JP3719565B2 - Fire extinguishing method and fire extinguishing apparatus - Google Patents

Fire extinguishing method and fire extinguishing apparatus Download PDF

Info

Publication number
JP3719565B2
JP3719565B2 JP07585397A JP7585397A JP3719565B2 JP 3719565 B2 JP3719565 B2 JP 3719565B2 JP 07585397 A JP07585397 A JP 07585397A JP 7585397 A JP7585397 A JP 7585397A JP 3719565 B2 JP3719565 B2 JP 3719565B2
Authority
JP
Japan
Prior art keywords
fire extinguishing
area
fire
permeable membrane
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07585397A
Other languages
Japanese (ja)
Other versions
JPH10263109A (en
Inventor
隆 能美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP07585397A priority Critical patent/JP3719565B2/en
Publication of JPH10263109A publication Critical patent/JPH10263109A/en
Application granted granted Critical
Publication of JP3719565B2 publication Critical patent/JP3719565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、消火方法および消火装置に関するものであり、さらに詳しくは本発明は、気体を利用する消火において、人間の避難時間が充分に確保され、消火活動を妨げることなく、しかも設備の規模およびコスト的に有利である消火方法および消火装置に関するものである。
【0002】
【従来の技術】
火災の消火手段として液体の使用を避けるべき場所が幾つか存在する。例えば美術館、コンピュータールーム、半導体製造工場、食品貯蔵庫等が挙げられる。これらの場所は、たとえ火災が小規模なものであったとしても、消火の際の多量の液体の散布・接触により多大な被害がもたらされる。
【0003】
このような観点から現在、液体を用いずに気体で火災の消火を行うことが行われつつある。例えばパーフルオロアルカン類のようなハロゲン系ガスや二酸化炭素による気体消火が代表的であり、これに関連する数多くの技術が提案されている(特開平7−39603号公報、特公平1−36386号公報、特公平8−17832号公報、特開平7−237907号公報等)。
【0004】
しかしながら、ハロゲン系ガスの使用は地球環境上問題があり、また二酸化炭素の使用は次のような問題点がある。すなわち:
▲1▼ 二酸化炭素は空気中に拡散しにくく、下方に蓄積しやすいので、消火効率が悪い。
▲2▼ 二酸化炭素は反応性が高く、有害な一酸化炭素の発生の恐れがある。
【0005】
そこで、大気中のおよそ80%を占める窒素を消火ガスとして使用する技術も知られている。窒素は、大気中の大部分を占めているために空気密度とほぼ同じであり、空気中に拡散しやすく、しかも反応性が低い。火災時、窒素は酸化されて窒素酸化物になるがその量は極僅かであり人体にほとんど影響を及ぼさない。これらのことから、火災の消火に窒素ガスを使用することへの期待が高まってきている。
【0006】
【発明が解決しようとする課題】
しかしながら、現在実用化されている窒素ガスの消火は、対象消火区域の付近に窒素ガス加圧容器(窒素ボンベ)を複数本設置する必要があり、そのためのスペースを設けなければならない。また窒素ボンベの購入および保存に関するコストも無視できない。さらに、火災時に窒素ボンベから噴出する窒素ガスは、消火区域の酸素濃度を急激に減少させることができるため、消火区域の人間の存在を想定して、消火区域内の酸素濃度の管理を厳密に行う必要がある。さらにまた、人間が退避した後、消火区域内に窒素ガスを多量に噴出させると、消火区域内の酸素が急激に低下し、消火活動の妨げになる恐れがある。
【0007】
したがって本発明の目的は、気体を利用する消火において、人間の避難時間が充分に確保され、消火活動を妨げることなく、しかも設備の規模およびコスト的に有利である消火方法および消火装置の提供にある。
【0008】
【課題を解決するための手段】
本発明者は鋭意検討の結果、上記のような従来の課題を解決することができた。
すなわち本発明は、比較的密閉された消火区域に火災が発生した際に、前記消火区域内の空気を吸引し、前記空気を圧縮し、この圧縮空気を酸素透過性に優れた透過膜と接触させ、前記圧縮空気を酸素富化空気と窒素富化空気とに分離し、得られた前記窒素富化空気を前記消火区域内に戻す消火方法において、前記消火区域内に人間の存在が確認された場合は、前記透過膜への圧縮空気の進入圧力を低下させ、前記消火区域内の酸素濃度を12〜15%に維持し、前記消火区域内に人間が存在しない場合には、前記透過膜への圧縮空気の進入圧力を上昇させ、前記消火区域内の酸素濃度を、前記消火区域内に人間の存在が確認された場合に維持される酸素濃度より低下させることを特徴とする消火方法を提供するものである。
【0010】
さらに本発明は、消火区域内の空気を圧縮するコンプレッサと、得られた圧縮空気を酸素富化空気と窒素富化空気とに分離することのできる酸素透過性に優れた透過膜と、前記透過膜を介して前記消火区域内の空気を循環させる循環経路と、前記消火区域内に人間の存在を確認する人体検知器または監視カメラとを備え、前記消火区域内に人間の存在が確認された場合は前記コンプレッサを低速運転して前記透過膜への圧縮空気の進入圧力を低下させ、前記消火区域内の酸素濃度を12〜15%に維持し、前記消火区域内に人間が存在しない場合には前記透過膜への圧縮空気の進入圧力を上昇させ、前記消火区域内の酸素濃度を、前記消火区域内に人間の存在が確認された場合に維持される酸素濃度より低下させる消火装置を提供するものである。
【0011】
さらにまた本発明は、透過膜が、有機高分子からなる均一膜または複合膜から形成される前記の消火装置を提供するものである。
【0012】
また本発明は、透過膜が、中空部を有する円筒形をなし、これを1ユニットとし、前記ユニットの多数集合したモジュール型である前記の消火装置を提供するものである。
【0013】
【発明の実施の形態】
本発明は、比較的密閉された空間(消火区域)の消火を対象にしたものであって、火災発生時、消火区域内の空気を吸引してこの空気を窒素富化空気に転換し、消火区域内に戻すことにより、消火区域内の酸素濃度が徐々に減少していくので、ゆるやかに消火を行うことができる。このような消火によれば、初期消火の段階で消火区域内の人間は充分な酸素濃度により速やかな避難が可能であり、また消火活動も妨げられない。続く段階で、消火区域内の酸素濃度がさらに減少し、火災が鎮火の方向に向かう。さらなる段階では消火区域内の酸素濃度はもはや物質の燃焼が不可能な濃度にまで低下し、完全消化がなされる。
【0014】
まず、本発明の消火方法について説明する。
火災が発生した場合、消火区域内の空気がまずコンプレッサ等により吸引され、圧縮される。圧縮空気は酸素透過性に優れた透過膜と接触される。透過膜は、圧縮空気を酸素富化空気と窒素富化空気とに分離するものである。このタイプの透過膜はすでによく知られており、有機高分子として例えばポリジメチルシロキサンまたはその誘導体、ポリアミド、ポリイミド、ポリアミドイミド、ポリアセチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリスルホン、ポリエーテルスルホン、パリシン、ポリチオール、ポリカーボネート、ポリブタジエン等のゴム、ポリスチレンおよびこれらのフッ素、塩素および臭素置換体、誘導体およびそれらの共重合体、あるいはこれらの複合膜等が挙げられ、ここで、複合膜とは、先の有機高分子よりなる多孔膜上に、ポリジメチルシロキサン等、先に挙げた有機高分子の均一膜を含浸させた構造をもつ透過性の良い膜で、例えばポリスルホンの多孔体上にポリジメチルシロキサンが含浸されたものが透過性がよく使用に適するが、これ以外の組み合わせでもよい。中でもポリジメチルシロキサンまたはその誘導体、ポリアセチレン等が均一膜として好適である。なお、透過膜は市販されているものを利用することができ、例えばモンサント社のプリズムセパレータ、宇部興産の窒素ガス発生装置等が挙げられる。
【0015】
圧縮空気から窒素富化空気を効率よく得るために、上記透過膜を直径1〜10μm程度の円筒形にし中空部を設け1ユニットとし、このユニットを例えば1万〜10万本程度集合させた、いわゆるモジュール型にするのが好適である。このようなモジュールは一般的に知られている。この場合、前記ユニットの中空部に圧縮空気が流れ込むようにモジュールを作製する。図3に前記ユニットの一例を示す。透過膜21が円筒形をなし、中空部22が形成され、ユニット20が構成されている。
【0016】
図2に、前記モジュールを概略的に示す。モジュール2は、内部にユニット20を例えば1万〜10万本程度集合させたものであり、モジュール2の一方の端部から圧縮空気を導入すると、ユニット20の透過膜21を通過した空気は酸素富化空気となり、中空部22を通り抜けた空気は窒素富化空気となり、両者を分離することができる。
中空糸素材として用いられているポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリイミド、ポリアミドは、耐熱性高分子と呼ばれ、高温、高圧にも耐えられる。高分子膜中での気体の透過現象は溶解拡散機構であり、膜中の気体透過係数は温度上昇により著しく増大する。このため、モジュールへ導入する気体は常温でもよいが、好ましい温度は30〜100℃である。なお、あまり温度が高すぎると、高分子素材の劣化を促進させるので好ましくない。
熱交換器等により導入気体の温度をコントロールしない装置でも、火災による発熱で室内の温度が上昇するので、自然に導入空気の温度が上がり、窒素の透過量が大きくなり消化は促進される。透過係数の温度依存性は素材によって異なるが、一般的には活性化エネルギーに依存するので、温度が30℃から100℃に上昇すると透過係数は約5〜10倍に増大する。
【0017】
このようにして得られた前記窒素富化空気は、消火区域内に再び戻され、消火区域内の酸素濃度が減少する。消火区域内の酸素濃度は次のようにして減少させるのがよい。
消火初期段階−酸素濃度15%程度。この濃度であれば人間は消火区域内から迅速に退避することが可能である。
鎮火段階−酸素濃度10〜15%。この濃度は、火災は鎮火に向かう。なお酸素濃度10〜15%であっても人間は避難や消火等の活動を行うことができる。したがって、人間が避難した後の消火隊の活動も妨げることはない(なお従来、酸素濃度15%では人間はチアノーゼになったり、死亡したりすると考えられていたが、現在では酸素濃度10〜15%でも人間の生命に危険を及ぼすことがないことが確認されている)。
最終段階−酸素濃度0〜10%。この酸素濃度では物質の燃焼は不可能である。
【0018】
消火区域内の酸素濃度は、透過膜、例えばモジュール入口の圧縮空気の進入圧力によって制御することができる。モジュール入口の圧縮空気の進入圧力が高い場合、消火区域内の酸素濃度は迅速に低下するが、逆に進入圧力が低い場合、おだやかな酸素濃度の減少が得られる。
【0019】
次に本発明の消火装置について説明する。図1は本発明の消火装置を説明するための図である。
本発明の装置1は、消火区域40に任意の場所に、消火区域40内の空気の取り込むことのできる循環経路3が設けられている。ここからコンプレッサ5等の空気を圧縮する手段によって、消火区域40内の空気が取り込まれる。圧縮空気は、さらに酸素富化空気と窒素富化空気とを分離する酸素透過性に優れた透過膜と接触する。図1の態様によれば、モジュール2が設置されている。モジュール2から排出された窒素富化空気は、循環経路3を経て消火区域40内に戻される。
【0020】
さらに具体的に火災が発生した場合を想定して本発明の装置の稼働の一例を説明する。
消火区域40内に発生した火災を火災感知器6がとらえ、受信機7に火災信号を送る。受信機7からの信号により、循環経路3に設置されている遮断弁8および11を開放する。コンプレッサ5を起動し、消火区域40内の空気を吸引圧縮する。消火区域40内の酸素濃度は、設置された酸素濃度計9により確認される。次に圧縮空気をモジュール2に通過させ、窒素富化空気を得る。人体検知器または監視カメラ等で消火区域40内に人間の存在が確認された場合は、コンプレッサ5を低速運転しモジュール2への圧縮空気の進入圧力を低下させ、消火区域40内の酸素濃度を12〜15%程度に維持する。消火区域40内に人間が存在しないことを確認した場合は、モジュール2への圧縮空気の進入圧力を上昇させ、消火区域40内の酸素濃度を一層低下させる。窒素富化空気の圧力を圧力計12により、且つ酸素濃度を酸素濃度計13により制御しながらこれを消火区域40内に戻す。
【0021】
【作用】
本発明は、比較的密閉された消火区域を窒素ガスで消火するものであり、消火区域内の酸素濃度を徐々に減少できることが有利な点の一つである。初期消火の段階では消火区域内の酸素が速やかな避難に充分であることは、上記したとおりである。
また、窒素ガスは空気密度とほぼ同じために拡散しやすく、従来、液体が到達しない複雑な形状の物品の消火にも有用である。本発明を好適に実施可能な場所としては、上記の美術館、コンピュータールーム、半導体製造工場、食品貯蔵庫のほかに、PETボトルのラック倉庫、一般オフィス、ケーブルトンネル等も挙げられる。とくにPETボトルのラック倉庫の火災では、プラスチックの発熱量が大きく、高温になると可燃性液体に似た火災形態を示す可能性があり、木材等のように水の浸透もないので、水による消化は比較的困難である。また、窒素富化空気を得るためには、空気から酸素を除去するだけでよいので、仕事量が少ない利点もある。さらに、本発明の装置を適用すれば、火災で発生するCO2、CO、NOx、SOx、すす、HCN、HCl等の有害成分も透過膜により除去可能である。
【0022】
【発明の効果】
本発明によれば、気体を利用する消火において、人間の避難時間が充分に確保され、消火活動を妨げることなく、しかも設備の規模およびコスト的に有利である消火方法および消火装置が提供される。
【図面の簡単な説明】
【図1】本発明の消火装置を説明するための図である。
【図2】モジュールを説明するための概略図である。
【図3】中空部を有する円筒形をなしたユニットの斜視図である。
【符号の説明】
1 本発明の装置
2 モジュール
3 循環経路
5 コンプレッサ
6 火災感知器
7 受信機
8,11 遮断弁
9,13 酸素濃度計
12 圧力計
20 ユニット
21 透過膜
22 中空部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fire extinguishing method and a fire extinguishing apparatus, and more particularly, the present invention relates to a fire extinguishing method using a gas, in which a sufficient human evacuation time is ensured without impeding fire fighting activities, The present invention relates to a fire extinguishing method and a fire extinguishing apparatus that are advantageous in terms of cost.
[0002]
[Prior art]
There are several places where the use of liquids should be avoided as a fire extinguishing means. For example, a museum, a computer room, a semiconductor manufacturing factory, a food storage, etc. These places can be devastated by spraying and contacting a large amount of liquid during a fire, even if the fire is small.
[0003]
From such a viewpoint, extinguishing a fire with a gas without using a liquid is now being performed. For example, gas fire extinguishing with a halogen-based gas such as perfluoroalkanes or carbon dioxide is typical, and many techniques related to this are proposed (Japanese Patent Laid-Open No. 7-39603, Japanese Patent Publication No. 1-33686). Gazette, Japanese Patent Publication No. 8-17832, Japanese Patent Laid-Open No. 7-237907, etc.).
[0004]
However, the use of a halogen-based gas has a problem on the global environment, and the use of carbon dioxide has the following problems. Ie:
(1) Carbon dioxide is difficult to diffuse in the air and easily accumulates downward, so that the fire extinguishing efficiency is poor.
(2) Carbon dioxide is highly reactive and may cause harmful carbon monoxide.
[0005]
Therefore, a technique using nitrogen, which occupies approximately 80% of the atmosphere, as a fire extinguishing gas is also known. Nitrogen occupies most of the atmosphere and therefore has almost the same density as the air density, easily diffuses into the air, and has low reactivity. In the event of a fire, nitrogen is oxidized to nitrogen oxides, but the amount is negligible and has little effect on the human body. For these reasons, expectations for using nitrogen gas for fire extinguishing are increasing.
[0006]
[Problems to be solved by the invention]
However, in the nitrogen gas extinguishing currently in practical use, it is necessary to install a plurality of nitrogen gas pressurization containers (nitrogen cylinders) in the vicinity of the target fire extinguishing area, and a space for that purpose must be provided. The costs associated with the purchase and storage of nitrogen cylinders are not negligible. In addition, nitrogen gas ejected from a nitrogen cylinder at the time of a fire can drastically reduce the oxygen concentration in the fire extinguishing area, and therefore strictly control the oxygen concentration in the fire extinguishing area assuming the presence of humans in the fire extinguishing area. There is a need to do. Furthermore, if a large amount of nitrogen gas is blown into the fire extinguishing area after a person has evacuated, the oxygen in the fire extinguishing area may rapidly decrease and hinder fire fighting activities.
[0007]
Accordingly, it is an object of the present invention to provide a fire extinguishing method and a fire extinguishing apparatus that are sufficiently advantageous in terms of the size and cost of facilities without sufficiently hindering the fire fighting activities in fire extinguishing using gas. is there.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has been able to solve the conventional problems as described above.
That is, according to the present invention, when a fire occurs in a relatively sealed fire extinguishing area, the air in the fire extinguishing area is sucked, the air is compressed, and the compressed air is contacted with a permeable membrane having excellent oxygen permeability. In the fire extinguishing method in which the compressed air is separated into oxygen-enriched air and nitrogen-enriched air, and the obtained nitrogen-enriched air is returned to the fire-extinguishing area, human presence is confirmed in the fire-extinguishing area. The pressure of the compressed air entering the permeable membrane is reduced , the oxygen concentration in the fire extinguishing area is maintained at 12 to 15%, and when no human is present in the fire extinguishing area, the permeable membrane increasing the entrance pressure of the compressed air to the extinguishing wherein said oxygen concentration in the suppression area, human presence in said suppression area is characterized Rukoto is lower than the oxygen concentration to be maintained when it is confirmed Is to provide.
[0010]
Furthermore, the present invention provides a compressor for compressing air in a fire extinguishing zone, a permeable membrane having excellent oxygen permeability capable of separating the obtained compressed air into oxygen-enriched air and nitrogen-enriched air, and the permeation a circulation path for circulating the air in the suppression area through the membrane, and a human body detecting device or surveillance cameras to verify the presence of a person in the suppression area, presence of a person has been confirmed in the suppression area In this case, when the compressor is operated at a low speed to reduce the pressure of the compressed air entering the permeable membrane , the oxygen concentration in the fire extinguishing area is maintained at 12 to 15%, and no human is present in the fire extinguishing area. Provides a fire extinguishing device that raises the pressure of compressed air entering the permeable membrane and lowers the oxygen concentration in the fire extinguishing area below the oxygen concentration maintained when human presence is confirmed in the fire extinguishing area What to do That.
[0011]
Furthermore, the present invention provides the fire extinguishing apparatus, wherein the permeable membrane is formed from a uniform membrane or a composite membrane made of an organic polymer.
[0012]
Further, the present invention provides the fire extinguishing apparatus, wherein the permeable membrane has a cylindrical shape having a hollow portion, which is a single unit, and is a module type in which a large number of the units are assembled.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is intended for extinguishing a relatively sealed space (extinguishing area). When a fire occurs, the air in the extinguishing area is sucked to convert the air into nitrogen-enriched air, and the fire is extinguished. By returning to the area, the oxygen concentration in the fire extinguishing area gradually decreases, so that the fire can be extinguished slowly. According to such fire extinguishing, people in the fire extinguishing area can evacuate quickly with sufficient oxygen concentration at the initial extinguishing stage, and fire fighting activities are not hindered. At a subsequent stage, the oxygen concentration in the fire extinguishing area further decreases, and the fire moves in the direction of extinguishing. In a further stage, the oxygen concentration in the fire extinguishing zone is reduced to a concentration at which it is no longer possible to burn the material and complete digestion is achieved.
[0014]
First, the fire extinguishing method of the present invention will be described.
In the event of a fire, the air in the fire extinguishing area is first sucked and compressed by a compressor or the like. The compressed air is brought into contact with a permeable membrane having excellent oxygen permeability. The permeable membrane separates compressed air into oxygen-enriched air and nitrogen-enriched air. This type of permeable membrane is already well known, and organic polymers such as polydimethylsiloxane or derivatives thereof, polyamide, polyimide, polyamideimide, polyacetylene, polyethylene, polypropylene, polyethylene terephthalate, polysulfone, polyethersulfone, parisin, polythiol Rubbers such as polycarbonate and polybutadiene, polystyrene and their fluorine, chlorine and bromine substituted products, derivatives and copolymers thereof, or composite membranes thereof. It is a highly permeable membrane with a structure in which the above-mentioned uniform organic polymer membrane such as polydimethylsiloxane is impregnated on a porous membrane made of molecules. For example, polydimethylsiloxane is impregnated on a porous body of polysulfone. Is transparent Although sexual suitable are often used, or a combination other than this. Of these, polydimethylsiloxane or a derivative thereof, polyacetylene, and the like are suitable as the uniform film. In addition, what is marketed can use what is marketed, for example, the prism separator of Monsanto, the nitrogen gas generator of Ube Industries, etc. are mentioned.
[0015]
In order to efficiently obtain nitrogen-enriched air from compressed air, the permeable membrane has a cylindrical shape with a diameter of about 1 to 10 μm, and a hollow portion is provided as one unit. For example, about 10,000 to 100,000 units are assembled. A so-called module type is preferable. Such modules are generally known. In this case, a module is produced so that compressed air flows into the hollow part of the unit. FIG. 3 shows an example of the unit. The permeable membrane 21 has a cylindrical shape, a hollow portion 22 is formed, and the unit 20 is configured.
[0016]
FIG. 2 schematically shows the module. The module 2 is an assembly of about 10,000 to 100,000 units 20 inside. When compressed air is introduced from one end of the module 2, the air that has passed through the permeable membrane 21 of the unit 20 is oxygen. The air that has become enriched air and has passed through the hollow portion 22 becomes nitrogen-enriched air, which can be separated.
Polysulfone, polyethersulfone, polycarbonate, polyimide, and polyamide used as hollow fiber materials are called heat-resistant polymers and can withstand high temperatures and high pressures. The gas permeation phenomenon in the polymer membrane is a dissolution / diffusion mechanism, and the gas permeation coefficient in the membrane increases remarkably as the temperature rises. For this reason, normal temperature may be sufficient as the gas introduce | transduced into a module, but preferable temperature is 30-100 degreeC. If the temperature is too high, deterioration of the polymer material is promoted, which is not preferable.
Even in a device that does not control the temperature of the introduced gas by a heat exchanger or the like, the temperature in the room rises due to heat generated by a fire, so the temperature of the introduced air naturally rises, the amount of nitrogen permeation increases, and digestion is promoted. Although the temperature dependence of the transmission coefficient varies depending on the material, it generally depends on the activation energy. Therefore, when the temperature rises from 30 ° C. to 100 ° C., the transmission coefficient increases about 5 to 10 times.
[0017]
The nitrogen-enriched air thus obtained is returned again into the fire extinguishing zone, and the oxygen concentration in the fire extinguishing zone is reduced. The oxygen concentration in the fire extinguishing area should be reduced as follows.
Fire extinguishing early stage-oxygen concentration around 15%. At this concentration, humans can evacuate quickly from the fire-extinguishing area.
Fire extinguishing stage-oxygen concentration 10-15%. At this concentration, the fire goes to extinguishment. Even if the oxygen concentration is 10 to 15%, humans can perform activities such as evacuation and fire extinguishing. Therefore, there is no hindrance to the activities of the fire brigade after the human evacuation (in the past, it was thought that humans would become cyanosis or died at an oxygen concentration of 15%, but now the oxygen concentration is 10-15. % Have not been confirmed to pose a danger to human life).
Final stage-Oxygen concentration 0-10%. At this oxygen concentration, combustion of the material is not possible.
[0018]
The oxygen concentration in the fire extinguishing zone can be controlled by the permeation pressure of the permeable membrane, for example, compressed air at the inlet of the module. When the pressure of entry of compressed air at the module inlet is high, the oxygen concentration in the fire extinguishing zone decreases rapidly. Conversely, when the pressure of entry is low, a gentle decrease in oxygen concentration is obtained.
[0019]
Next, the fire extinguishing apparatus of the present invention will be described. FIG. 1 is a view for explaining a fire extinguishing apparatus of the present invention.
The apparatus 1 of the present invention is provided with a circulation path 3 in which air in the fire extinguishing area 40 can be taken in an arbitrary place in the fire extinguishing area 40. From here, the air in the fire extinguishing zone 40 is taken in by means of compressing air such as the compressor 5. The compressed air further contacts a permeable membrane having excellent oxygen permeability that separates oxygen-enriched air and nitrogen-enriched air. According to the embodiment of FIG. 1, a module 2 is installed. The nitrogen-enriched air exhausted from the module 2 is returned to the fire extinguishing zone 40 via the circulation path 3.
[0020]
Further, an example of the operation of the apparatus of the present invention will be described on the assumption that a fire has occurred.
The fire detector 6 detects a fire that has occurred in the fire extinguishing area 40 and sends a fire signal to the receiver 7. The shutoff valves 8 and 11 installed in the circulation path 3 are opened by a signal from the receiver 7. The compressor 5 is started and the air in the fire extinguishing area 40 is sucked and compressed. The oxygen concentration in the fire extinguishing area 40 is confirmed by the installed oxygen concentration meter 9. The compressed air is then passed through module 2 to obtain nitrogen enriched air. When the presence of a person in the fire extinguishing zone 40 is confirmed by a human body detector or a monitoring camera, the compressor 5 is operated at a low speed, the pressure of the compressed air entering the module 2 is lowered, and the oxygen concentration in the fire extinguishing zone 40 is reduced. Maintain about 12-15%. When it is confirmed that no person is present in the fire extinguishing area 40, the pressure of the compressed air entering the module 2 is increased, and the oxygen concentration in the fire extinguishing area 40 is further decreased. The pressure of the nitrogen-enriched air is returned to the fire extinguishing zone 40 while being controlled by the pressure gauge 12 and the oxygen concentration by the oximeter 13.
[0021]
[Action]
The present invention extinguishes a relatively sealed fire extinguishing area with nitrogen gas, and one of the advantages is that the oxygen concentration in the extinguishing area can be gradually reduced. As described above, the oxygen in the fire extinguishing area is sufficient for quick evacuation at the initial fire extinguishing stage.
Moreover, since nitrogen gas is almost the same as the air density, it is easy to diffuse, and conventionally, it is useful for extinguishing a complex shaped article that does not reach liquid. Places where the present invention can be suitably implemented include PET bottle rack warehouses, general offices, cable tunnels, etc., in addition to the above-mentioned museums, computer rooms, semiconductor manufacturing factories, and food storages. Especially in a fire in a PET bottle rack warehouse, the amount of heat generated by plastic is large, and when it gets hot, it may show a fire form similar to a flammable liquid. Is relatively difficult. In addition, in order to obtain nitrogen-enriched air, it is only necessary to remove oxygen from the air, so there is an advantage that the work amount is small. Furthermore, if the apparatus of the present invention is applied, harmful components such as CO 2 , CO, NOx, SOx, soot, HCN, and HCl generated in a fire can be removed by the permeable membrane.
[0022]
【The invention's effect】
According to the present invention, there is provided a fire extinguishing method and a fire extinguishing apparatus that are sufficiently advantageous in terms of the size and cost of facilities without sufficiently hindering the fire fighting activity in fire extinguishing using gas. .
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a fire extinguishing apparatus according to the present invention.
FIG. 2 is a schematic diagram for explaining a module;
FIG. 3 is a perspective view of a cylindrical unit having a hollow portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Apparatus 2 of this invention Module 3 Circulation path 5 Compressor 6 Fire detector 7 Receiver 8, 11 Shut-off valve 9, 13 Oxygen concentration meter 12 Pressure gauge 20 Unit 21 Permeation membrane 22 Hollow part

Claims (4)

比較的密閉された消火区域に火災が発生した際に、前記消火区域内の空気を吸引し、前記空気を圧縮し、この圧縮空気を酸素透過性に優れた透過膜と接触させ、前記圧縮空気を酸素富化空気と窒素富化空気とに分離し、得られた前記窒素富化空気を前記消火区域内に戻す消火方法において、
前記消火区域内に人間の存在が確認された場合は、前記透過膜への圧縮空気の進入圧力を低下させ、前記消火区域内の酸素濃度を12〜15%に維持し、前記消火区域内に人間が存在しない場合には、前記透過膜への圧縮空気の進入圧力を上昇させ、前記消火区域内の酸素濃度を、前記消火区域内に人間の存在が確認された場合に維持される酸素濃度より低下させることを特徴とする消火方法。
When a fire occurs in a relatively sealed fire extinguishing area, the air in the fire extinguishing area is sucked, the air is compressed, and the compressed air is brought into contact with a permeable membrane having excellent oxygen permeability. In a fire extinguishing method in which the oxygen-enriched air and nitrogen-enriched air are separated, and the obtained nitrogen-enriched air is returned to the fire-extinguishing area.
When human presence is confirmed in the fire-extinguishing area, the pressure of the compressed air entering the permeable membrane is reduced , the oxygen concentration in the fire-extinguishing area is maintained at 12 to 15% , When no human is present, the pressure of the compressed air entering the permeable membrane is increased, and the oxygen concentration in the fire extinguishing area is changed to the oxygen concentration maintained when human existence is confirmed in the fire extinguishing area. extinguishing wherein the Rukoto more reduced.
消火区域内の空気を圧縮するコンプレッサと、得られた圧縮空気を酸素富化空気と窒素富化空気とに分離することのできる酸素透過性に優れた透過膜と、前記透過膜を介して前記消火区域内の空気を循環させる循環経路と、前記消火区域内に人間の存在を確認する人体検知器または監視カメラとを備え、前記消火区域内に人間の存在が確認された場合は前記コンプレッサを低速運転して前記透過膜への圧縮空気の進入圧力を低下させ、前記消火区域内の酸素濃度を12〜15%に維持し、前記消火区域内に人間が存在しない場合には前記コンプレッサによる前記透過膜への圧縮空気の進入圧力を上昇させ、前記消火区域内の酸素濃度を、前記消火区域内に人間の存在が確認された場合に維持される酸素濃度より低下させる消火装置。A compressor that compresses air in the fire extinguishing zone, a permeable membrane that can separate the obtained compressed air into oxygen-enriched air and nitrogen-enriched air, and the permeable membrane through the permeable membrane. a circulation path for circulating the air in the suppression area, and a human body detecting device or surveillance cameras to verify the presence of a person in the suppression area, said compressor when the presence of human the suppression area is confirmed reducing the entry pressure of the compressed air to the permeable membrane at low speed operation, to maintain the oxygen concentration of the suppression area 12 to 15% above when a person is not present in the suppression area said by the compressor A fire extinguishing apparatus that raises the pressure of the compressed air entering the permeable membrane and lowers the oxygen concentration in the fire extinguishing area below the oxygen concentration maintained when human presence is confirmed in the fire extinguishing area . 透過膜が、有機高分子からなる均一膜または複合膜から形成される請求項2に記載の消火装置。The fire extinguishing apparatus according to claim 2 , wherein the permeable film is formed of a uniform film or a composite film made of an organic polymer. 透過膜が、中空部を有する円筒形をなし、これを1ユニットとし、前記ユニットの多数集合したモジュール型である請求項2または3に記載の消火装置。The fire extinguishing apparatus according to claim 2 or 3 , wherein the permeable membrane has a cylindrical shape having a hollow portion, which is a unit type in which a single unit is formed.
JP07585397A 1997-03-27 1997-03-27 Fire extinguishing method and fire extinguishing apparatus Expired - Lifetime JP3719565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07585397A JP3719565B2 (en) 1997-03-27 1997-03-27 Fire extinguishing method and fire extinguishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07585397A JP3719565B2 (en) 1997-03-27 1997-03-27 Fire extinguishing method and fire extinguishing apparatus

Publications (2)

Publication Number Publication Date
JPH10263109A JPH10263109A (en) 1998-10-06
JP3719565B2 true JP3719565B2 (en) 2005-11-24

Family

ID=13588206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07585397A Expired - Lifetime JP3719565B2 (en) 1997-03-27 1997-03-27 Fire extinguishing method and fire extinguishing apparatus

Country Status (1)

Country Link
JP (1) JP3719565B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811851C2 (en) * 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inerting procedure for fire prevention and extinguishing in closed rooms
CZ298794B6 (en) * 2001-01-11 2008-01-30 Wagner Alarm- Und Sicherungssysteme Gmbh Inert rendering method for preventing and/or extinguishing fires in enclosed space and device for making the same
JP2007222534A (en) * 2006-02-27 2007-09-06 Fire-Defence Agancy Fire extinguishing/preventing device, and fire extinguishing/preventing method
ATE503531T1 (en) * 2008-12-12 2011-04-15 Amrona Ag INERTIZATION METHOD FOR FIRE PREVENTION AND/OR FIRE EXTINGUISHING AND INERTIZATION SYSTEM FOR IMPLEMENTING THE PROCESS
KR101136979B1 (en) * 2009-04-02 2012-04-19 주식회사 시뮬레이션테크 Spontaneous vessel fire preventive system
ES2593602T3 (en) 2013-05-06 2016-12-12 Amrona Ag Inerting procedure as well as installation for quantitative oxygen reduction
EP3103524A1 (en) * 2015-06-10 2016-12-14 Opsys LLC System for providing a hypoxic air atmosphere in an enclosed space
CN110985097B (en) * 2019-12-20 2021-09-07 安徽鹰龙工业设计有限公司 Self-rescue flame-retardant device for underground fire of coal mine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135677A (en) * 1984-12-03 1986-06-23 宮田工業株式会社 Starting of fire extinguishing equipment
JPS62367A (en) * 1985-06-26 1987-01-06 フジタ工業株式会社 Non-combustible building
US4807706A (en) * 1987-07-31 1989-02-28 Air Products And Chemicals, Inc. Breathable fire extinguishing gas mixtures
FR2672967B1 (en) * 1991-02-14 1993-04-23 Air Liquide METHOD OF CONSTITUTING IN A CHAMBER OF A CONTROLLED ATMOSPHERE AND CHAMBER OF A CONTROLLED ATMOSPHERE.
JP2771360B2 (en) * 1991-09-27 1998-07-02 日本碍子株式会社 Fire extinguisher in sodium-sulfur battery
JPH06227803A (en) * 1993-02-05 1994-08-16 Matsushita Electric Ind Co Ltd Nitrogen generator
JPH07237907A (en) * 1994-02-22 1995-09-12 Kaoru Asada Production of incombustible gas, incombustible gas composition, apparatus for production of incombustible gas and fire extinguishing appliance
JPH07251045A (en) * 1994-03-16 1995-10-03 Dainippon Ink & Chem Inc Organic polymeric gas separation membrane and its production

Also Published As

Publication number Publication date
JPH10263109A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
JP3719565B2 (en) Fire extinguishing method and fire extinguishing apparatus
US9733149B2 (en) Method and device for determining and/or monitoring the air tightness of an enclosed room
RU2601869C2 (en) Inertisation method and system for reducing oxygen content
US7207392B2 (en) Method of preventing fire in computer room and other enclosed facilities
RU2469759C2 (en) Inerting method used to reduce inflammation hazard in closed space, and device for implementation of that method
AU2014264756B9 (en) Inertization method and system for oxygen reduction
US20030136879A1 (en) System for extinguishing and suppressing fire in an enclosed space in an aircraft
US20030094288A1 (en) Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
JPH01160450A (en) Method and apparatus for generation of controlled air
WO1998026387A3 (en) Fire and smoke detection and control system
CN110848844B (en) Air conditioner and fire prevention control method thereof
HK1076416A1 (en) Inerting method for extinguishing fires
JP4624215B2 (en) Disaster prevention facilities for hydrogen production and storage equipment
JP4158840B2 (en) Fire extinguisher
JP3947610B2 (en) Fire extinguisher
JPH09135919A (en) Super sensitive fire detection/extinguishing system
KR102246200B1 (en) Fire extinguishing system for suppressing ship fire
JPH0413756Y2 (en)
FR2748396A1 (en) Air conditioning system including fire detectors and extinguishers
JP2005202699A (en) Apparatus and method for aiding disaster
RU2756258C1 (en) Gas separation device for creating a breathable fire-suppressing hypoxic atmosphere
JPH0293399A (en) Tritium remover
JPH0237105Y2 (en)
TR2023001239U5 (en) AUTOMATIC FIRE EXTINGUISHING SYSTEM
CN117839127A (en) Fire control system and method for battery energy storage system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7