasonic frequency of the ultrasonic frequency to the fundamental frequency of transmitting to the measured sludge comprising a sludge concentration calculation means to calculating the sludge concentration in the measurement sludge from the ultrasound attenuation, the ultrasonic wave transmitter is made one ultrasonic wave transmitter whose frequency is transmitting a different ultrasound Since the ultrasonic wave receiving unit is configured to include a single ultrasonic wave receiving unit that receives a plurality of ultrasonic waves having different frequencies, a plurality of ultrasonic waves having different frequencies irradiated from the ultrasonic wave transmitting unit are provided. The ultrasonic wave is transmitted through the sludge to be measured. By detecting the difference in ultrasonic attenuation due to the difference in the frequency at which the measured sludge propagates, it is possible to apply pressure based on the conventional method simply by performing calculations based on the ultrasonic attenuation that differs depending on the frequency. There is an effect that the sludge concentration of the sludge to be measured can be directly measured without the need for a defoaming device, and the equipment can be simplified and the cost can be reduced.
[0020]
In particular, in the present invention , as described above, one ultrasonic transmission unit and one ultrasonic reception unit capable of transmitting and receiving a plurality of ultrasonic waves having different frequencies are used, and are also transmitted to the sludge to be measured. by was switchable configuration odd multiples of the fundamental frequency the frequency of the ultrasonic wave to be waves, can be utilized odd harmonic characteristics Rutotomoni, as described above, each one ultrasonic wave transmitter and a plurality of ultrasonic waves different frequencies in the ultrasonic wave receiving unit can be transmitted and received waves, since it does not require a conventional such pressurized圧消bubble device, compact and easy maintenance sludge concentration measuring device This has the effect of simplifying the equipment and reducing costs.
[0021]
According to this invention, the sludge concentration calculating means corrects the ultrasonic attenuation amount due to the bubbles contained in the measured sludge based on the ultrasonic attenuation amount of at least two kinds of frequencies transmitted to the measured sludge. Since it is configured to calculate the sludge concentration of the sludge, ultrasonic attenuation by bubbles in the measured sludge, which is a measurement error factor of the sludge concentration of the measured sludge without requiring an expensive and large-scale pressurized defoaming device The amount can be corrected, and the correction can provide a sludge concentration measurement value with high measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a solid matter concentration in sludge and an ultrasonic attenuation amount with respect to bubbles.
FIG. 2 is a block diagram showing an ultrasonic sludge concentration measuring apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a block diagram showing an ultrasonic sludge concentration measuring apparatus to which a pressure defoaming apparatus according to Embodiment 2 of the present invention is added.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sludge piping 2 Ultrasonic wave transmission part 3 Ultrasonic wave reception part 4 A / D conversion part 5 Control means 6 Sludge density | concentration calculation means 7 Synthesizer 8 Display part 9 Output part 10 Pressurization defoaming operation circuit 11 Pressure defoaming apparatus

Claims (2)

超音波送波部および超音波受波部を有し、被測定汚泥に送波した超音波の減衰量により被測定汚泥の汚泥濃度を求める超音波式汚泥濃度測定装置において、
被測定汚泥に送波する超音波の周波数を基本周波数の奇数倍に切換可能な周波数切換手段および少なくとも二種類の周波数の超音波を被測定汚泥に送波して得られる超音波減衰量から被測定汚泥の汚泥濃度を演算する汚泥濃度演算手段を備え、前記超音波送波部は、周波数が異なる複数の超音波を送波する一つの超音波送波部であり、前記超音波受波部は、周波数が異なる複数の超音波を受波する一つの超音波受波部であることを特徴とする超音波式汚泥濃度測定装置。
In an ultrasonic sludge concentration measuring device that has an ultrasonic wave transmission unit and an ultrasonic wave reception unit and obtains the sludge concentration of the measured sludge by the attenuation amount of the ultrasonic wave transmitted to the measured sludge,
The frequency switching means that can switch the frequency of the ultrasonic wave transmitted to the measured sludge to an odd multiple of the fundamental frequency and the ultrasonic attenuation obtained by transmitting the ultrasonic waves of at least two frequencies to the measured sludge comprising a sludge concentration calculation means to calculating the sludge concentration in the measurement sludge, the ultrasonic wave transmitter is one of an ultrasonic wave transmitter for transmitting a plurality of ultrasonic waves of different frequencies, the ultrasonic wave receiving The ultrasonic sludge concentration measuring device is characterized in that the unit is one ultrasonic wave receiving unit that receives a plurality of ultrasonic waves having different frequencies .
汚泥濃度演算手段は、被測定汚泥に送波した二種類の周波数の超音波減衰量に基づき、被測定汚泥に含まれる気泡による超音波減衰量を補正して被測定汚泥の汚泥濃度を演算する演算手段であることを特徴とする請求項1記載の超音波式汚泥濃度測定装置。The sludge concentration calculation means calculates the sludge concentration of the measured sludge by correcting the ultrasonic attenuation due to the bubbles contained in the measured sludge based on the ultrasonic attenuation amount of two kinds of frequencies transmitted to the measured sludge. ultrasonic sludge concentration measuring apparatus according to claim 1 Symbol mounting characterized in that it is a computing means.
JP2001401484A 2001-12-28 2001-12-28 Ultrasonic sludge concentration measuring device Expired - Fee Related JP3720299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401484A JP3720299B2 (en) 2001-12-28 2001-12-28 Ultrasonic sludge concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401484A JP3720299B2 (en) 2001-12-28 2001-12-28 Ultrasonic sludge concentration measuring device

Publications (2)

Publication Number Publication Date
JP2003202327A JP2003202327A (en) 2003-07-18
JP3720299B2 true JP3720299B2 (en) 2005-11-24

Family

ID=27640169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401484A Expired - Fee Related JP3720299B2 (en) 2001-12-28 2001-12-28 Ultrasonic sludge concentration measuring device

Country Status (1)

Country Link
JP (1) JP3720299B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351753A (en) * 2004-06-10 2005-12-22 Mayekawa Mfg Co Ltd Method and instrument for measuring concentration of ice water by ultrasonic wave
WO2013108413A1 (en) * 2012-01-20 2013-07-25 本多電子株式会社 Ultrasonic concentration meter for measuring sludge concentration, and sludge treatment system
WO2020013870A1 (en) 2018-07-10 2020-01-16 Vermeer Manufacturing Company Systems and methods for dewatering slurries
WO2020013818A1 (en) * 2018-07-10 2020-01-16 Vermeer Manufacturing Company Systems and methods for dewatering slurries
KR102422193B1 (en) 2020-06-12 2022-07-18 웨스글로벌 주식회사 Ultrasonic measure system for concentration to be attached on the wall

Also Published As

Publication number Publication date
JP2003202327A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP5447561B2 (en) Ultrasonic measuring instrument
JPS5855850A (en) System for measuring medium characteristic with reflected ultrasonic wave
JP3720299B2 (en) Ultrasonic sludge concentration measuring device
JP2009511903A (en) Digital time-variable gain circuit for nondestructive test equipment.
JPS6111659A (en) Ultrasonic insepction device
CN105043509A (en) Detecting method for liquid ultrasonic flowmeter and detecting system thereof
DK1600744T3 (en) Transmission and receiving circuits for an apparatus for measuring ultrasonic flow and method for operating such a transmitting and receiving circuit
CN111586546A (en) Method and system for measuring resonance point transmission response of low-frequency transducer
US7299150B1 (en) Ultrasonic flow meter
US4762132A (en) Device for scanning objects by means of ultrasound echography
CN102613989B (en) Detection system and signal processing method thereof
JP2003004712A (en) Ultrasonic flaw detector
JP3668119B2 (en) Flow measuring device
JPS57131058A (en) Ultrasonic flaw detection equipment
JP2007064792A (en) Ultrasonic flow measuring instrument
JP3654273B2 (en) Flow rate measuring device and flow rate measuring method
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JP2004085420A5 (en)
JPH0735589A (en) Flowrate and flow concentration measuring device
JPS6058131A (en) Ultrasonic doppler apparatus
JPH04318455A (en) Ultrasonic concentration measuring instrument
Lunt et al. Measurement of Doppler gate length using signal re-injection
JPH09192133A (en) Ultrasonic doppler diagnostic equipment
SU735922A1 (en) Correlation rate-of-flow meter
AU659180B2 (en) Apparatus for determining the mechanical properties of a solid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Ref document number: 3720299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees