JP3717698B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3717698B2
JP3717698B2 JP07184399A JP7184399A JP3717698B2 JP 3717698 B2 JP3717698 B2 JP 3717698B2 JP 07184399 A JP07184399 A JP 07184399A JP 7184399 A JP7184399 A JP 7184399A JP 3717698 B2 JP3717698 B2 JP 3717698B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
lithium
additive
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07184399A
Other languages
Japanese (ja)
Other versions
JP2000268860A (en
Inventor
誠二 森田
完二 漆原
悟 成瀬
哲哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07184399A priority Critical patent/JP3717698B2/en
Publication of JP2000268860A publication Critical patent/JP2000268860A/en
Application granted granted Critical
Publication of JP3717698B2 publication Critical patent/JP3717698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液電池に関し、特にこの種の電池に使用する非水電解液の改良に関する。
【0002】
【従来の技術】
現在、非水電解液電池は、エネルギー密度が比較的高く、また小型化に適していることから、メモリーバックアップや、カメラ等の電源をはじめ、様々な用途で利用されている。
非水電解液電池は、例えば、次のような構造を有している。すなわち、ステンレス芯体に金属酸化物(二酸化マンガンなど)やフッ化黒鉛を圧着してなる正極と、リチウム金属あるいはリチウム─アルミニウム合金からなる負極とを、セパレータを介して重ね、これを巻き回したものを発電要素とする。セパレータには電解液中を移動するリチウムイオン等の流通を良好にする目的から、樹脂製の微多孔膜が一般に用いられる。
【0003】
さらに、発電要素は外装缶に収納され、非水電解液に浸される。ここで、非水電解液には一般に有機溶媒が使用されるが、これはプロピレンカーボネート等のカーボネート類と、1、2─ジメトキシエタン等の低沸点溶媒との混合溶媒に、過塩素酸リチウムLiCl04またはトリフルオロメタンスルホン酸リチウムLiCF3SO3等の溶質を溶解して構成される。なお、外装缶は発電要素を収納し、非水電解液に浸された後に封口体によって封口される。
【0004】
【発明が解決しようとする課題】
上記の構成を有する非水電解液電池は、低沸点溶媒を用いることから、特にマイナス10℃程度の低温条件下においても優れた放電特性を有している。その反面、電池の放電容量を半分以上放電させたまま室温で長期間放置しておくと、次第に電池の内部抵抗が上昇することがある。内部抵抗が上がれば大電流を取り出しにくくなり、放電特性は低下してしまう。
【0005】
このような問題は、電解液中の低沸点溶媒の量を減らすことで抑制できると予想できるが、実際には電解液の粘性を上げることにつながり、イオンの移動を妨げる原因となる。
これに対し、電解液にサリチル酸エステルや芳香族ジカルボン酸エステルを添加すると、室温保存にかかる内部抵抗の上昇を抑える効果があることが知られている(特開昭58─68878号公報、特開平7─022069号公報)。しかし、これらの技術は電池の内部抵抗の上昇を数カ月間ほど抑制する上では効果的であるが、放電容量の70%以上を放電させたまま、室温で長期間(1年程度以上)にわたって保存すると、電池の内部抵抗はさらに上昇して、その抑制が困難になりやすい。このことは、例えば非水電解液電池を各種メータの電源に用いるような、1年以上にわたって使用する環境下では、電圧降下による駆動不良を起こすなどの原因となり、解決すべき課題である。
【0006】
以上のことから、本課題に関してはいまだ改善の余地が残されていると考えられる。
本発明は上記課題に鑑みてなされたものであって、その目的は非水電解液電池の有する優れた低温放電特性を維持しつつ、部分放電後の1年以上にわたる室温での長期保存時に内部抵抗の上昇を抑制することが可能で、バックアップ用電源等に好適した非水電解液電池を提供することにある。
【0007】
【課題を解決するための手段】
上記課題に対し、本願発明者らは鋭意検討した結果、非水電解液電池の電解液の添加剤として、アセト酢酸メチル、アセト酢酸エチル、アセト酪酸メチルの少なくともいずれかを用いることにより、従来は困難であった1年以上にわたる電池の良好な保存特性が実現されることを見出した。これにより、上記課題を解決するために本発明は、リチウムまたはリチウム合金あるいは電気化学的にリチウムを吸蔵放出可能な炭素材料からなる負極と、金属酸化物を活物質とする正極と、非水電解液とを備える非水電解液電池において、非水電解液に添加剤として、アセト酢酸メチル、アセト酢酸エチル、アセト酪酸メチルの少なくともいずれかを添加するものとした。
【0008】
このうち前記添加剤としては、具体的にはアセト酢酸メチルが望ましい。アセト酢酸メチルは比較的入手しやすいという利点がある。また、前記添加剤は比較的低分子量であり、非水電解液に対して添加する重量が少量で抑えられる。このため、添加剤によって非水電解液が過度に薄められるのが回避される。
【0009】
【発明の実施の形態】
(非水電解液電池の構成)
図1は、本発明の非水電解液電池の一適用例であるリチウム電池の構成を示す断面斜視図である。同図に示すリチウム電池100は、有底円筒型の外装缶101に、セパレータ102を介してシート状の正極板103と負極板104がスパイラル(渦巻)状に巻かれた状態で収納され、封口板106が絶縁ガスケット105を介して外装缶開口部101でかしめて封口された構成である。
【0010】
正極板103と負極板104およびセパレータ102には非水電解液が含浸されている。当該セパレータ102、正極板103、負極板104等からなる発電要素と外装缶101との上下間には、絶縁板107、108がそれぞれ介在している。
負極板104はリチウム─アルミニウム合金からなる板であり、負極活物質とするものである。なお、このほかにリチウム板またはリチウムを吸蔵放出することが可能な炭素材料を活物質としたものを用いても良い。
【0011】
正極板103は、ステンレス製ラス芯体に二酸化マンガンMnO2を正極活物質として用いている。また、このほかにチタン酸化物、ニッケル酸化物等の金属酸化物を用いても良い。
セパレータ102は厚み方向にマイクロオーダーの穿孔加工がなされたポリエチレン製の微多孔膜であり、発電に際して各種の非水電解液の成分(電解イオン)が正極板103と負極板104の間を流通できるようになっている。
【0012】
非水電解液の溶媒は、本実施の形態ではエチレンカーボネート(EC)、ブチレンカーボネート(BC)、1、2─ジメトキシエタン(DME)などの低沸点溶媒を重量比25:25:50で混合したものである。また、このほかプロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、エトキシメトキシエタン(EME)、テトラヒドロフラン(THF)、ジオキソラン(DOL)等の低沸点溶媒を適宜混合して用いることができる。
【0013】
一方、非水電解液の電解質は、本実施の形態ではトリフルオロメタンスルホン酸リチウムLiCF3SO3を用いている。また、このほか過塩素酸リチウムLiClO4、ヘキサフルオロリン酸リチウムLiPF6、ヘキサフルオロホウ酸リチウムLiBF6、ヘキサフルオロヒ酸リチウムLiAsF6、リチウムトリフルオロメタンスルホン酸イミド(CF3SO22NLi、リチウムペンタフルオロエタンスルホン酸イミド(C25SO22NLi等を用いることが可能である。
【0014】
非水電解液はさらに、本発明の特徴として添加剤が加えられている。当該添加剤はアセト酢酸メチル、アセト酢酸エチル、アセト酪酸メチルの少なくともいずれかであって、ここではアセト酢酸メチルを用いており、非水電解液中に3000ppmの濃度になるように調整されている。この添加剤は、以下の重要な役割を持っている。
すなわち、非水電解液電池は低沸点溶媒を用いることにより、特に低温時における放電特性に優れる反面、ある程度放電がなされると、正極に含まれる二酸化マンガンなどの成分の触媒作用を受けて、経時的に徐々に分解される性質がみられる。この分解された溶媒成分は負極の表面に付着し、そこで不活性膜を形成するようになる。これは電池の放電特性を低下させる原因となるものであり、電池を約1年以上の長期間にわたって使用する条件などでは放電容量低下のため駆動対象が誤作動しやすくなり、好ましくないことである。
【0015】
上記添加剤は、このような電池の放電特性の低下を抑制するために添加しており、二酸化マンガンなどの触媒作用による低沸点溶媒の分解を防ぎ、電池の放電特性を1年以上にわたって維持する役割を有している。
このような添加剤は、非水電解液中に500〜5000ppm程度の濃度で存在させると効果的である。これについては後述の実施例で明らかにする。3000ppmという濃度はこの濃度範囲の一例である。
【0016】
なお、アセト酢酸メチルは本発明の添加剤の一例であるが、これは電解液中の添加剤の重量を抑え、電解液を過度に薄めないために、比較的低分子量の化合物として選んでいる。
【0017】
このような内部構造を有するリチウム電池100は、その外装缶101の周面が外装フィルム(不図示)で覆われ、外装缶101の底面が負極端子111となる。一方、正極端子110は前記封口板106の中央に配置される。正極端子110(負極端子111)は前記正極板103(負極板104)に対し、正極タブ109(負極タブ;(不図示))で接続され、これによって電池外部に電力が取り出される。
【0018】
なお、本発明の非水電解液電池は当然ながら円筒型電池に限定するものではなく、角形、ボタン型など各種のタイプに適用してもよい。
【0019】
【実施例】
上記実施の形態に基づき、実施例の非水電解液電池を作製した。その際、非水電解液に添加する添加剤として、上記したアセト酢酸メチルと、その他にアセト酢酸エチルアセト酪酸メチルなどを使用した。これらの添加剤の濃度を変化させ、計種類の実施例電池A1〜A3、A5〜A9を作製した(低濃度のアセト酢酸メチル300ppm(A1)、アセト酢酸メチル500ppm(A2)、アセト酢酸エチル500ppm(A3)アセト酪酸メチル500ppm(A5)、アセト酢酸メチル1000ppm(A6)、アセト酢酸メチル3000ppm(A7)、アセト酢酸メチル5000ppm(A8)、高濃度のアセト酢酸メチル7000ppm(A9))。
【0020】
また比較例として、添加剤無添加(B1)、非水電解液の添加剤にサリチル酸エチル500ppm(B2)、フタル酸ジエチル500ppm(B3)、酢酸メチル500ppm(B4)、アセトン500ppm(B5)を用いたものを作製した。
なお電池の詳細な作製工程は以下の通りである。
【0021】
1.正極板の作製;
正極活物質として二酸化マンガン85wt%と、導電剤として人造黒鉛5wt%およびケッチェンブラック5wt%、結着剤としてフッ素樹脂5wt%を混合し、シート状に成形した。これを帯状のステンレス製ラス芯体の両面に重ねて圧延し、所定の大きさに切断して熱処理したものを正極板とした。
【0022】
2.負極板の作製;
リチウム─アルミニウム合金を所定の大きさに切断し、これを負極板とした。
3.電解液の調合;
エチレンカーボネート25wt%、ブチレンカーボネート25wt%、1、2─ジメトキシエタン50wt%を混合してなる混合溶媒に、溶質としてトリフルオロメタンスルホン酸リチウム0.5Mを溶解させた。その後、比較例電池B1以外は所定の添加剤を所定濃度で添加した。
【0023】
4.電池の組立て;
上記のように作製した正極板と負極板を、ポリエチレン製微多孔膜のセパレータを介して巻き回し、円筒型外装缶(直径17mm×高さ33.5mm)に収納した。その後、正極および負極の集電タブを所定の場所に接続し、上記電解液を注液した後、完全に封口して各実施例の電池とした。
【0024】
(性能比較実験)
次に、作製した実施例電池A1〜A3、A5〜A9および比較例電池B1〜B5について、性能比較実験を行った。
実験方法としては各電池を放電容量が70%になるまで放電し、室温(23℃)で6カ月間および12カ月間にわたり保存し、保存前と保存後の内部抵抗と、パルス放電特性を調べた。この実験結果を表1(内部抵抗の変化)と表2(パルス放電特性の変化)に示す。
【0025】
なお内部抵抗値に関しては、保存前と保存後の内部抵抗相対値(内部抵抗相対値=保存後の内部抵抗値/保存前の内部抵抗値)として表1に表した。
またパルス放電は、低温下(─10℃)で10Ω×100msecの条件で行った。表2では各電池のパルス放電特性をパルス放電電圧差(実施例電池A2のパルス放電電圧値─各電池のパルス放電電圧値)として表した。
【0026】
【表1】

Figure 0003717698
【0027】
【表2】
Figure 0003717698
【0028】
(実験結果の考察)
表1から明らかなように、添加剤が実施例A1〜A3、A5〜A9で用いたもの以外(比較例電池B1〜B5)では、いずれも保存期間が6カ月の時点で実施例電池A1〜A3、A5〜A9に比べて内部抵抗が高い結果が得られた。この内部抵抗の違いは、保存期間を12カ月まで延長するとさらに大きくなる傾向を示した。また、添加剤の種類によっては、無添加(比較例電池B1)よりも内部抵抗が高まるものもあった(アセトン使用、比較例電池B5)。このように添加剤の種類が内部抵抗に及す影響がまちまちである中で実施例電池A1〜A3、A5〜A9は、比較例電池B1〜B5に比べて良好な保存特性を有していることがわかった。
【0029】
なお、実施例電池ではA1が、他の実施例電池A2、A3、A5〜A9に比べると、添加量300ppmと少量のために保存後の内部抵抗がやや上昇している。このことから本発明では、本発明の添加剤としては、より好ましくは500ppm以上添加するのが望ましいと考えられる。
一方、本発明の添加剤は、その添加量が多すぎても好ましくなく、パルス放電特性に悪影響を及ぼすことが表2の実施例電池A9の結果から窺える。パルス放電特性とは、電池を瞬間的に放電させ、このときの電圧の落ち込み加減の安定性に基づいて電池特性を表すものである。
【0030】
ここで、図2は一例として二酸化マンガン─リチウム電池の放電特性図を示している。当図のようにパルス放電特性は、例えば300msecほどの短い時間に放電し、そのときの放電電池電圧の降下を調べるものであって、電圧降下が低いほど性能が良いと言うことができる。
したがって、表2に示すパルス放電電圧差は、実施例電池A2のパルス放電電圧を基準としているため、その値がマイナス方向の絶対値が大きいほど、実施例電池A2よりもパルス放電電圧が優れて(放電電圧が高い)おり、その値がプラス方向の絶対値が大きいほど、実施例電池A2よりもパルス放電電圧が悪い(放電電圧が低い)と言える。実施例電池A1〜A3、A5〜A9では12カ月間の保存期間にわたり、パルス放電電圧差が0に近いことから、実施例電池A2のパルス放電電圧とほとんど差がないことが分かるが、比較例電池B1〜B5では、パルス放電電圧差がプラス方向に比較的大きな差を生じていることから、実施例電池A2よりもパルス放電電圧差が低いことがわかる。
【0031】
この表2の実施例電池A9から、アセト酢酸メチルの濃度が濃すぎると保存期間に関わらずパルス放電特性があまり優れないことがわかる。すなわち添加剤の濃度が7000ppm程度まで高くなると、基本的に電解液自体のイオン伝導度に悪影響を与え易くなる可能性が考えられる。
これらのことから本発明の添加剤は、基本的には添加するだけで一定の効果が望めるものの、500〜5000ppmの範囲で添加するのが好適である。
【0032】
【発明の効果】
以上のことから明らかなように、本発明はリチウムまたはリチウム合金あるいは電気化学的にリチウムを吸蔵放出可能な炭素材料からなる負極と、金属酸化物を活物質とする正極と、非水電解液とを備える非水電解液電池であって、前記非水電解液には、添加剤として、アセト酢酸メチル、アセト酢酸エチル、アセト酪酸メチルの少なくともいずれかが含まれているため、ある程度放電した状態で1年以上にわたって長期保存しても、従来に比べて内部抵抗の上昇を抑え、良好な放電特性を維持することが可能となる。
【図面の簡単な説明】
【図1】本発明の一適用例である非水電解液電池の部分断面斜視図である。
【図2】 二酸化マンガン─リチウム電池のパルス放電特性を示す図である。
【符号の説明】
101 外装缶
102 セパレータ
103 正極板
104 負極版[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery, and more particularly to an improvement of a non-aqueous electrolyte used in this type of battery.
[0002]
[Prior art]
Currently, non-aqueous electrolyte batteries have a relatively high energy density and are suitable for miniaturization, and are therefore used in various applications such as memory backup and power sources for cameras.
The nonaqueous electrolyte battery has the following structure, for example. That is, a positive electrode made by pressing a metal oxide (such as manganese dioxide) or graphite fluoride on a stainless steel core and a negative electrode made of lithium metal or lithium-aluminum alloy were stacked with a separator interposed between them and wound. Things are power generation elements. For the purpose of improving the circulation of lithium ions or the like that move in the electrolytic solution, a resin microporous film is generally used for the separator.
[0003]
Furthermore, the power generation element is housed in an outer can and immersed in a non-aqueous electrolyte. Here, an organic solvent is generally used for the non-aqueous electrolyte. This is a mixed solvent of a carbonate such as propylene carbonate and a low boiling point solvent such as 1,2-dimethoxyethane, and lithium perchlorate LiCl0. 4 or a solute such as lithium trifluoromethanesulfonate LiCF 3 SO 3 is dissolved. The outer can contains the power generation element and is sealed with a sealing member after being immersed in a non-aqueous electrolyte.
[0004]
[Problems to be solved by the invention]
Since the non-aqueous electrolyte battery having the above configuration uses a low boiling point solvent, it has excellent discharge characteristics even under a low temperature condition of about minus 10 ° C. On the other hand, if the battery is discharged for more than half of the discharge capacity and left at room temperature for a long time, the internal resistance of the battery may gradually increase. If the internal resistance increases, it will be difficult to extract a large current, and the discharge characteristics will deteriorate.
[0005]
Such a problem can be expected to be suppressed by reducing the amount of the low-boiling point solvent in the electrolytic solution. However, it actually leads to an increase in the viscosity of the electrolytic solution and hinders the movement of ions.
On the other hand, it is known that adding a salicylic acid ester or an aromatic dicarboxylic acid ester to the electrolytic solution has an effect of suppressing an increase in internal resistance required for storage at room temperature (Japanese Patent Laid-Open Nos. 58-68878 and JP-A-Hei Hei). 7-022069). However, these technologies are effective in suppressing the increase in the internal resistance of the battery for several months, but they are stored at room temperature for a long period (about 1 year or more) while discharging 70% or more of the discharge capacity. Then, the internal resistance of the battery further increases, and it is difficult to suppress it. This is a problem to be solved because it causes a drive failure due to a voltage drop in an environment in which a nonaqueous electrolyte battery is used for a power source of various meters for more than one year.
[0006]
Based on the above, there is still room for improvement on this issue.
The present invention has been made in view of the above problems, and its purpose is to maintain the excellent low-temperature discharge characteristics of a non-aqueous electrolyte battery while maintaining the internal temperature during long-term storage at room temperature for over a year after partial discharge. It is possible to suppress the increase in resistance, and to provide a suitable and non-aqueous electrolyte battery for backup power supply or the like.
[0007]
[Means for Solving the Problems]
As a result of diligent investigations on the above problems, the inventors of the present application have conventionally used at least one of methyl acetoacetate, ethyl acetoacetate, and methyl acetobutyrate as an additive for the electrolyte solution of the non-aqueous electrolyte battery. It has been found that good storage characteristics of the battery over a difficult year can be realized. Accordingly, in order to solve the above problems, the present invention provides a negative electrode made of lithium or a lithium alloy or a carbon material that can electrochemically occlude and release lithium, a positive electrode using a metal oxide as an active material, and non-aqueous electrolysis. In a non-aqueous electrolyte battery comprising a liquid, at least one of methyl acetoacetate, ethyl acetoacetate, and methyl acetobutyrate is added as an additive to the non-aqueous electrolyte.
[0008]
Among these , specifically, methyl acetoacetate is desirable as the additive . Methyl acetoacetate has the advantage of being relatively easy to obtain. Further, the additive has a relatively low molecular weight, and the weight added to the non-aqueous electrolyte can be suppressed with a small amount. Therefore, the non-aqueous electrolyte by additive Ru is avoided from being excessively diluted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Configuration of non-aqueous electrolyte battery)
FIG. 1 is a cross-sectional perspective view showing a configuration of a lithium battery as an application example of the nonaqueous electrolyte battery of the present invention. A lithium battery 100 shown in the figure is housed in a bottomed cylindrical outer can 101 in a state where a sheet-like positive electrode plate 103 and a negative electrode plate 104 are spirally (wound) wound through a separator 102, and sealed. The plate 106 is configured to be caulked and sealed at the outer can opening 101 through an insulating gasket 105.
[0010]
The positive electrode plate 103, the negative electrode plate 104, and the separator 102 are impregnated with a non-aqueous electrolyte. Insulating plates 107 and 108 are interposed between the upper and lower sides of the power generation element composed of the separator 102, the positive electrode plate 103, the negative electrode plate 104, and the like and the outer can 101, respectively.
The negative electrode plate 104 is a plate made of a lithium-aluminum alloy and is used as a negative electrode active material. In addition, a lithium plate or a carbon material capable of occluding and releasing lithium may be used as an active material.
[0011]
The positive electrode plate 103 uses manganese dioxide MnO 2 as a positive electrode active material in a stainless lath core. In addition, metal oxides such as titanium oxide and nickel oxide may be used.
The separator 102 is a microporous film made of polyethylene having a micro-order perforation process in the thickness direction, and various non-aqueous electrolyte components (electrolytic ions) can flow between the positive electrode plate 103 and the negative electrode plate 104 during power generation. It is like that.
[0012]
In the present embodiment, the solvent of the non-aqueous electrolyte is a low boiling point solvent such as ethylene carbonate (EC), butylene carbonate (BC), 1,2-dimethoxyethane (DME) mixed at a weight ratio of 25:25:50. Is. In addition, low-boiling solvents such as propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethoxymethoxyethane (EME), tetrahydrofuran (THF), dioxolane (DOL) and the like are appropriately mixed and used. be able to.
[0013]
On the other hand, lithium trifluoromethanesulfonate LiCF 3 SO 3 is used as the electrolyte of the non-aqueous electrolyte in this embodiment. In addition, lithium perchlorate LiClO 4 , lithium hexafluorophosphate LiPF 6 , lithium hexafluoroborate LiBF 6 , lithium hexafluoroarsenate LiAsF 6 , lithium trifluoromethanesulfonate imide (CF 3 SO 2 ) 2 NLi, Lithium pentafluoroethanesulfonic acid imide (C 2 F 5 SO 2 ) 2 NLi or the like can be used.
[0014]
The non-aqueous electrolyte further includes an additive as a feature of the present invention. The additive is at least one of methyl acetoacetate, ethyl acetoacetate, and methyl acetobutyrate . Here, methyl acetoacetate is used, and the concentration is adjusted to 3000 ppm in the non-aqueous electrolyte. . This additive has the following important roles.
In other words, the nonaqueous electrolyte battery uses a low-boiling point solvent, and is excellent in discharge characteristics particularly at low temperatures. On the other hand, when a certain amount of discharge occurs, it receives the catalytic action of components such as manganese dioxide contained in the positive electrode. It can be seen that it gradually decomposes. The decomposed solvent component adheres to the surface of the negative electrode and forms an inactive film there. This is a cause of deteriorating the discharge characteristics of the battery. Under conditions where the battery is used for a long period of time of about 1 year or longer, the discharge target is likely to malfunction, which is not preferable. .
[0015]
The additive is added to suppress such deterioration of the discharge characteristics of the battery, prevents decomposition of the low boiling point solvent due to catalytic action such as manganese dioxide, and maintains the discharge characteristics of the battery for more than one year. Have a role.
Such an additive is effective when it is present in the non-aqueous electrolyte at a concentration of about 500 to 5000 ppm. This will be clarified in an example described later. The concentration of 3000 ppm is an example of this concentration range.
[0016]
In addition, although methyl acetoacetate is an example of the additive of the present invention , this is selected as a relatively low molecular weight compound in order to suppress the weight of the additive in the electrolytic solution and not excessively dilute the electrolytic solution. The
[0017]
In the lithium battery 100 having such an internal structure, the outer peripheral surface of the outer can 101 is covered with an outer film (not shown), and the bottom surface of the outer can 101 becomes the negative electrode terminal 111. Meanwhile, the positive terminal 110 is disposed at the center of the sealing plate 106. The positive electrode terminal 110 (negative electrode terminal 111) is connected to the positive electrode plate 103 (negative electrode plate 104) by a positive electrode tab 109 (negative electrode tab; (not shown)), whereby electric power is taken out of the battery.
[0018]
Of course, the non-aqueous electrolyte battery of the present invention is not limited to a cylindrical battery, and may be applied to various types such as a square and a button.
[0019]
【Example】
Based on the above embodiment, non-aqueous electrolyte batteries of Examples were produced. At that time, as an additive to be added to the nonaqueous electrolytic solution, it was used with methyl acetoacetate described above, other ethyl acetoacetate, and aceto butyrate. The concentration of these additives was changed to produce a total of 8 example batteries A1 to A3 and A5 to A9 (low concentrations of methyl acetoacetate 300 ppm (A1), methyl acetoacetate 500 ppm (A2), ethyl acetoacetate 500 ppm (A3) , methyl acetobutyrate 500 ppm (A5), methyl acetoacetate 1000 ppm (A6), methyl acetoacetate 3000 ppm (A7), methyl acetoacetate 5000 ppm (A8), high-concentration methyl acetoacetate 7000 ppm (A9)).
[0020]
In addition, as a comparative example, no additive (B1), 500 ppm (B2) of ethyl salicylate, 500 ppm (B3) of diethyl phthalate, 500 ppm (B4) of methyl acetate, and 500 ppm of acetone (B5) are used as nonaqueous electrolyte additives. What was there was produced.
The detailed manufacturing process of the battery is as follows.
[0021]
1. Production of positive electrode plate;
Manganese dioxide 85 wt% as a positive electrode active material, artificial graphite 5 wt% and ketjen black 5 wt% as a conductive agent, and fluororesin 5 wt% as a binder were mixed and formed into a sheet shape. This was laminated and rolled on both surfaces of a belt-shaped stainless steel lath core, cut into a predetermined size and heat-treated to obtain a positive electrode plate.
[0022]
2. Production of negative electrode plate;
A lithium-aluminum alloy was cut into a predetermined size and used as a negative electrode plate.
3. Preparation of electrolyte solution;
0.5M lithium trifluoromethanesulfonate was dissolved as a solute in a mixed solvent obtained by mixing 25 wt% ethylene carbonate, 25 wt% butylene carbonate, and 50 wt% 1,2-dimethoxyethane. Thereafter, except for the comparative battery B1, a predetermined additive was added at a predetermined concentration.
[0023]
4. Battery assembly;
The positive electrode plate and the negative electrode plate produced as described above were wound through a polyethylene microporous membrane separator and stored in a cylindrical outer can (diameter 17 mm × height 33.5 mm). Then, connect the current collecting tabs of the positive electrode and the negative electrode in place after pouring on SL electrolyte was a battery of each example are completely sealed.
[0024]
(Performance comparison experiment)
Next, a performance comparison experiment was performed on the fabricated example batteries A1 to A3, A5 to A9 and comparative batteries B1 to B5.
As an experimental method, each battery was discharged until the discharge capacity reached 70% and stored at room temperature (23 ° C.) for 6 months and 12 months, and the internal resistance before and after storage, and pulse discharge characteristics were examined. It was. The experimental results are shown in Table 1 (change in internal resistance) and Table 2 (change in pulse discharge characteristics).
[0025]
The internal resistance values are shown in Table 1 as relative internal resistance values before and after storage (internal resistance relative value = internal resistance value after storage / internal resistance value before storage).
The pulse discharge was performed at a low temperature (−10 ° C.) under the condition of 10Ω × 100 msec. In Table 2, the pulse discharge characteristics of each battery are expressed as a pulse discharge voltage difference (pulse discharge voltage value of Example battery A2−pulse discharge voltage value of each battery).
[0026]
[Table 1]
Figure 0003717698
[0027]
[Table 2]
Figure 0003717698
[0028]
(Consideration of experimental results)
As can be seen from Table 1, the batteries other than those used in Examples A1 to A3 and A5 to A9 (Comparative Examples B1 to B5) had the storage period of 6 months . The result that internal resistance was high compared with A3 and A5-A9 was obtained. This difference in internal resistance tended to become larger when the storage period was extended to 12 months. In addition, depending on the type of additive, there was one that had higher internal resistance than additive-free (Comparative Battery B1) (using acetone, Comparative Battery B5). In this type of way additive is mixed is及affects the internal resistance, Example batteries A1 to A3, A5~A9 may have good storage properties as compared with Comparative Example battery B1~B5 I found out.
[0029]
In the example battery, A1 has a slightly increased internal resistance after storage due to the addition amount of 300 ppm as compared with the other example batteries A2, A3, A5 to A9 . Therefore, in the present invention, it is considered desirable to add 500 ppm or more as the additive of the present invention .
On the other hand, the additives of the present invention is not preferable even if the addition amount of its too much, an adverse effect on the pulse discharge characteristic suggests the results of Examples cell A9 in Table 2. The pulse discharge characteristic represents the battery characteristic based on the stability of the voltage drop at this time when the battery is discharged instantaneously.
[0030]
Here, FIG. 2 shows a discharge characteristic diagram of a manganese dioxide-lithium battery as an example. As shown in this figure, the pulse discharge characteristic is for discharging in a short time of, for example, about 300 msec and examining the drop in the discharge battery voltage at that time, and it can be said that the lower the voltage drop, the better the performance.
Therefore, since the pulse discharge voltage difference shown in Table 2 is based on the pulse discharge voltage of the example battery A2, the larger the absolute value in the negative direction, the better the pulse discharge voltage than the example battery A2. It can be said that the higher the absolute value in the positive direction is, the worse the pulse discharge voltage (the lower the discharge voltage) than in Example Battery A2. In Example batteries A1 to A3 and A5 to A9 , the pulse discharge voltage difference is close to 0 over the storage period of 12 months, so it can be seen that there is almost no difference from the pulse discharge voltage of Example battery A2. In the batteries B1 to B5, the pulse discharge voltage difference is relatively large in the positive direction, which indicates that the pulse discharge voltage difference is lower than that of the example battery A2.
[0031]
From Example Battery A9 of Table 2, it can be seen that if the concentration of methyl acetoacetate is too high, the pulse discharge characteristics are not so excellent regardless of the storage period. That is, when the concentration of the additive is increased to about 7000 ppm, basically, there is a possibility that the ionic conductivity of the electrolytic solution itself is likely to be adversely affected.
From these facts, the additive of the present invention can be basically obtained only by adding it, but it is preferable to add it in the range of 500 to 5000 ppm.
[0032]
【The invention's effect】
As is clear from the above, the present invention relates to a negative electrode made of lithium or a lithium alloy or a carbon material capable of electrochemically inserting and extracting lithium, a positive electrode using a metal oxide as an active material, a non-aqueous electrolyte, In the non-aqueous electrolyte battery, the non-aqueous electrolyte solution contains at least one of methyl acetoacetate, ethyl acetoacetate, and methyl acetobutyrate as an additive. Even if stored for a long period of time for one year or longer, it is possible to suppress an increase in internal resistance as compared with the conventional case and maintain good discharge characteristics.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view of a nonaqueous electrolyte battery that is an application example of the present invention.
FIG. 2 is a graph showing pulse discharge characteristics of a manganese dioxide-lithium battery.
[Explanation of symbols]
101 Outer can 102 Separator 103 Positive electrode plate 104 Negative electrode plate

Claims (2)

リチウムまたはリチウム合金あるいは電気化学的にリチウムを吸蔵放出可能な炭素材料からなる負極と、金属酸化物を活物質とする正極と、非水電解液とを備える非水電解液電池であって、
前記非水電解液には、添加剤として、アセト酢酸メチル、アセト酢酸エチル、アセト酪酸メチルの少なくともいずれかが含まれていることを特徴とする非水電解液電池。
A non-aqueous electrolyte battery comprising: a negative electrode made of lithium or a lithium alloy or a carbon material capable of electrochemically inserting and extracting lithium; a positive electrode using a metal oxide as an active material; and a non-aqueous electrolyte solution,
The non-aqueous electrolyte battery contains at least one of methyl acetoacetate, ethyl acetoacetate, and methyl acetobutyrate as an additive.
前記添加剤は非水電解液に500〜5000ppmの濃度で添加されていることを特徴とする請求項1に記載の非水電解液電池。The non-aqueous electrolyte battery according to claim 1, wherein the additive is added to the non-aqueous electrolyte at a concentration of 500 to 5000 ppm.
JP07184399A 1999-03-17 1999-03-17 Non-aqueous electrolyte battery Expired - Lifetime JP3717698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07184399A JP3717698B2 (en) 1999-03-17 1999-03-17 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07184399A JP3717698B2 (en) 1999-03-17 1999-03-17 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2000268860A JP2000268860A (en) 2000-09-29
JP3717698B2 true JP3717698B2 (en) 2005-11-16

Family

ID=13472238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07184399A Expired - Lifetime JP3717698B2 (en) 1999-03-17 1999-03-17 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3717698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417084B1 (en) * 2001-05-08 2004-02-05 주식회사 엘지화학 New additives for electrolyte and lithium ion battery using the same
CN105406119B (en) * 2014-06-30 2018-05-29 比亚迪股份有限公司 A kind of lithium-ion battery electrolytes and the lithium ion battery containing the electrolyte
JP6693200B2 (en) * 2015-03-24 2020-05-13 三菱ケミカル株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte battery using the same
CN108232297A (en) * 2016-12-15 2018-06-29 宁德时代新能源科技股份有限公司 Electrolyte solution and secondary battery

Also Published As

Publication number Publication date
JP2000268860A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
US7115340B2 (en) Non-aqueous electrolyte secondary battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP3249305B2 (en) Non-aqueous electrolyte battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2007227221A (en) Lithium/iron disulphide primary cell
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
WO2015046492A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JPH07320779A (en) Nonaqueous electrolytic battery
US20100216017A1 (en) Battery
WO2020241438A1 (en) Non-aqueous electrolyte secondary battery
JP3059820B2 (en) Lithium secondary battery
CN101794909A (en) Rechargeable nonaqueous electrolytic battery
JP2001236946A (en) Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US6562515B2 (en) Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture
JP2007250380A (en) Nonaqueous electrolyte secondary battery
JP4989985B2 (en) battery
JP3717698B2 (en) Non-aqueous electrolyte battery
JP3717697B2 (en) Non-aqueous electrolyte battery
JP2007042447A (en) Lithium/iron disulphide primary cell
JP2006080008A (en) Nonaqueous electrolyte secondary battery
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JPH08171934A (en) Lithium secondary battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term